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The boundary value problems of a class of 𝑛th-order nonlinear integrodifferential equations of mixed type in Banach space are
considered, and the existence of three solutions is obtained by using the fixed-point index theory.

Guo [1] considered the initial value problems of a class of inte-
grodifferential equations of Volterra type and obtained the
existence of maximal and minimal solutions by establishing
a comparison result. In [2], the author and Qin investigated a
first-order impulsive singular integrodifferential equation on
the half line in a Banach space and proved the existence of
two positive solutions bymeans of the fixed-point theorem of
cone expansion and compression with norm type. For other
results related to integrodifferential equations in Banach
spaces please see also [3–6] and the references therein. It is
worth pointing out that the nonlinear terms involved in the
equations they considered are either sublinear or superlinear
globally.

In this paper, by using fixed-point index theory (for
details please see [7]), we consider the 𝑛th-order integrod-
ifferential equations with nonlinear terms neither sublinear
nor superlinear globally and prove the existence of three
solutions.

Let 𝐸 be a real Banach space and 𝑃 a cone in 𝐸 which
defines a partial ordering in 𝐸 by 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈
𝑃. 𝑃 is said to be normal if there exists a positive constant𝑁
such that 𝜃 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝑁‖𝑦‖, where 𝜃 denotes
the zero element of 𝐸 and the smallest𝑁 is called the normal
constant of 𝑃. If 𝑥 ≤ 𝑦 and 𝑥 ̸= 𝑦, we write 𝑥 < 𝑦. 𝑃 is said to
be solid if its interior is not empty; that is, int(𝑃) ̸= 𝜙. In case
of 𝑦 − 𝑥 ∈ int(𝑃), we write 𝑥 ≪ 𝑦. For details on cone theory,
please see [8].

We consider the following boundary value problem (BVP
for short) in 𝐸:

−𝑢
(𝑛)
(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢


(𝑡) , . . . , 𝑢

(𝑛−1)
(𝑡) ,

(𝑇𝑢) (𝑡) , (𝑆𝑢) (𝑡) ) , ∀𝑡 ∈ 𝐽,

𝑢
(𝑖)
(0) = 𝜃 (𝑖 = 0, 1, . . . , 𝑛 − 2) ,

𝑢
(𝑛−1)

(𝑎) = 𝜃,

(1)

where 𝐽 := [0, 𝑎](𝑎 > 0), 𝑓 ∈ 𝐶[𝐽 × 𝑃 × 𝑃 × ⋅ ⋅ ⋅ × 𝑃⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛+2

, 𝑃], 𝜃

denotes the zero element of 𝐸, and

(𝑇𝑢) (𝑡) = ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠,

(𝑆𝑢) (𝑡) = ∫

𝑎

0

ℎ (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠, ∀𝑡 ∈ 𝐽,

(2)

with 𝑘 ∈ 𝐶[𝐷, 𝑅+], ℎ ∈ 𝐶[𝐽×𝐽, 𝑅+],𝐷 := {(𝑡, 𝑠) ∈ 𝐽×𝐽 : 𝑡 ≥ 𝑠},
and 𝑅+ the set of all nonnegative numbers. Let

𝑘0 := max
(𝑡,𝑠)∈𝐷

𝑘 (𝑡, 𝑠) , ℎ0 := max
(𝑡,𝑠)∈𝐽×𝐽

ℎ (𝑡, 𝑠) ,

𝜂 := 2max {1, 𝑎𝑛} .
(3)
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Denote that 𝐶𝑛−1[𝐽, 𝐸] := {𝑢 : 𝑢 is a map from 𝐽 into 𝐸
and 𝑢(𝑛−1)(𝑡) is continuous on 𝐽}. It is clear that 𝐶𝑛−1[𝐽, 𝐸] is
a Banach space with norm defined by

‖𝑢‖𝑛−1 := max
𝑖=0,1,...,𝑛−1






𝑢
(𝑖)


𝑐
, where 


𝑢
(𝑖)


𝑐
:= max
𝑡∈𝐽






𝑢
(𝑖)
(𝑡)






.

(4)

Let

𝐶
𝑛
[𝐽, 𝑃] := {𝑢 ∈ 𝐶

𝑛
[𝐽, 𝐸] : 𝑢

(𝑖)
(𝑡) ≥ 𝜃 (𝑖 = 0, . . . , 𝑛 − 1) ,

𝑢
(𝑛)
(𝑡) ≤ 𝜃} ,

𝐶
𝑛−1

[𝐽, 𝑃] := {𝑢 ∈ 𝐶
𝑛−1

[𝐽, 𝐸] : 𝑢
(𝑖)
(𝑡)

≥ 𝜃 (𝑖 = 0, . . . , 𝑛 − 1) } .

