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We introduce improved element-free Galerkin method based on block pulse wavelet integration for numerical approximations
to the solution of a system of fourth-order boundary-value problems associated with obstacle, unilateral, and contact problems.
Moving least squares (MLS) approach is used to construct shape functions with optimized weight functions and basis. Numerical
results for test problems are presented in this article to elaborate the pertinent features for the proposed technique. Comparison
with existing techniques shows that our proposed method based on integration technique provides better approximation at reduced

computational cost.

1. Introduction

Variational inequality theory has turned out to be an effective
and potential tool for solution of mathematical models for
obstacle, unilateral and contact problems. These problems
arise in study of fluid flow through porous media, elasticity,
transportation, optimal control, nonlinear optimization, and
operations research [1-4]. The area of obstacle problems
arising in fluid flow through porous media and elasticity
forms an significant basis for the applications of variational
inequalities. It has been revealed by Kikuchi and Oden
[5] that the problem of equilibrium of elastic bodies in
contact with a rigid frictionless foundation can be studied
in the structure of variational inequalities. In a variational
inequalities formulation, the location of the free boundary
becomes an intrinsic part of the solution, and no special tech-
niques are needed to locate it. Various numerical methods
were employed to solve such type of problems [1-4]. If the
obstacle is known, then the variational inequalities can be
characterized by a system of differential equations by using
the penalty function method of Lewy and Stampacchia [6].
In this paper, we apply element-free Galerkin method based
on block pulse functions to develop a numerical method for
obtaining smooth approximations to the solution of a system

of fourth-order obstacle boundary-value problems of the type
as follows:

f(x), a<x<g,
u® = gX)ux)+ f(x)+r, c<x<d, €))
f(x), d<x<b.

With boundary conditions, consider
u(a)=u®) =a«a, " (@) =u" ) = o,

u(e)=u(d =p, u' (@) =u" (b) = B,,

where f and g are continuous functions on [a, b] and [c, d],
respectively. The parameters r, «;, and 5; (i = 1,2) are real
constants and the continuity conditions of u, "' at ¢ and d.

This problem was solved by many authors using different
order of polynomial and nonpolynomial spline. Papamichael
and Worsey [4] and Khalifa and Noor [3], have developed
first- and second-order methods for solving such type of
boundary value problems. Siraj-ul-Islam et al. [7] have
established and analyzed smooth approximations for second,
third, and fourth order linear/nonlinear boundary-value
problems.

2)



Galerkin-finite element method is one of the most popu-
lar well-developed methods, has been extensively used in the
computational mechanics, due to its robustness, versatility,
and convenience. However, the finite element method has
inherent problems such as locking and poor derivative
solutions [8]. FEM requires considerable amount of labor
and time in generation of a predefined mesh/remesh of the
problem domain. In structural analysis, the stresses calcu-
lated employing FEM algorithms are discontinuous and less
accurate. When large deformations are analyzed, distortions
in elements cause loss in solution accuracy in the case of
large deformations [9]. Other numerical techniques such
as the BEM (boundary element method) is limited by the
availability of the infinite space fundamental solution for (at
least the highest linear) differential operator of the problem.

The physical phenomena modeled by fourth-order obsta-
cle boundary value problems are complicated, particularly,
when they involve complex materials (e.g., viscoelastic mate-
rials with poisson ratio nearly 0.5) and where load is highly
oscillatory. In conventional displacement-based approaches
like finite element method (FEM), the interpolation of dis-
placement requires c! continuity to ensure the convergence of
FEM procedure for 4th order boundary value problems. This
interpolation involves very intricate shape functions. These
shape functions occupy large number of degrees of freedom
in every element, including nodal rotations, displacement
and so forth. For detailed discussion for solving such prob-
lems, the reader is referred to works [10] and references
therein.

Improved element-free Galerkin (EFG) method provides
an alternative choice of numerical tools which presents an
attractive option in solution of such problems due to its flex-
ibility in the absence of nodal interconnectivity. A meshfree
(or meshless) method is a method used to establish system
algebraic equations for the whole problem domain without
the use of a predefined mesh for the domain discretization
[9]. Several meshless techniques have been developed, for
example, the “diffuse element method” [11] the “element-
free Galerkin (EFG)” method [12] “meshless local Petrov-
Galerkin (MLPG)” method [8], the “smooth particle hydro-
dynamics (SPH)” method, the “reproducing Kernel particle”
method [13] “boundary node” method [14, 15] “boundary
point interpolation” methods [16] and so forth [8].

