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The paper presents a novel feedback linearization controller of nonlinear multiinput multioutput time-delay large-scale systems
to obtain both the tracking and almost disturbance decoupling (ADD) performances. The significant contribution of this paper
is to build up a control law such that the overall closed-loop system is stable for given initial condition and bounded tracking
trajectory with the input-to-state-stability characteristic and almost disturbance decoupling performance. We have simulated the
two-inverted-pendulum system coupled by a spring for networked control systems which has been used as a test bed for the study
of decentralized control of large-scale systems.

1. Introduction

Recently, robust stabilization of system with time delay
has been of a challenging and interesting problem [1]. As
we know, in general, the existence of time-delay degrades
the control performance and sometimes makes the closed-
loop stabilization difficult, especially for nonlinear systems.
Appropriate mathematical descriptions incorporating the
time delay are the differential-difference equations, that
is, differential equations with deviating arguments. Several
related reports have shown that differential-difference equa-
tions have beenwidely applied in theory of automatic control,
the theory of self-oscillating systems, the study of problems
connected with combustion in rocket motion, the problem
of long-range planning in economics, a series of biological
problems, and in many other areas of science and technology
[2, 3]. In the past, there have been a number of interesting
developments in stability criteria and controller designs for
time-delay control systems but mostly were restricted to
linear cases; see, for example, [1, 4–6]. In general, the global
stability test of control systems with time delays is not as easy,
even in the linear case, as without time delays. It requires
some disgusting tasks as solving nonlinear matrix equations
[7]. It is clear that the investigation of nonlinear time-delay

systems is worthwhile. In this paper, the globally tracking and
almost disturbance decoupling problem of a general class of
nonlinear time-delay control systems is investigated.

A large-scale system is organized as some interconnected
subsystems, such as industrial control system, power systems,
computer, biomedical networks, district heating systems [8],
and wind farm power control [9]. Due to the inherited
complexity of control approach and physical constraints on
information communication between subsystems, it is neces-
sary to design for each subsystem a decentralized controller
depending on local data, even if to construct an object for
the whole large-scale system. Recently networked control
systems have attracted many research interests. The signif-
icant characteristics of networked control systems are con-
troller decentralization, interconnected diagnostics, conve-
nient maintenance, and low cost [10]. The application of net-
worked control architecture will increase the performances
of interconnected applications via reducedmaintenance costs
[11]. The major limitations in the existing networked control
systems research are that (a) most researches are limited to
linear cases and (b) the significant applications of networked
control systems are for distributed control systems. However,
some theoretical results are not valid for distributed control
systems and then have little application value [12, 13]. We
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have proposed a study of two-pendulum system coupled by
a spring for networked control systems which has been used
as a test bed for the investigation of decentralized control of
large-scale systems.

Recently, variable control method has been utilized to
investigate nonlinear industrial system. However, nasty chat-
tering characteristics may excite unmodeled high frequency
and even force system into instable state for variable control
method [14]. The backstepping approach has been an impor-
tant method for designing controller for nonlinear industrial
systems. However, a disadvantage with the backstepping
approach is the intricacy which is generated by the complex
duplicated differentiations of some nonlinear functions [15].
The output regulation control method [16] is utilized to the
industrial system in which the output terminals are derived
with an exosystem. However, the output regulation problem
should solve the complicated solution of partial-differential
equation and the problem of creating the transient tracking
errors. The nonlinear 𝐻∞ control method generally has
to find out the solution for the complex Hamilton-Jacobi
equation [17]. However, it is unfortunate that we can solve a
closed-form solution only for some special industrial control
systems [18].The internal-model-principle method, solving a
partial-differential center manifold equation [19], transforms
the original tracking problem to output regulation structure.
Only for some particular industrial systems and desired
trajectories, the asymptotic solutions can be found out [20].
The 𝐻∞ adaptive fuzzy control approach has been utilized
to systematically address some industrial control systems [1].
Its shortcoming is that the troublesome parameter update
law makes the method impractical. During the past decade,
the feedback linearization control has been the significant
research direction for nonlinear systems [21] and has been
addressed successfully to investigate many industrial con-
trol systems including the shunt hybrid power filter [22],
high-power self-commutated voltage-source converter and
current-source converter [23], and differential-drive wheeled
mobile robots [24].