(5)

It is obvious that 𝐶𝑛[𝐽, 𝑃] and 𝐶𝑛−1[𝐽, 𝑃] are two cones in
𝐶
𝑛
[𝐽, 𝐸] and 𝐶𝑛−1[𝐽, 𝐸], respectively.

Lemma 1. 𝑢 ∈ 𝐶𝑛[𝐽, 𝑃] is the solution of problem (1) if and
only if 𝑢 ∈ 𝐶𝑛−1[𝐽, 𝑃] is the fixed point of operator 𝐴 defined
by

(𝐴𝑢) (𝑡)

=

1

(𝑛 − 1)!

[∫

𝑎

0

𝑡
𝑛−1
𝑓 (𝑠, 𝑢 (𝑠) , 𝑢


(𝑠) , . . . , 𝑢

(𝑛−1)
(𝑠) ,

(𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠) ) 𝑑𝑠

− ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1
𝑓 (𝑠, 𝑢 (𝑠) , 𝑢


(𝑠) , . . . ,

𝑢
(𝑛−1)

(𝑠) , (𝑇𝑢) (𝑠) ,

(𝑆𝑢) (𝑠) ) 𝑑𝑠] .

(6)

Proof. For 𝑢 ∈ 𝐶
𝑛
[𝐽, 𝐸], Taylor’s formula with the integral

remainder term gives

𝑢 (𝑡) =

𝑛−1

∑

𝑘=0

(𝑡 − 𝑎)
𝑘

𝑘!

𝑢
(𝑘)
(𝑎)

−

1

(𝑛 − 1)!

∫

𝑎

𝑡

(𝑡 − 𝑠)
𝑛−1
𝑢
(𝑛)
(𝑠) 𝑑𝑠, ∀𝑡 ∈ 𝐽.

(7)

Taking 𝑎 = 0, we have

𝑢 (𝑡) =

𝑛−1

∑

𝑖=0

𝑡
𝑖

𝑖!

𝑢
(𝑖)
(0)

+

1

(𝑛 − 1)!

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1
𝑢
(𝑛)
(𝑠) 𝑑𝑠, ∀𝑡 ∈ 𝐽.

(8)

Substituting

𝑢
(𝑛−1)

(0) = 𝑢
(𝑛−1)

(𝑎) − ∫

𝑎

0

𝑢
(𝑛)
(𝑠) 𝑑𝑠 (9)

into (8), we get

𝑢 (𝑡) =

𝑛−2

∑

𝑖=0

(𝑡)
𝑖

𝑖!

𝑢
(𝑖)
(0) +

𝑡
(𝑛−1)

(𝑛 − 1)!

𝑢
(𝑛−1)

(𝑎) −

1

(𝑛 − 1)!

× (∫

𝑎

0

𝑡
(𝑛−1)

𝑢
(𝑛)
(𝑠) 𝑑𝑠

−∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1
𝑢
(𝑛)
(𝑠) 𝑑𝑠) , ∀𝑡 ∈ 𝐽.

(10)

Let 𝑢 ∈ 𝐶𝑛[𝐽, 𝑃] be the solution of BVP (1). Then (10) implies

𝑢 (𝑡)

=

1

(𝑛 − 1)!

× [∫

𝑎

0

𝑡
𝑛−1
𝑓 (𝑠, 𝑢 (𝑠) , 𝑢


(𝑠) , . . . , 𝑢

(𝑛−1)
(𝑠) , (𝑇𝑢) (𝑠) ,

(𝑆𝑢) (𝑠) ) 𝑑𝑠

− ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1
𝑓 (𝑠, 𝑢 (𝑠) , 𝑢


(𝑠) , . . . , 𝑢

(𝑛−1)
(𝑠) ,

(𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠) ) 𝑑𝑠] .

(11)

Comparing this with (6), we have 𝑢(𝑡) = (𝐴𝑢)(𝑡), which
means that 𝑢(𝑡) is the fixed point of the operator 𝐴 in
𝐶
𝑛−1
[𝐽, 𝑃].
On the other hand, let 𝑢(𝑡) ∈ 𝐶𝑛−1[𝐽, 𝑃] be the fixed point

of the operator 𝐴. By (6),

𝑢
(𝑗)
(𝑡) = (𝐴𝑢)

(𝑗)
(𝑡)

=

1

(𝑛 − 1 − 𝑗)!

× [∫

𝑎

0

𝑡
𝑛−1−𝑗

𝑓 (𝑠, 𝑢 (𝑠) , 𝑢

(𝑠) , . . . ,

𝑢
(𝑛−1)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠) ) 𝑑𝑠

− ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1−𝑗

𝑓 (𝑠, 𝑢 (𝑠) , 𝑢

(𝑠) , . . . , 𝑢

(𝑛−1)
(𝑠) ,

(𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠) ) 𝑑𝑠] ,

(12)

where 𝑗 = 1, 2, . . . , 𝑛 − 1. It follows by taking 𝑡 = 0 and 𝑡 = 𝑎
in (12) that

𝑢
(𝑗)
(0) = 𝜃 (𝑗 = 0, 1, . . . , 𝑛 − 2) , 𝑢

(𝑛−1)
(𝑎) = 𝜃,

𝑢
(𝑗)
(𝑡) ≥ 𝜃 (𝑗 = 0, 1, . . . , 𝑛 − 2) , 𝑡 ∈ 𝐽.