2. Numerical Technique

Meshfree method has been applied to physical problems
using Gaussian weight function. Moving least square method
is used to generate the shape functions. Galerkin weak form of
the boundary value problem is formulated to give the system
equations. Penalty/Lagrange method is used to impose the
boundary conditions. Numerical integration of the system
equation has been performed using block-pulse function.

2.1. Meshless Shape Function. Shape functions for meshless
techniques need to satisfy certain conditions such as adher-
ence to partition of unity (3, ®;(x) = 1), compact domain
of influence, and adapting to randomness of nodes, to name
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a few. Computational efficiency is significantly affected by
choice of shape function.

MLS. Moving least square (MLS) scheme was developed
by mathematicians for interpolation, data fitting, and sur-
face construction. Meshless techniques maintain the local
character of the numerical implementation, by using a local
interpolation to represent the trial function with the fictitious
values of the unknown variable at some randomly located
nodes. The local interpolation techniques generally used are
MLS, partition of unity method, reproducing kernel particle
method, hp clouds, Shepard function, and so forth. The
moving least squares (MLSs) approximation has reasonably
high accuracy and can be generalized to work with n-
dimensional problems. It provides continuous approximation
for the field function over the entire problem domain [9, 17].

Here, moving least square (MLS) scheme is considered to
interpolate the field variable. MLS approximation u'(x) of a
field variable function u(x) is defined as

m
W)=Y pi(x)a;(x)=p (xa(x) VxeQ, (3)
=0
where m = number of terms in the basis, p;(x) = polynomial
basis function, a;(x) = nonconstant coefficients, and pl(x) =
[1(x), P2 (%), P (x)].

pT(x) is a complete monomial basis vector of order
m; a(x) is a vector containing coefficients: aj(x), j =
1,2,3,...,m. The unknown coefficients of approximation are
computed by minimizing the difference between the local
approximation at a point x; and the nodal parameter u; for
the node I: u; = u(x;).

Here the sample point x; may be a nodal point under
consideration or a quadrature point. The support of the nodal
point x; is usually taken to be a circle of radius r;, centered at
x;. The weighted residual functional is evaluated as

n

J= Y wl-x) (4 ) -, @)

i=1

where w(x — x;) is weight function associated with the node
I calculated at point x. w(x — x;) > 0 for all points x in the
support domain of node I, and

W' (x) = p' (%)) a (x). ()
Minimization of weighted residual functional results in
A(x)a(x)=B(x)u, (6)
where A(x) is a non-singular matrix.
a(x) = A" ()B)u, u=[u,u,... ,un]T. (7)

The weight moment matrix A(x) is

n

A(x)=P'WP = Zw(x—xl)p(xl)pT(xI), @
i=1 8

B (x) = P'W,
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FIGURE 1: Weight function in the support domain.
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FIGURE 2: Derivatives of weight function in the support domain.

where P is

P= PT (x;) (9)

W is the weight function matrix:

w(x—2x,) - 0
w=| |

0 - w(x-x,)

The following Gaussian weight function is used in the present
study:

w(x—x;) =exp (—occ(x - xl)z) . (11)

Shape perimeter («.) substantially affects the accuracy of
the solution. Weight function for different values of shape
parameters and its derivatives are illustrated in Figures 1 and
2 respectively.

Obtain value a(x) from (7), and substituting in (5)

()= 0T (x)-u= Z d(x)u; VxeQ, (12)

I=1

®(x) is the nodal shape function

O (x) = [¢y (%), ¢, (%) ..., ¢, (x)]. (13)

For any node I,

@, (x) = p' () (AT () B(x)),. (14)

Transform the strong form of obstacle boundary value prob-
lems into symmetric variational or weak form as follows:

b d*u
J (a(x)@ +g(x)u(x)—f(x))vdx=0, (15)

a

where u is the trial function and v is the test function. We
get the following linear equation system after employing
“Integration by parts” technique and by using the shape
functions and boundary conditions

’ a(x)o"(o" T+k(x)(D(DT dxu = bf@dx,
[ (atoo"(o") )= |

a a
Ku=F,

(16)
K= Jb (a0 @"(0")" +k(x) 00" dx,

b
F- J Fdx.