The almost disturbance decoupling control problem,
originally developed for linear and nonlinear control systems
by [25, 26], respectively, exploits the research that a controller
reduces the effect of the disturbance on the outputs to an arbi-
trary degree of accuracy, and thenmany important researches
have been proposed for nonlinear industrial control systems
[27, 28]. The authors of [26] exploit the fact that the almost
disturbance decoupling performance cannot be achieved for
the following control system: 𝑥̇

1
(𝑡) = tan−1

(𝑥
2
)+𝜃(𝑡), 𝑥̇

2
(𝑡) =

𝑢, 𝑦 = 𝑥
1
, where 𝑢, 𝑦 are the input and output, respectively,

and 𝜃 is the disturbance term. It is fortunate that this example
can be easily solved via the proposed approach in this study.
In order to exploit the significant industrial applicability,
this study has favorably designed the almost disturbance
decoupling controller for a two-inverted-pendulum system.

2. Tracking and Almost Disturbance
Decoupling Controller Design

Consider the following nonlinear time-delay large-scale sys-
tem with disturbance that is organized into 𝑁 subsystems

interconnected by their output terminals. The 𝑖th subsystem
𝑆
𝑖
, 1 ≤ 𝑖 ≤ 𝑁, is shown as

𝑥̇
𝑖1
= 𝑓

𝑖1
(𝑥

𝑖1
, 𝑥

𝑖2
, . . . , 𝑥

𝑖𝑛𝑖
) + 𝑑

𝑖1
(𝑦

𝑖
(𝑡 − 𝜏

𝑖1
(𝑡)))

+ Δ𝑓
𝑖1
(𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑁
) + 𝜃

𝑖1
,

𝑥̇
𝑖2
= 𝑓

𝑖2
(𝑥

𝑖1
, 𝑥

𝑖2
, . . . , 𝑥

𝑖𝑛𝑖
) + 𝑑

𝑖2
(𝑦

𝑖
(𝑡 − 𝜏

𝑖2
(𝑡)))

+ Δ𝑓
𝑖2
(𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑁
) + 𝜃

𝑖2

...

...

𝑥̇
𝑖𝑛𝑖
= 𝑓

𝑖𝑛𝑖
(𝑥

𝑖1
, 𝑥

𝑖2
, . . . , 𝑥

𝑖𝑛𝑖
) + 𝑑

𝑖𝑛𝑖
(𝑦

𝑖
(𝑡 − 𝜏

𝑖𝑛𝑖
(𝑡)))

+ Δ𝑓
𝑖𝑛𝑖
(𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑁
) + 𝜃

𝑖𝑛𝑖
+ 𝑔

𝑖
𝑢
𝑖
,

𝑦
𝑖
= 𝑥

𝑖1
,

(1)

where [𝑥
𝑖1
(𝑡) 𝑥

𝑖2
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑖𝑛𝑖
(𝑡)]

𝑇

∈ R𝑛𝑖 , 𝑢
𝑖𝑛𝑖

∈ R, and
𝑦
𝑖
∈ R are the state vector, the input vector, and the

output vector of subsystem 𝑆
𝑖
, respectively. 𝑓

𝑖𝑛𝑖
and 𝑔

𝑖𝑛𝑖

are smooth nonlinear system functions. Δ𝑓
𝑖𝑛𝑖

represents the
nonlinearity in the 𝑖th subsystem and the interconnection
function between the 𝑖th subsystem and other subsystems.
𝜃
𝑖𝑛𝑖

is a bounded time-varying disturbances vector, and 𝜏
𝑖𝑛𝑖
(𝑡)

is a time-delay term.
Define

𝑁
𝑡
≡

𝑁

∑

𝑖=1

𝑛
𝑖
,

𝑥
1
≡ 𝑥

11
, 𝑥

2
≡ 𝑥

12
, . . . , 𝑥

𝑛1
≡ 𝑥

1𝑛1
,

𝑥
𝑛1+1

≡ 𝑥
21
, 𝑥

𝑛1+2
≡ 𝑥

22
, . . . , 𝑥

𝑛1+𝑛2
≡ 𝑥

2𝑛2
,

...