(13)
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It is also clear from (12) that

𝑢
(𝑛−1)

(𝑡)

= ∫

𝑎

𝑡

𝑓 (𝑠, 𝑢 (𝑠) , 𝑢

(𝑠) , . . . ,

𝑢
(𝑛−1)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠) ) 𝑑𝑠, 𝑡 ∈ 𝐽,

𝑢
(𝑛)
(𝑡)

= −𝑓 (𝑡, 𝑢 (𝑡) , 𝑢

(𝑡) , . . . , 𝑢

(𝑛−1)
(𝑡) ,

(𝑇𝑢) (𝑡) , (𝑆𝑢) (𝑡) ) , 𝑡 ∈ 𝐽.

(14)

Hence, 𝑢(𝑛)(𝑡) ≤ 𝜃. Then (13)–(14) imply that 𝑢 is the solution
for BVP (1) in 𝐶𝑛[𝐽, 𝑃].

To continue, let us formulate some conditions.
(𝐻1) Let 𝑓(𝑡, V0, V1, . . . , V𝑛+1) be bounded and uniformly

continuous in 𝑡 on 𝐽×𝐵𝑟 × 𝐵𝑟 × ⋅ ⋅ ⋅ × 𝐵𝑟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛+2

,∀𝑟 > 0.There

exist nonnegative constants 𝑐𝑖 (𝑖 = 0, 1, . . . , 𝑛 + 1)
such that

𝜂𝑘
∗
(

𝑛+1

∑

𝑖=0,𝑖 ̸= 𝑛−1

𝑐𝑖 + 2𝑐𝑛−1) < 1, (15)

𝛼 (𝑓 (𝐽, 𝑉0, 𝑉1, . . . , 𝑉𝑛−1, 𝑉𝑛, 𝑉𝑛+1))

≤

𝑛+1

∑

𝑖=0

𝑐𝑖𝛼 (𝑉𝑖) , ∀𝑉𝑖 ⊂ 𝐵𝑟,

(16)

where 𝑘∗ := max{1, 𝑘0𝑎, ℎ0𝑎}, 𝛼 denotes the Kura-
towski measure of noncompactness, and 𝐵𝑟 = {𝑢 ∈

𝐸 : ‖𝑢‖ ≤ 𝑟}.
(𝐻2) Assume that

lim
𝑟→∞

𝑀(𝑟)

𝑟

<

𝜂
∗

𝑘
∗
, (17)

lim
𝑟→0+

𝑀(𝑟)

𝑟

<

𝜂
∗

𝑘
∗
, (18)

where
𝑀(𝑟) := sup {


𝑓 (𝑡, V0, V1, . . . , V𝑛−1, V𝑛, V𝑛+1)






: (𝑡, V0, V1, . . . , V𝑛−1, V𝑛, V𝑛+1)

∈ 𝐽 × 𝑃𝑟 × 𝑃𝑟 × ⋅ ⋅ ⋅ × 𝑃𝑟 × 𝑃𝑟 × 𝑃𝑟} ,

(19)

𝑃𝑟 := {𝑢 ∈ 𝑃 : ‖𝑢‖ ≤ 𝑟}, 𝜂
∗
:= 𝜂
−1, and 𝑘∗ is defined

by (𝐻1).
(𝐻3) There exist 𝑢∗ ∈ int(𝑃), 0 < 𝑡0 < 𝑡1 < 𝑎, and 𝐹(𝑡) ∈

𝐶[𝐽, 𝑅+] such that

𝑓 (𝑡, V0, V1, . . . , V𝑛−1, V𝑛, V𝑛+1) ≥ 𝐹 (𝑡) 𝑢
∗
,

∫

𝑎

𝑡
1

𝐹 (𝑠) 𝑑𝑠 > max{1, 1
𝑡0

,

2!

𝑡
2
0

, . . . ,

(𝑛 − 1)!

𝑡
𝑛−1
0

} ,

(20)

for V𝑖 ≥ 𝑢
∗
(𝑖 = 0, 1, . . . , 𝑛 − 1), V𝑛 ≥ 𝜃, V𝑛+1 ≥ 𝜃, and

𝑡 ∈ [𝑡0, 𝑡1].

Remark 2. By (𝐻2) and (𝐻3), one can see that 𝑓 is neither
sublinear nor superlinear globally.