Solving the system of equation, we get that @ nodal fictitious
values are obtained. Required numerical solution can be
determined by multiplication of nodal fictitious values and
shape functions ©:

u=ud. 17)

2.2. EFG. Element-free Galerkin (EFG) technique was intro-
duced by Belytschko et al. [12]. EFG results in generation of
nodes with variable interconnectivity, thus providing huge
flexibility in discretization. Solution is expanded on a basis of
MLS shape functions instead of piecewise polynomial basis
as in case of the Finite element method. System equations are
formulated using Galerkin weak form whereas integration is
performed using background cells. EFG is conforming due to
the use of consistent and compatible shape functions [9].

2.3. Block-Pulse Function-Based Integration. The accuracy of
numerical approximation is dependent on the integration
technique. Quadrature rule is commonly used for numerical
integration. In this method, interpolating polynomials are
employed to find weights for nodes in the domain. Conven-
tional Gaussian quadrature scheme involves large number of
points for accurate numerical solution. In other numerical
integration techniques such as Newton-Cotes quadrature
rule, fine discretization leads to erroneous results due to high
degree of polynomial interpolation [18]. Accuracy of Gaus-
sian quadrature rule depends on the selection of nodes and
corresponding weights. Method of undetermined coefficients



may be used for quadrature rule which requires tabulation of
nodes and weights before numerical integration.

In order to avoid these difficulties, Block-Pulse functions
(BPF) have been used in this study to find numerical solution
of system integral equations. Wavelet transforms were pri-
marily developed for signal analysis, but they have also been
used in applications like image compression, data compres-
sion, de-noising data and numerical approximation. Various
types of wavelets include Battle-Lemarie, B-spline, Cheby-
shev, Daubechies, Legendre and Block-Pulse functions [18].

Numerical Integration based on wavelets is becoming
popular in recent years [18]. In this study, Block-Pulse
functions have been used due to their suitable properties and
exceptional performance in numerical integration [18]. Their
performance particularly, in approximation of highly oscilla-
tory and improper integral is more accurate as compared to
existing method in literature [18-23].

Block-Pulse wavelet is one of the simplest wavelet. BPF
with m number of sets is defined as [18]:

G-1)T iT
1 f <t< —

¢ (t) = T < (18)
0 otherwise.

Heret € [0,T]andi=1,2,...,mand h =T /m.

Let us consider the integrand j: g(x)dx, for x = (b—a)t+
a, we get:

b
J g(x)dx:(b—a)Jlg((b—a)t+a)dt. (19)

a 0

Theorem 1. The integral can be approximated as [18]

1 1 m
JO gt~ — ;gi. (20)

Proof. Consider

1 m 1 1 m
L g(t)dt = ;gi L ¢ (B)dt = — ;gi. (21)

To calculate the coeflicients g; we consider the nodal points,

2k -1
te=

k=1,2,...,m. (22)
2m

The equation can be discretized to give
m
g(t) = Zgi¢i (t) =g k=12,....,m  (23)
i=1

Thus the integral can be approximated based on m-set block-
pulse function as

[ooa-38s(50) e

0 i=1

or
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Optimal weights are calculated using built-in procedure in
terms of wavelets. There is no need for tabulation of weights,
and no intermediate technique is required for integration.
BPF-based integration eliminates the need for quadrature
nodes. Integrands are treated explicitly without solving
nonlinear system which results from unknown nodes and

weights. O

2.4. Consistency. A numerical method is called convergent
if it approaches the exact solution as the discretization is
refined. Consistency and stability guarantee convergence. The
choice of monomial basis vector p(x) influences the consis-
tency of the EFG method. MLS approximation reproduces all
components that appear in p(x). EFG method is consistent
with order k if all monomials up to order k are included in
p(x) [24]. If k = 1, this implies that p(x) is linear complete
and if k = 2, p(x) is quadratic complete, and so forth.
For consistency test we consider MLS approximation which
reproduces all components of polynomials. Consider