𝑥
𝑛1+𝑛2+⋅⋅⋅+𝑛𝑁−1+1

≡ 𝑥
𝑁1
, 𝑥

𝑛1+𝑛2+⋅⋅⋅+𝑛𝑁−1+2

≡ 𝑥
𝑁2
, . . . , 𝑥

𝑛1+𝑛2+⋅⋅⋅+𝑛𝑁
≡ 𝑥

𝑁𝑛𝑁
,

𝑛
0
≡ 0,

𝑥
𝑛0+𝑛1+⋅⋅⋅+𝑛𝑖+𝑗

≡ 𝑥
(𝑖+1)(𝑗)

, 𝜏
𝑛0+𝑛1+⋅⋅⋅+𝑛𝑖+𝑗

≡ 𝜏
(𝑖+1)(𝑗)

, Δ𝑓
𝑛0+𝑛1+⋅⋅⋅+𝑛𝑖+𝑗

≡ Δ𝑓
(𝑖+1)(𝑗)

, 𝑑
𝑛0+𝑛1+⋅⋅⋅+𝑛𝑖+𝑗

≡ 𝑑
(𝑖+1)(𝑗)

,

𝐷
𝑒(𝑛0+𝑛1+⋅⋅⋅+𝑛𝑖+𝑗)

≡ 𝑑
(𝑖+1)(𝑗)

.

(2)
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The nonlinear time-delay large-scale system will be rewritten
as

[
[
[
[
[

[

𝑥̇
1

𝑥̇
2

...
𝑥̇

𝑁𝑡

]
]
]
]
]

]

=

[
[
[
[
[
[

[

𝑓
1
(𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁𝑡
)

𝑓
2
(𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁𝑡
)

...
𝑓
𝑁𝑡
(𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁𝑡
)

]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[
[
[

[

0
(𝑛1−1)×1

𝑔
1
𝑢
1

0
(𝑛2−1)×1

𝑔
2
𝑢
2

...
0
(𝑛𝑁−1)×1

𝑔
𝑁
𝑢
𝑁

]
]
]
]
]
]
]
]
]
]
]
]
]

]

+

[
[
[
[
[

[

𝐷
𝑒1
(𝜏

1
)

𝐷
𝑒2
(𝜏

2
)

...
𝐷

𝑒𝑁𝑡
(𝜏

𝑁𝑡
)

]
]
]
]
]

]

+

[
[
[
[
[
[

[

Δ𝑓
1
(𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁𝑡
)

Δ𝑓
2
(𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁𝑡
)

...
Δ𝑓

𝑁𝑡
(𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁𝑡
)

]
]
]
]
]
]

]

+

𝑁𝑡

∑

𝑗=1

𝑞
∗

𝑗
𝜃
𝑗𝑑
,

(3a)

[
[
[
[

[

𝑦
1

𝑦
2

...
𝑦
𝑁

]
]
]
]

]

≡

[
[
[
[

[

ℎ
1

ℎ
2

...
ℎ
𝑁

]
]
]
]

]

=

[
[
[
[

[

𝑥
1

𝑥
𝑛1+1

...
𝑥

𝑛1+𝑛2+⋅⋅⋅+𝑛𝑁+1

]
]
]
]

]

. (3b)

That is,

𝑋̇ (𝑡) = 𝑓 (𝑋 (𝑡)) + 𝑔𝑢 + 𝐷
𝑒
+ Δ𝑓 +

𝑁𝑡

∑

𝑗=1

𝑞
∗

𝑗
𝜃
𝑗𝑑
,

𝑦 (𝑡) = ℎ (𝑋 (𝑡)) ,

(4)

where 𝑋(𝑡) ≡ [𝑥
1
(𝑡) 𝑥

2
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑁𝑡
(𝑡)]

𝑇

∈

R𝑁𝑡 is the state vector, 𝑔𝑢 ≡

[0
(𝑛1−1)×1

𝑔
1
𝑢
1
0
(𝑛2−1)×1

𝑔
2
𝑢
2
⋅ ⋅ ⋅ 0

(𝑛𝑁−1)×1
𝑔

𝑁
𝑢
𝑁
]
𝑇

∈

R𝑁𝑡 is the input vector, 𝑦 ≡ [𝑦
1
𝑦
2
⋅ ⋅ ⋅ 𝑦

𝑁
]
𝑇

∈ R𝑁 is the
output vector, 𝜃

𝑑
≡ [𝜃

1𝑑
(𝑡) 𝜃

2𝑑
(𝑡) ⋅ ⋅ ⋅ 𝜃

𝑁𝑡𝑑
(𝑡)]