Lemma 3 (see [8]). Let𝐻 be a bounded set of 𝐶𝑚[𝐽, 𝐸]. Then

𝛼𝑚 (𝐻) ≥ 𝛼 (𝐻 (𝐽)) , 𝛼𝑚 (𝐻) ≥ 𝛼 (𝐻

(𝐽)) , . . . , 𝛼𝑚 (𝐻)

≥ 𝛼 (𝐻
(𝑚−1)

(𝐽)) , 𝛼𝑚 (𝐻)

≥

1

2

𝛼 (𝐻
(𝑚)
(𝐽)) ,

(21)

where𝐻(𝑖)(𝐽) := {𝑢(𝑖)(𝑡) : 𝑡 ∈ 𝐽, 𝑢 ∈ 𝐻} (𝑖 = 0, 1, 2, . . . , 𝑚).

Lemma 4 (see [8]). Let 𝐻 be a bounded set of 𝐶𝑚[𝐽, 𝐸].
Suppose that𝐻(𝑚) := {𝑢(𝑚) : 𝑢 ∈ 𝐻} is equicontinuous. Then

𝛼𝑚 (𝐻) = max
𝑖=0,1,...,𝑚

{𝛼 (𝐻
(𝑖)
(𝐽))}

= max
𝑖=0,1,...,𝑚

{max
𝑡∈𝐽

{𝛼 (𝐻
(𝑖)
(𝑡))}} ,

(22)

where 𝐻(𝑖)(𝐽) (𝑖 = 0, 1, 2, . . . , 𝑚) is defined by Lemma 3 and
𝐻
(𝑖)
(𝑡) := {𝑢

(𝑖)
(𝑡) : 𝑢 ∈ 𝐻} (𝑖 = 0, 1, 2, . . . , 𝑚).

Lemma 5. Let (𝐻1) hold. Then operator 𝐴 defined by (6) is a
strict set contraction from 𝐶

𝑛−1
[𝐽, 𝑃] into 𝐶𝑛−1[𝐽, 𝑃].

Proof. It is easy to see that 𝐴 : 𝐶
𝑛−1
[𝐽, 𝑃] → 𝐶

𝑛−1
[𝐽, 𝑃] and

𝐴 is a bounded operator by (6), (12), and (𝐻1).
Now we check that operator 𝐴 is continuous from

𝐶
𝑛−1
[𝐽, 𝑃] into 𝐶𝑛−1[𝐽, 𝑃]. Let {𝑢𝑚}

∞
𝑚=1 ⊂ 𝐶

𝑛−1
[𝐽, 𝑃], 𝑢 ∈

𝐶
𝑛−1
[𝐽, 𝑃], and





𝑢𝑚 − 𝑢




𝑛−1

→ 0 (𝑚 → ∞) . (23)

For any 𝑡 ∈ 𝐽, by (6),





(𝐴𝑢𝑚) (𝑡) − (𝐴𝑢) (𝑡)






≤

1

(𝑛 − 1)!

× [∫

𝑎

0

𝑡
𝑛−1 




𝑓 (𝑠, 𝑢𝑚 (𝑠) , 𝑢



𝑚 (𝑠) , . . . ,
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𝑢
(𝑛−2)

𝑚 (𝑠) , (𝑇𝑢𝑚) (𝑠) , (𝑆𝑢𝑚) (𝑠) )

− 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢

(𝑠) , . . . , 𝑢

(𝑛−2)
(𝑠) ,

(𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠) )






𝑑𝑠

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1 




𝑓 (𝑠, 𝑢𝑚 (𝑠) , 𝑢



𝑚 (𝑠) , . . . , 𝑢
(𝑛−2)

𝑚 (𝑠) ,

(𝑇𝑢𝑚) (𝑠) , (𝑆𝑢𝑚) (𝑠) )

− 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢

(𝑠) , . . . , 𝑢

(𝑛−1)
(𝑠) ,

(𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠) )






𝑑𝑠] .

(24)

Then the Lebesgue dominated convergence theorem gives

max
𝑡∈𝐽





(𝐴𝑢𝑚) (𝑡) − (𝐴𝑢) (𝑡)






≤

1

(𝑛 − 1)!

× [∫

𝑎

0

𝑎
𝑛−1 




𝑓 (𝑠, 𝑢𝑚 (𝑠) , 𝑢



𝑚 (𝑠) , . . . ,

𝑢
(𝑛−2)

𝑚 (𝑠) , (𝑇𝑢𝑚) (𝑠) , (𝑆𝑢𝑚) (𝑠) )

− 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢

(𝑠) , . . . , 𝑢

(𝑛−2)
(𝑠) ,

(𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠) 𝑢


𝑚 (𝑠))





𝑑𝑠

+ ∫

𝑎

0

(𝑎 − 𝑠)
𝑛−1






𝑓 (𝑠, 𝑢𝑚 (𝑠) , 𝑢



𝑚 (𝑠) , . . . , 𝑢
(𝑛−2)

𝑚 (𝑠) ,

(𝑇𝑢𝑚) (𝑠) , (𝑆𝑢𝑚) (𝑠) )

− 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢

(𝑠) , . . . , 𝑢

(𝑛−1)
(𝑠) , (𝑇𝑢) (𝑠) ,

(𝑆𝑢) (𝑠) )






𝑑𝑠] → 0, (𝑚 → ∞) .