Zn: d)l; N u(x)=u"(x) VxeQ,
=1

Ifu(x)=1, then id)l (x)=1, (26)

I=1

If u(x) =x, then Z D, (x) x; = x.
I=1
3. Application and Test Problems

We consider the following example fourth-order obstacle
boundary value problem (BVP) for finding u such that

u® (x) 2= f(x), on Q=[-1,1],
u(x) >=y(x), on Q=[-1,1],
[ ) - f @] [u-y(®)] =0, on Q=[-1,1], &
u(-1)=u(1) =0, "n=d"()=0,

where f, a given force acting on the beam and y/(x), is the
elastic obstacle. Now the problem will be discussed in the
framework of variational inequality approach. Define set K,
as

K={v:veH;(Q):v>y, on OQ}. (28)

K is a closed convex set in HS(Q), (Sobolev space), which
is in fact a Hilbert space. It can be easily shown that
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energyfunctional associated with the obstacle problem (27)
is

4
I[v]=fl{%—2f(x)}v(x)dx, Vv e Hy (Q),
U dPu ! 29
z[v]:j_l(j—;) ax-2[ feveds (29)

Ivl=a(v)-2(fv),
U dPu d*v
a(u,v)zjl<ﬁ)(ﬁ)dx, (30)
1
()= | Feveax G1)

it can easily proved that the form a(u,v), defined by (30),
is bilinear, symmetric, and positive (coercive) and the func-
tional f, is a linear continuous functional [1-3]. Minimum u
of the functional I[v] defined by (29) on the closed convex
set K in € Hg (Q) can be characterized by the variational
inequality

a(wv-u)>(fiv-u), VYvek. (32)

Thus we conclude that the obstacle problem (27) is equivalent
to solving variational inequality problem (32). This equiva-
lence has been used to study the existence of a unique of (27);
see [1-3], and using the idea of Lewy and Stampacchia, [6] can
be written as

u e v{u-ylu-v)=f, (33)

where v is the obstacle function and v(¢) is a penalty function
defined by

t>0

4
vt = 10 £<0. (34)

We assume that the obstacle function, y/(x), is defined by

1 1
—— for —1<x<--, —<x<1
y(x) = 14 1 1 22 (35)
- - <x<-.
4 2 2

From (33)-(35), we obtain the following system of equations

1 1
@ f for —1<x<--, —<x<1
u = 1 1 2 2 (36)
l1-4u+f —--<x<-.
2 2

5
With the boundary conditions, consider
u(-1) = u(—%) = u(%) =u(l) =0,
(37)
J" (-1) = 4" <_l> - (l) - (1) = 0.
2 2

Problem 1. In this example, we consider system of differential
equation (38), when f =0,

The analytical solution for this boundary value problem is

u(x)

-1<x< —l
2
0.5 1
] ¢5[¢ sin(x) sinh (x)+¢, cos (x) cosh (x)]
1 1
-——<x< -
2 2
( 2 3 13 1)
St -t )¢
3x2 2x* 12x 4
l <x<1,
2
(39)

where ¢; = sin(1/2)sinh(1/2), ¢, = cos(1/2) cosh(1/2),
¢5 = cos(1) + cosh(1). Numerical and analytical solution of
Problem 1 is shown in Figure 3.

Problem 2. For f =1,

1 1
@ 1 for —1<x<--, —<x<1
u = 1 1 22 (40)
2-4u ——-<x<-.
2 2
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FIGURE 3: Numerical and analytical solution plot (16 nodes), with
constant basis-Problem 1.

With the same boundary conditions as in previous example,
consider

u(x)

( 1 1 3 1 )
t—t—+t—+—
24x*  8x®  8x% 64x 192

1
-1<x<——
2
05— 1
" ¢ [¢y sin (x) sinh (x)+¢, cos (x) cosh (x)]
1 1
—-—<x< =
2 2
(- e do2 1)
24x*  8x3  8x% 64x 192
l <x<1.
2
(41)

Numerical and analytical solution of Problem 2 is shown in
Figure 5.