𝑇

∈ R𝑁𝑡 is
a bounded time-varying disturbances vector, and Δ𝑓 ≡

[Δ𝑓
1
Δ𝑓

2
⋅ ⋅ ⋅ Δ𝑓

𝑁𝑡
] ∈ R𝑁𝑡 . 𝑓 ≡ [𝑓

1
𝑓
2
⋅ ⋅ ⋅ 𝑓

𝑁𝑡
]
𝑇

∈ R𝑁𝑡 ,
𝐷 ≡ [𝐷

𝑒1
𝐷

𝑒2
⋅ ⋅ ⋅ 𝐷

𝑒𝑁𝑡
]
𝑇

∈ R𝑁𝑡 , 𝐷
𝑒
≡ ∑

𝑁𝑡

𝑖=1
𝑞
∗

𝑖
𝐷

𝑒𝑖
∈

R𝑁𝑡 , and ℎ ≡ [ℎ
1
ℎ
2
⋅ ⋅ ⋅ ℎ

𝑁
]
𝑇

∈ R𝑁 are smooth vector
fields. The nominal system is then defined as follows:

𝑋̇ (𝑡) = 𝑓 (𝑋 (𝑡)) + 𝑔𝑢, (5a)

𝑦 (𝑡) = ℎ (𝑋 (𝑡)) . (5b)

The nominal system of the form (5a) and (5b) is said to
have the vector relative degree {𝑟

1
, 𝑟

2
, . . . , 𝑟

𝑁
} [29] with the

following properties for all𝑋 ∈ R𝑁𝑡 :
(i)

𝐿
𝑔𝑗
𝐿

𝑘

𝑓
ℎ
𝑖
(𝑋) = 0, 1 ≤ 𝑖 ≤ 𝑁,

1 ≤ 𝑗 ≤ 𝑁, 𝑘 < 𝑟
𝑖
− 1,

(6)

where the operator 𝐿 is the Lie derivative [30] and 𝑟
1
+ 𝑟

2
+

⋅ ⋅ ⋅ + 𝑟
𝑁
= 𝑟;

(ii) the𝑁 ×𝑁matrix

𝐴non ≡

[
[
[
[
[
[
[
[
[
[

[

𝐿
𝑔1
𝐿

𝑟1−1

𝑓
ℎ
1
(𝑋) ⋅ ⋅ ⋅ 𝐿

𝑔𝑁
𝐿

𝑟1−1

𝑓
ℎ
1
(𝑋)

𝐿
𝑔1
𝐿

𝑟2−1

𝑓
ℎ
2
(𝑋) ⋅ ⋅ ⋅ 𝐿

𝑔𝑁
𝐿

𝑟2−1

𝑓
ℎ
2
(𝑋)

...
...

𝐿
𝑔1
𝐿

𝑟𝑁−1

𝑓
ℎ
𝑁
(𝑋) 𝐿

𝑔𝑁
𝐿

𝑟𝑁−1

𝑓
ℎ
𝑁
(𝑋)

]
]
]
]
]
]
]
]
]
]

]

(7)

is nonsingular.
The desired output trajectory 𝑦𝑖

𝑑
, 1 ≤ 𝑖 ≤ 𝑁 and its first

𝑟
𝑖
derivatives are all uniformly bounded, and

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[𝑦

𝑖

𝑑
, 𝑦

𝑖

𝑑

(1)

, . . . , 𝑦
𝑖

𝑑

(𝑟𝑖)

]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝐵

𝑖

𝑑
, 1 ≤ 𝑖 ≤ 𝑁, (8)

where 𝐵𝑖

𝑑
is some positive real constant. Based on the

existence of vector relative degree, it has been shown [30] that
the function

Ω : R
𝑁𝑡 󳨀→ R

𝑁𝑡 (9)

defined as

𝜉
𝑖
≡

[
[
[
[
[
[

[

𝜉
𝑖

1

𝜉
𝑖

2

...
𝜉
𝑖

𝑟𝑖

]
]
]
]
]
]

]

≡

[
[
[
[
[
[

[

Ω
𝑖

1

Ω
𝑖

2

...
Ω

𝑖

𝑟𝑖

]
]
]
]
]
]

]

≡

[
[
[
[
[
[
[

[

𝐿
0

𝑓
ℎ
𝑖
(𝑋)

𝐿
1

𝑓
ℎ
𝑖
(𝑋)

...
𝐿

𝑟𝑖−1

𝑓
ℎ
𝑖
(𝑋)

]
]
]
]
]
]
]

]