(25)

Hence,





𝐴𝑢𝑚 − 𝐴𝑢




𝑐

= max
𝑡∈𝐽





(𝐴𝑢𝑚) (𝑡) − (𝐴𝑢) (𝑡)





→ 0 (𝑚 → ∞) .

(26)

Similarly, in view of (12), we get








(𝐴𝑢𝑚)
(𝑖)
− (𝐴𝑢)

(𝑖)



𝑐
→ 0,

(𝑚 → ∞) ; (𝑖 = 1, 2, . . . , 𝑛 − 1) .

(27)

Then




𝐴𝑢𝑚 − 𝐴𝑢




𝑛−1

= max
𝑖=0,1,...,𝑛−1








(𝐴𝑢𝑚)
(𝑖)
− (𝐴𝑢)

(𝑖)





𝑐
→ 0, (𝑚 → ∞) .

(28)

Consequently, the continuity of operator 𝐴 is proved.
Let 𝑄 ⊂ 𝐶

𝑛−1
[𝐽, 𝑃] be bounded. Then 𝐴(𝑄) ⊂ 𝐶𝑛[𝐽, 𝑃] is

bounded. We prove that (𝐴(𝑄))(𝑛−1) is equicontinuous on 𝐽.
In fact, ∀(𝐴(𝑢))(𝑛−1) ∈ (𝐴(𝑄))(𝑛−1), by (12),






(𝐴 (𝑢))

(𝑛−1)
(𝑡1) − (𝐴 (𝑢))

(𝑛−1)
(𝑡2)







≤ ∫

𝑡
2

𝑡
1






𝑓 (𝑠, 𝑢 (𝑠) , 𝑢


(𝑠) , . . . , 𝑢

(𝑛−1)
(𝑠) ,

(𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠) )






𝑑𝑠.

(29)

According to the absolute continuity of Lebesgue integral,
(𝐴(𝑄))

(𝑛−1) is equicontinuous on 𝐽. Therefore, Lemma 4
implies that

𝛼𝑛−1 (𝐴 (𝑄)) = max
𝑖=0,1,...,𝑛−1

{max
𝑡∈𝐽

{𝛼 ((𝐴 (𝑄))
(𝑖)
(𝑡))}} , (30)

where 𝛼((𝐴(𝑄))(𝑖)(𝑡)) = 𝛼({(𝐴𝑢)
(𝑖)
(𝑡) : 𝑢 ∈ 𝑄}) (𝑡 is fixed,

𝑖 = 0, 1, . . . , 𝑛 − 1). By (6), we see that

𝛼 ((𝐴𝑢) (𝑡)) ≤ 𝜂𝛼 (𝑓 (𝑠, 𝑄 (𝐽) , 𝑄

(𝐽) , . . . ,

𝑄
(𝑛−1)

(𝐽) ) , (𝑇𝑄) (𝐽) , (𝑆𝑄) (𝐽) ) ,

(31)

where 𝑄(𝑖)(𝐽) = {𝑢(𝑖)(𝑠) : 𝑠 ∈ 𝐽, 𝑢 ∈ 𝑄} (𝑖 = 0, 1, . . . , 𝑛 − 1),

(𝑇𝑄) (𝐽) = {(𝑇𝑢) (𝑠) : 𝑠 ∈ 𝐽, 𝑢 ∈ 𝑄} ,

(𝑆𝑄) (𝐽) = {(𝑆𝑢) (𝑠) : 𝑠 ∈ 𝐽, 𝑢 ∈ 𝑄} .

(32)

It follows from (31) and (𝐻1) that

𝛼 ((𝐴𝑢) (𝑡))

≤ 𝜂(

𝑛−1

∑

𝑖=0

𝑐𝑖𝛼 (𝑄
(𝑖)
(𝐽)) + 𝑐𝑛𝑘0𝑎𝛼 (𝑄 (𝐽)) + 𝑐𝑛+1ℎ0𝑎𝛼 (𝑄 (𝐽)))

≤ 𝜂𝑘
∗
(

𝑛−2

∑

𝑖=0

𝑐𝑖𝛼 (𝑄
(𝑖)
(𝐽)) + 𝑐𝑛−1𝛼 (𝑄

(𝑛−1)
(𝐽))