Test problems were solved for different number of nodes
and constant basis with the help of improved EFG based on
numerical integration using Block pulse functions/wavelets
(BPF). Figures 4 and 6 show the errors in solution of test
Problems 1 and 2, respectively. Maximum absolute errors in
solution are tabulated and compared with the results of exact
solution, which show better accuracy.

3.1. Results and Discussion. Maximum errors obtained using
our technique based on block pulse function (BPF) for our
test problems are shown in Tables 1 and 2. Comparison of
maximum absolute errors with exact solution demonstrates
the accuracy of our method. Results using quadrature rule-
based integration are also calculated to show the performance
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FIGURE 4: Max. absolute error plot (16 nodes), constant basis-
Problem 1.
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FIGURE 5: Numerical and analytical solution plot (12 nodes), with
constant basis-Problem 2.

of BPF-based integration technique. Maximum absolute
errors for test problems are shown in Tables 1 and 2. It is
clearly seen that integration of system equations using BPF
has produced better results as compared with quadrature rule
method for numerical integration.

Effect of Integration Points. It has been observed, that the
accuracy of meshless computational technique depends upon
the size of influence of domain, penalty factor, and Integra-
tion points. In this paper, we have studied that the accuracy
of numerical method generally improves as we increase the
number of integration points; however, if the number of
gauss points exceeds some limiting value, it may have some
adverse effects on the accuracy. It has been determined that
arrangement of background cells and ratio of total number
of Gauss points to the total number of nodes, plays very
important roles in accuracy. To avoid all these complications
to improve the accuracy of the meshless method, we purpose
new numerical integration technique as mentioned above.
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TABLE 1: Observed maximum errors for Problem 1, using BPF (25).

Our method using
Number of BPF

Max. Absolute Error

Using quadrature

Type of basis Central difference Colloc-quintic Cubic-spline >
nodes 100 sets of block method [1] method [3] method (4] " WIIR 100 Gauss
pulse functions b
Constant 8 2.853E-6 14E -4 3.0E-4 19E -5 3.1288E -6
Constant 16 9.949E — 7 3.6E-5 7.0E -5 4.8E -6 1.976E - 6
Constant 32 9.996E — 7 8.9E -6 14E -5 1.2E-6 1.971E -6
TABLE 2: Observed maximum errors for Problem 2, using BPF (25).
Max. absolute error
Our method using . . . .
. Number of Central difference . . Cubic-spline Using quadrature
Type of basis d BPF method Quartic spline method rule with 100 Gauss
nodes 100 sets of block method [2] .
. [1] [4] points
pulse functions
Constant 12 9.894E — 7 6.2E -5 1.2E-5 8.4E -6 2.993E -6
Constant 24 9.894E — 7 1.6E-5 28E-6 22E-6 1.970E - 6
x107° [2] E. A. Al-Said and M. A. Noor, “Quartic spline method for solv-
1 ing fourth order obstacle boundary value problems,” Journal of
Computational and Applied Mathematics, vol. 143, no. 1, pp. 107-
0.8 116, 2002.
[3] A. K. Khalifa and M. A. Noor, “Quintic splines solutions
5 06 of a class of contact problems,” Mathematical and Computer
& Modelling, vol. 13, no. 2, pp. 51-58, 1990.
0.4 [4] N. Papamichael and A. J. Worsey, “A cubic spline method for
the solution of a linear fourth-order two-point boundary value
02 problem,” Journal of Computational and Applied Mathematics,
vol. 7, no. 3, pp. 187-189, 1981.
[5] N. Kikuchi and J. T. Oden, Contact Problems in Elasticity, Soci-
0.2 0.4 0.6 0.8 1.0 ety for Industrial and Applied Mathematics (SIAM), Philadel-
x phia, Pa, USA, 1988.

FIGURE 6: Max. absolute error plot (12 nodes), constant basis-
Problem 2.

4. Conclusion

In this study, improved numerical technique “element free
Galerkin (EFG) technique using Block-Pulse function-based
integration” has been presented. The results obtained by the
suggested method for given problems as mentioned ((38)
and (40)) exhibit its ability to provide improved solutions.
The improved EFG technique showed fast convergence and
provided better results at reduced number of nodes, as
mentioned in Tables 1 and 2. It has capability of handling of
improper, highly oscillatory function. Details of the results
are shown the figures and tables.
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