, 𝑖 = 1, 2, . . . , 𝑁,

Ω
𝑘
(𝑋 (𝑡)) ≡ 𝜂

𝑘
(𝑡) , 𝑘 = 𝑟 + 1, 𝑟 + 2, . . . , 𝑁

𝑡
,

𝐿
𝑔𝑗
Ω

𝑘
(𝑋 (𝑡)) = 0, 𝑘 = 𝑟 + 1, 𝑟 + 2, . . . , 𝑁

𝑡
, 1 ≤ 𝑗 ≤ 𝑁

(10)

is a diffeomorphism, if (i) the distribution

𝑔span ≡ span {𝑔
1
, 𝑔

2
, . . . , 𝑔

𝑁
} (11)

has involutive property; (ii) the vector fields

𝑍
𝑘

𝑗
, 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑟

𝑗
(12)

are complete, where

𝑍
𝑘

𝑗
≡ (−1)

𝑘−1

𝑎𝑑
𝑘−1

̃
𝑓

𝑔
𝑗
, 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑟

𝑗
,

𝑓 (𝑋) ≡ 𝑓 (𝑋) − 𝑔 (𝑋)𝐴
−1

non (𝑋) 𝑠 (𝑋) ,

𝑠 (𝑋) ≡ [𝐿
𝑟1

𝑓
ℎ
1
(𝑋) 𝐿

𝑟2

𝑓
ℎ
2
(𝑋) ⋅ ⋅ ⋅ 𝐿

𝑟𝑁

𝑓
ℎ
𝑁
(𝑋)]

𝑇

,

𝑔 ≡ [𝑔
1
𝑔

2
⋅ ⋅ ⋅ 𝑔

𝑁
] ≡ 𝑔 (𝑋)𝐴

−1

non (𝑋) ,

𝑎𝑑
𝑘

𝑝
𝑞 ≡ [𝑝 𝑎𝑑

𝑘−1

𝑝
𝑞] ,

[𝑝 𝑞] ≡
𝜕𝑞

𝜕𝑋
𝑝 (𝑋) −

𝜕𝑝

𝜕𝑋
𝑞 (𝑋) .

(13)
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Denote the trajectory error to be

𝑒
𝑖

𝑗
≡ 𝜉

𝑖

𝑗
− 𝑦

𝑖(𝑗−1)

𝑑
, 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑟

𝑖
, (14)

𝑒
𝑖

≡ [𝑒
𝑖

1
𝑒
𝑖

2
⋅ ⋅ ⋅ 𝑒

𝑖

𝑟𝑖
]
𝑇

∈ R
𝑟𝑖 , (15)

𝑒
𝑖

𝑗
≡ 𝜅

𝑗−1

𝑒
𝑖

𝑗
, 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑟

𝑖
, (16)

𝑒𝑖 ≡ [𝑒
𝑖

1
𝑒
𝑖

2
⋅ ⋅ ⋅ 𝑒𝑖

𝑟𝑖

(𝑡)]
𝑇

∈ R
𝑟𝑖 , (17)

𝑒 ≡ [𝑒1 𝑒2 ⋅ ⋅ ⋅ 𝑒𝑁]
𝑇

∈ R
𝑟

, (18)

𝜉 ≡ [𝜉
1
𝜉
2
⋅ ⋅ ⋅ 𝜉

𝑟
]
𝑇

∈ R
𝑟

, (19)

𝜂 (𝑡) ≡ [𝜂
𝑟+1
(𝑡) 𝜂

𝑟+2
(𝑡) ⋅ ⋅ ⋅ 𝜂

𝑁𝑡
(𝑡)]

𝑇

∈ R
𝑁𝑡−𝑟

, (20)

𝑞 (𝜉 (𝑡) , 𝜂 (𝑡)) ≡ [𝐿𝑓
𝜙

𝑟+1
(𝑡) 𝐿

𝑓
𝜙

𝑟+2
(𝑡) ⋅ ⋅ ⋅ 𝐿

𝑓
𝜙

𝑁𝑡
(𝑡)]

𝑇

≡ [𝑞
𝑟+1

𝑞
𝑟+2

⋅ ⋅ ⋅ 𝑞
𝑁𝑡
]
𝑇

.

(21)

Define a phase-variable canonical matrix 𝐴𝑖

phase to be

𝐴
𝑖

phase ≡

[
[
[
[
[
[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 ⋅ ⋅ ⋅ 0

...
...