+𝑐𝑛𝛼 (𝑄 (𝐽)) + 𝑐𝑛+1𝛼 (𝑄 (𝐽)) ) ,

(33)

which implies, according to Lemma 3, that

𝛼 ((𝐴𝑢) (𝑡)) ≤ 𝜂𝑘
∗
(

𝑛+1

∑

𝑖=0,𝑖 ̸= 𝑛−1

𝑐𝑖 + 2𝑐𝑛−1)𝛼𝑛−1 (𝑄)

= 𝛾𝛼𝑛−1 (𝑄) ,

(34)

where 𝛾 = 𝜂𝑘∗(∑𝑛+1𝑖=0,𝑖 ̸= 𝑛−1 𝑐𝑖 + 2𝑐𝑛−1) < 1 in view of (15).
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Similarly, we have

𝛼 ((𝐴𝑢)
(𝑖)
(𝑡)) ≤ 𝛾𝛼𝑛−1 (𝑄) (𝑖 = 1, 2, . . . , 𝑛 − 1) . (35)

Thus, we get 𝛼𝑛−1(𝐴(𝑄)) ≤ 𝛾𝛼𝑛−1(𝑄) by (34) and (35).
Noticing that 𝐴 is bounded and continuous, the conclusion
follows.

Theorem 6. Let 𝑃 be a normal solid cone and let (𝐻1), (𝐻2),
and (𝐻3) hold. Then BVP (1) has at least three solutions in
𝐶
𝑛
[𝐽, 𝑃].

Proof. Condition (𝐻2) implies that there exist 𝜀 > 0 and 𝑟 >
0, such that, for 𝑟 > 𝑘∗𝑟,

𝑀(𝑟)

𝑟

<

𝜂
∗

𝑘
∗
+ 𝜀

. (36)

Choose 𝑟∗ > max{𝑟, 2‖𝑢∗‖}. Let

𝑈 := {𝑢 ∈ 𝐶
𝑛−1

[𝐽, 𝑃] : ‖𝑢‖𝑛−1 < 𝑟
∗
} . (37)

For 𝑢 ∈ 𝑈, we have ‖𝑢(𝑖)‖ ≤ 𝑟∗ (𝑖 = 0, 1, . . . , 𝑛 − 1), ‖𝑇𝑢‖ ≤
𝑘
∗
𝑟
∗, and ‖𝑆𝑢‖ ≤ 𝑘∗𝑟∗. So, it follows from (6), (12), and (36)

that






(𝐴𝑢)
(𝑖)



≤ 𝜂𝑀(𝑘

∗
𝑟
∗
) < 𝜂𝜂

∗ 𝑘
∗

𝑘
∗
+ 𝜀

𝑟
∗
< 𝑟
∗

(𝑖 = 0, 1, . . . , 𝑛 − 1) .

(38)

Hence, ‖𝐴𝑢‖𝑛−1 < 𝑟
∗. Thus, we have shown that

𝐴(𝑈) ⊂ 𝑈. (39)

Similarly, by (18), it is easy to get that there is a number 𝑟0
such that 0 < 𝑟0 < ‖𝑢

∗
‖/𝑁 and

𝐴(𝑈0) ⊂ 𝑈0, (40)

where 𝑈0 = {𝑢 ∈ 𝐶
𝑛−1
[𝐽, 𝑃] : ‖𝑢‖𝑛−1 < 𝑟0} and 𝑁 is the

normal constant of 𝑃.
Let

𝑈1 := {𝑢 ∈ 𝐶
𝑛−1

[𝐽, 𝑃] : ‖𝑢‖𝑛−1 < 𝑟
∗
, 𝑢
(𝑖)
(𝑡) ≥ 𝜆𝑢

∗

(𝑖 = 0, 1, . . . , 𝑛 − 1) , 𝑡 ∈ [𝑡0, 𝑡1] , 𝜆 > 1

depending on 𝑢} .

(41)

It is easy to see that 𝑈, 𝑈0, and 𝑈1 are all nonempty bounded
open convex sets of 𝐶𝑛−1[𝐽, 𝑃], and

𝑈𝑖 ⊂ 𝑈 (𝑖 = 0, 1) , 𝑈0 ∩ 𝑈1 = 0. (42)

As the proof of (38), for 𝑢 ∈ 𝑈1, by (𝐻2),






(𝐴𝑢)
(𝑖)



< 𝑟
∗
, (𝑖 = 0, 1, . . . , 𝑛 − 1) . (43)

On the other hand, according to (𝐻3), for 𝑡 ∈ [𝑡0, 𝑡1], 𝑢
(𝑖)
(𝑡) ≥

𝑢
∗
(𝑖 = 0, 1, . . . , 𝑛 − 1), (𝑇𝑢)(𝑡) ≥ 𝜃, and (𝑆𝑢)(𝑡) ≥ 𝜃, we get

by (12) that

(𝐴𝑢)
(𝑗−1)

(𝑡) ≥

1

(𝑛 − 𝑗)!

∫

𝑎

𝑡

𝑡
𝑛−𝑗
𝐹 (𝑠) 𝑢

∗
𝑑𝑠

≥

1

(𝑛 − 𝑗)!

∫

𝑎

𝑡
1

𝑡
𝑛−𝑗

0 𝐹 (𝑠) 𝑑𝑠𝑢
∗
,

(𝑗 = 1, 2, . . . , 𝑛) .

(44)

Condition (𝐻3) also implies that

1

(𝑛 − 𝑗)!

∫

𝑎

𝑡
1

𝑡
𝑛−𝑗

0 𝐹 (𝑠) 𝑑𝑠 > 1 (𝑗 = 1, 2, . . . , 𝑛) . (45)

Consequently, in view of (43) and (45), we have shown that

𝐴(𝑈1) ⊂ 𝑈1. (46)

It follows from (39), (40), (42), (46), and Lemma 5 that

𝑖 (𝐴, 𝑈, 𝐶
𝑛−1

[𝐽, 𝑃]) = 1,

𝑖 (𝐴, 𝑈0, 𝐶
𝑛−1

[𝐽, 𝑃]) = 1,

𝑖 (𝐴, 𝑈1, 𝐶
𝑛−1

[𝐽, 𝑃]) = 1,

𝑖 (𝐴, 𝑈 \ (𝑈0⋃𝑈1) , 𝐶
𝑛−1

[𝐽, 𝑃])

= 𝑖 (𝐴,𝑈, 𝐶
𝑛−1

[𝐽, 𝑃]) − 𝑖 (𝐴,𝑈0, 𝐶
𝑛−1

[𝐽, 𝑃])

− 𝑖 (𝐴,𝑈1, 𝐶
𝑛−1

[𝐽, 𝑃]) = −1,

(47)

where 𝑖(⋅, ⋅, ⋅, ) denotes the fixed-point index [7]. Therefore,
𝐴 has three fixed points 𝑢0 ∈ 𝑈0, 𝑢1 ∈ 𝑈1, and 𝑢3 ∈ 𝑈 \

(𝑈0⋃𝑈1). By Lemma 1, BVP (1) has at least three solutions
in 𝐶𝑛[𝐽, 𝑃].

An application of Theorem 6 is as follows.

Example 7. Consider

−𝑢
(4)

𝑛 (𝑡) = 4𝑡
√𝑢𝑛 (𝑡) ln [1 + 5𝑢𝑛 (𝑡) + 6𝑢



𝑛+1 (𝑡)

+ 7𝑢


𝑛−1 (𝑡) + 8𝑢


𝑛 (𝑡)

+∫

𝑡

0

(2𝑒
𝑡
+ 3𝑡
2
𝑠)

−1
𝑢𝑛+1 (𝑠) 𝑑𝑠]
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+ sin2 (𝑢𝑛 (𝑡) + 2𝑢


𝑛−1 (𝑡) + 3𝑢


𝑛 (𝑡) + 4𝑢


𝑛+1 (𝑡))

+

1

33

(𝑢


𝑛 (𝑡))
3/4

× (∫

2

0

lg(𝑡 + 𝑠
2

+ 1) cos2 (𝑡 − 𝑠) 𝑢𝑛+1 (𝑠) 𝑑𝑠)
1/4

,

∀𝑡 ∈ [0, 2] ,

𝑢
(𝑖)

𝑛 (0) = 0 (𝑖 = 0, 1, 2) ,

𝑢


𝑛 (2) = 0, (𝑛 = 1, 2, . . . , 𝑚) ,

(48)

where 𝑢0 = 𝑢𝑚 and 𝑢𝑚+1 = 𝑢1.
Obviously, 𝑢𝑛(𝑡) ≡ 0 (𝑛 = 1, 2, . . . , 𝑚) is the trivial

solution of BVP (48).

Conclusion. BVP (48) has at least two nontrivial nonnegative
𝐶
4 solutions.

Proof. Let 𝐸 := {𝑢 = (𝑢1, . . . , 𝑢𝑚)}, 𝑚-dimensional space,
with norm ‖𝑢‖ := sup𝑛=1,2,...,𝑚|𝑢𝑛| and

𝑃 = {𝑢 = (𝑢1, . . . , 𝑢𝑚) : 𝑢𝑛 ≥ 0, 𝑛 = 1, 2, . . . , 𝑚} . (49)

Then 𝑃 is a normal and solid cone in 𝐸 and (48) can be
regarded as a BVP of the form (1), where

𝑎 = 2, 𝑘 (𝑡, 𝑠) = (2𝑒
𝑡
+ 3𝑡
2
𝑠)