0 0 0 ⋅ ⋅ ⋅ 1

−𝑎
𝑖

1
−𝑎

𝑖

2
−𝑎

𝑖

3
⋅ ⋅ ⋅ −𝑎

𝑖

𝑟𝑖

]
]
]
]
]
]

]
𝑟𝑖×𝑟𝑖

, 1 ≤ 𝑖 ≤ 𝑁, (22)

where 𝑎𝑖
1
, 𝑎

𝑖

2
, . . . , 𝑎

𝑖

𝑟𝑖

are any chosen variable such that 𝐴𝑖

phase
is Hurwitz, and define the vector 𝐵𝑖 to be

𝐵
𝑖

≡ [0 0 ⋅ ⋅ ⋅ 0 1]
𝑇

𝑟𝑖×1
, 1 ≤ 𝑖 ≤ 𝑁. (23)

Define the positive definite matrix 𝑄𝑖 to be solution of the
following Lyapunov equation:

(𝐴
𝑖

phase)
𝑇

𝑄
𝑖

+ 𝑄
𝑖

𝐴
𝑖

phase = −𝐼, 1 ≤ 𝑖 ≤ 𝑁,

𝜆max (𝑄
𝑖

) ≡ the maximum eigenvalue of 𝑄𝑖

, 1 ≤ 𝑖 ≤ 𝑁,

𝜆min (𝑄
𝑖

) ≡ the minimum eigenvalue of 𝑄𝑖

, 1 ≤ 𝑖 ≤ 𝑁,

𝜆
∗

max ≡ min {𝜆max (𝑄
1

) , 𝜆max (𝑄
2

) , . . . , 𝜆max (𝑄
𝑁

)} ,

𝜆
∗

min ≡ min {𝜆min (𝑄
1

) , 𝜆min (𝑄
2

) , . . . , 𝜆min (𝑄
𝑁

)} .

(24)

Assumption 1. For all 𝑡 ≥ 0, 𝜂 ∈ R𝑁𝑡−𝑟, and 𝜉 ∈ R𝑟,
there exists a positive constant 𝐿

𝑚
such that the following

inequality holds:

󵄩󵄩󵄩󵄩𝑞22 (𝑡, 𝜂, 𝑒) − 𝑞22 (𝑡, 𝜂, 0)
󵄩󵄩󵄩󵄩 ≤ 𝐿𝑚

(‖𝑒‖) , (25)

where 𝑞
22
(𝑡, 𝜂, 𝑒) ≡ 𝑞(𝜉, 𝜂).

For the sake of describing precisely the considered prob-
lem, denote

𝑑
𝑖𝑗
≡ 𝐿

𝑔𝑗
𝐿

𝑟𝑖−1

𝑓
ℎ
𝑖
(𝑋) , 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁,

𝑐
𝑖
≡ 𝐿

𝑟𝑖

𝑓
ℎ
𝑖
(𝑋) , 1 ≤ 𝑖 ≤ 𝑁,

𝑒𝑖 ≡ 𝑎
𝑖

1
𝑒
𝑖

1
+ 𝑎

𝑖

2
𝑒
𝑖

2
+ ⋅ ⋅ ⋅ + 𝑎

𝑖

𝑟𝑖

𝑒𝑖
𝑟𝑖

, 1 ≤ 𝑖 ≤ 𝑁.

(26)

Definition 2 (see [31]). Consider the nonlinear system 𝑧̇ =

𝑓(𝑡, 𝑧, 𝑛), where 𝑓 : [0,∞) × R𝑛

× R𝑛

→ R𝑛 is piecewise
continuous in 𝑡 and has the locally Lipschitz property in 𝑧
and 𝑛. This nonlinear system is said to has the input-to-state
stable property if there exist a class 𝐾𝐿 function 𝛽, a class 𝐾
function 𝛾, and positive real constants𝜆

1
and𝜆

2
such that, for

given initial state 𝑧(𝑡
0
) with ‖𝑧(𝑡

0
)‖ < 𝜆

1
and any bounded

noise 𝑛(𝑡) with sup
𝑡≥𝑡0

‖𝑛(𝑡)‖ < 𝜆
2
, the system state has the

following property:

‖𝑧 (𝑡)‖ ≤ 𝛽 (
󵄩󵄩󵄩󵄩𝑧 (𝑡0)

󵄩󵄩󵄩󵄩 , 𝑡 − 𝑡0) + 𝛾( sup
𝑡0≤𝜏≤𝑡

‖𝑛 (𝜏)‖) (27)

for all 𝑡 ≥ 𝑡
0
≥ 0.