−1
,

ℎ (𝑡, 𝑠) = lg(𝑡 + 𝑠
2

+ 1) cos2 (𝑡 − 𝑠) ,

𝑢 = (𝑢1, . . . , 𝑢𝑚) , V = (V1, . . . , V𝑚) ,

𝑤 = (𝑤1, . . . , 𝑤𝑚) , 𝑥 = (𝑥1, . . . , 𝑥𝑚) ,

𝑦 = (𝑦1, . . . , 𝑦𝑚) , 𝑧 = (𝑧1, . . . , 𝑧𝑚) ,

(50)

and 𝑓 = (𝑓1, . . . , 𝑓𝑚) with

𝑓𝑛 (𝑡, 𝑢, V, 𝑤, 𝑥, 𝑦, 𝑧)

= 4𝑡√𝑢𝑛 ln (1 + 5𝑢𝑛 + 6V𝑛+1 + 7𝑤𝑛−1 + 8𝑥𝑛 + 𝑦𝑛+1)

+ sin2 (𝑢𝑛 + 2V𝑛−1 + 3𝑤𝑛 + 4𝑥𝑛+1)

+

1

33

(V𝑛)
3/4
(𝑧𝑛+1)

1/4
(𝑛 = 1, 2, . . . , 𝑚) .

(51)

Obviously, 𝑓 ∈ 𝐶[𝐽 × 𝑃 × 𝑃 × ⋅ ⋅ ⋅ × 𝑃⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

6

, 𝑃] (𝐽 = [0, 2]) and

(𝐻1) is satisfied for 𝑐𝑖 = 0 (𝑖 = 0, 1, . . . , 5) since 𝐸 is finite-
dimensional.

One can see that




sin (𝑢𝑛 + 2V𝑛−1 + 3𝑤𝑛 + 4𝑥𝑛+1)






≤ min {1, 

𝑢𝑛




+ 2





V𝑛−1





+ 3





𝑤𝑛




+ 4





𝑥𝑛+1





} .

(52)

Then (51) implies that




𝑓 (𝑡, 𝑢, V, 𝑤, 𝑥, 𝑦, 𝑧)



≤ 4𝑡√‖𝑢‖ ln (1 + 5 ‖𝑢‖ + 6 ‖V‖ + 7 ‖𝑤‖ + 8 ‖𝑥‖ + 

𝑦




)

+min {1, (‖𝑢‖ + 2 ‖V‖ + 3 ‖𝑤‖ + 4 ‖𝑥‖)2}

+

1

33

‖V‖3/4‖𝑧‖1/4, ∀𝑡 ∈ 𝐽, 𝑢, V, 𝑤, 𝑥, 𝑦, 𝑧 ∈ 𝑃.

(53)

Therefore,

𝑀(𝑟) ≤ 4√𝑟 ln (1 + 26𝑟) +min {1, 100𝑟2} + 1

33

𝑟. (54)

Hence,

lim
𝑟→∞

𝑀(𝑟)

𝑟

<

1

32

, lim
𝑟→0+

𝑀(𝑟)

𝑟

<

1

32

. (55)

On the other hand, it is easy to see that

𝜂 = 32, 𝜂
∗
=

1

32

, 𝑘
∗
= 1. (56)

Thus, (55) and (56) imply that (𝐻2) is satisfied.
Now, we check (𝐻3). Let 𝑢

∗
= (1, . . . , 1), 𝐹(𝑡) = 4 ln 27

and 𝑡0 = 1, 𝑡1 = 3/2. Obviously, 𝑢∗ ∈ int(𝑃) and, for 𝑡 ∈
[𝑡0, 𝑡1], 𝑢 ≥ 𝑢

∗, V ≥ 𝑢∗, 𝑤 ≥ 𝑢
∗, 𝑥 ≥ 𝑢∗, 𝑦 ≥ 𝜃, and 𝑧 ≥ 𝜃

(i.e., 1 ≤ 𝑡 ≤ 3/2, 𝑢𝑛 ≥ 1, V𝑛 ≥ 1, 𝑤𝑛 ≥ 1, 𝑥𝑛 ≥ 1, 𝑦𝑛 ≥ 0,
𝑧𝑛 ≥ 0, 𝑛 = 1, 2, . . . , 𝑚). Then (51) implies that

𝑓𝑛 (𝑡, 𝑢, V, 𝑤, 𝑥, 𝑦, 𝑧)

≥ 4𝑡√𝑢𝑛 ln (1 + 5𝑢𝑛 + 6V𝑛+1 + 7𝑤𝑛−1 + 8𝑥𝑛)

≥ 4 ln 27,

(57)

where 𝑛 = 1, 2, . . . , 𝑚. So, we have ∫2
3/2
4 ln 27𝑑𝑠 > 6. Hence,

(𝐻3) is satisfied. And, finally, the conclusion follows from
Theorem 6.
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