Definition 3 (see [32]). The tracking problem with almost
disturbance decoupling performance is denoted to be glob-
ally solved by the control law 𝑢 for the overall system, if the
control law 𝑢 has the following characteristics.

(i) The control system is input-to-state stable for distur-
bance inputs.

(ii) For any given initial value 𝑥
𝑒0
≡ [𝑒(𝑡

0
) 𝜂(𝑡

0
)]

𝑇, for
any 𝑡 ≥ 𝑡

0
, and for any 𝑡

0
≥ 0,

󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑦𝑑
(𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝛽11

(
󵄩󵄩󵄩󵄩𝑥 (𝑡0)

󵄩󵄩󵄩󵄩 , 𝑡 − 𝑡0)

+
1

√𝛽
22

𝛽
33
( sup

𝑡0≤𝜏≤𝑡

‖𝜃 (𝜏)‖) ,

(28)

∫

𝑡

𝑡0

[𝑦 (𝜏) − 𝑦
𝑑
(𝜏)]

2

𝑑𝜏

≤
1

𝛽
44

[𝛽
55
(
󵄩󵄩󵄩󵄩𝑥𝑒0

󵄩󵄩󵄩󵄩) + ∫

𝑡

𝑡0

𝛽
33
(‖𝜃 (𝜏)‖

2

) 𝑑𝜏] ,

(29)

where 𝛽
22
, 𝛽

44
are positive real constants, 𝛽

33
, 𝛽

55
are class𝐾

functions, and 𝛽
11
is a class 𝐾𝐿 function.

Theorem 4. Assume that there exists a continuously differ-
entiable function T : R

𝑁𝑡−𝑟

→ R+ such that the following
properties hold for all 𝜂 ∈ R

𝑁𝑡−𝑟 :

Δ
1

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

≤ 𝑇 (𝜂) ≤ Δ
2

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

, Δ
1
, Δ

2
> 0, (30a)

∇
𝑡
𝑇 + (∇

𝜂
𝑇)

𝑇

𝑞
22
(𝑡, 𝜂, 0) ≤ −2𝛼

𝑥

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

, 𝛼
𝑥
> 0, (30b)

󵄩󵄩󵄩󵄩󵄩
∇

𝜂
𝑇
󵄩󵄩󵄩󵄩󵄩
≤ Δ

3

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩 , Δ

3
> 0. (30c)
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Then the tracking problem with almost disturbance decoupling
performance for time-delay large-scale system is globally solved
by the control law:

𝑢 = 𝐴
−1

𝑛𝑜𝑛
{−𝑢

𝑏
+ 𝑢V} , (31)

𝑢
𝑏
≡ [𝐿

𝑟1

𝑓
ℎ
1
𝐿

𝑟2

𝑓
ℎ
2
⋅ ⋅ ⋅ 𝐿

𝑟𝑁

𝑓
ℎ
𝑁]

𝑇

, (32)

𝑢V ≡ [V1 V
2
⋅ ⋅ ⋅ V

𝑁
]
𝑇

, (33)

V
𝑖
≡ 𝑦

𝑖

𝑑

(𝑟𝑖)

− 𝜅
−𝑟𝑖𝑎

𝑖

1
[𝐿

0

𝑓
ℎ
𝑖
(𝑋) − 𝑦

𝑖

𝑑
]

− 𝜅
1−𝑟𝑖𝑎

𝑖

2
[𝐿

1

𝑓
ℎ
𝑖
(𝑋) − 𝑦

𝑖

𝑑

(1)

]

− ⋅ ⋅ ⋅ − 𝜅
−1

𝑎
𝑖

𝑟𝑖

[𝐿
𝑟𝑖−1

𝑓
ℎ
𝑖
(𝑋) − 𝑦

𝑖

𝑑

(𝑟𝑖−1)

] , 1 ≤ 𝑖 ≤ 𝑁.

(34)

Moreover, the influence of disturbances on the 𝐿
2
norm of

the tracking error can be arbitrarily reduced by adjusting
parameter 𝑁

2
> 1:

𝑘
11
≡
𝑘

2𝜅
−
25𝑘

2

𝜅2

󵄩󵄩󵄩󵄩󵄩
𝜙

1

𝜉

󵄩󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑄

1
󵄩󵄩󵄩󵄩󵄩

2

− ⋅ ⋅ ⋅ −
25𝑘

2

𝜅2

󵄩󵄩󵄩󵄩󵄩
𝜙

𝑁

𝜉

󵄩󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑄

𝑁
󵄩󵄩󵄩󵄩󵄩

2

− 25,

(35a)

𝑘
22
≡ 22𝛼

𝑥
−

1

100
Δ

2

3
𝐿

2

𝑚
− 25Δ

2

3

󵄩󵄩󵄩󵄩󵄩
𝜙

𝜂

󵄩󵄩󵄩󵄩󵄩

2

, (35b)

𝑁
2
≡ min {𝑘

11
, 𝑘

22
} , (35c)

Ω
𝑖

𝜉
(𝜅) ≡

[
[
[
[
[

[

𝜅
𝜕

𝜕𝑋
ℎ
𝑖
𝑞
∗

1
⋅ ⋅ ⋅ 𝜅

𝜕

𝜕𝑋
ℎ
𝑖
𝑞
∗

𝑝

...
...

𝜅
𝑟𝑖
𝜕

𝜕𝑋
𝐿

𝑟𝑖−1

𝑓

ℎ
𝑖
𝑞
∗

1
⋅ ⋅ ⋅ 𝜅

𝑟𝑖
𝜕

𝜕𝑋
𝐿

𝑟𝑖−1

𝑓

ℎ
𝑖
𝑞
∗

𝑞

]
]
]
]
]

]

,

1 ≤ 𝑖 ≤ 𝑁,

(35d)

Ω
𝜂
(𝜅) ≡

[
[
[
[
[

[

𝜕

𝜕𝑋
𝜙

𝑟+1
𝑞
∗

1
⋅ ⋅ ⋅

𝜕

𝜕𝑋
𝜙

𝑟+1
𝑞
∗

𝑝

...
...

𝜕

𝜕𝑋
𝜙

𝑁𝑡
𝑞
∗

1
⋅ ⋅ ⋅

𝜕

𝜕𝑋
𝜙

𝑁𝑡
𝑞
∗

𝑞

]
]
]
]
]

]

, (35e)

where 𝑘(𝜅) : R+

→ R+ is a continuous function satisfying

lim
𝜀→0

𝑘 (𝜅) = 0, lim
𝜅→0

𝜅

𝑘 (𝜅)
= 0. (35f)

Proof. Applying the coordinate transformation (9) yields

̇𝜉
1

1
=
𝜕ℎ

1

𝜕𝑋
𝑓 +

𝑁𝑡

∑

𝑗=1

𝜕ℎ
1

𝜕𝑋
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
)

= 𝜉
1

2
+

𝑁𝑡

∑

𝑗=1

𝜕ℎ
1

𝜕𝑋
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
) ,

...

̇𝜉
1

𝑟1−1
=

𝜕𝐿
𝑟1−2

𝑓
ℎ
1

𝜕𝑋
𝑓 +

𝑁𝑡

∑

𝑗=1

𝜕𝐿
𝑟1−2

𝑓
ℎ
1

𝜕𝑋
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
)

= 𝐿
𝑟1−1

𝑓
ℎ
1
+

𝑁𝑡

∑

𝑗=1

𝜕𝐿
𝑟1−2

𝑓
ℎ
1

𝜕𝑋
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
) ,

̇𝜉
1

𝑟1

= 𝑐
1
+ 𝑑

11
𝑢
1
+ ⋅ ⋅ ⋅ + 𝑑

1𝑁
𝑢
𝑁

+

𝑁𝑡

∑

𝑗=1

𝜕𝐿
𝑟1−1

𝑓
ℎ
1

𝜕𝑋
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
) ,

...

̇𝜉
𝑁

1
= 𝐿

1

𝑓
ℎ
𝑁
+

𝑁𝑡

∑

𝑗=1

𝜕ℎ
1

𝜕𝑋
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
)

= 𝜉
𝑁

2
+

𝑁𝑡

∑

𝑗=1

𝜕ℎ
𝑁

𝜕𝑋
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
) ,

...

̇𝜉
𝑁

𝑟𝑁−1
= 𝐿

𝑟𝑁−1

𝑓
ℎ
𝑁
+

𝑁𝑡

∑

𝑗=1

𝜕𝐿
𝑟𝑁−2

𝑓
ℎ
𝑁

𝜕𝑋
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
)

= 𝜉
𝑁

𝑟𝑁

+

𝑁𝑡

∑

𝑗=1

𝜕𝐿
𝑟𝑁−2

𝑓
ℎ
𝑁

𝜕𝑋
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
) ,

̇𝜉
𝑁

𝑟𝑁

= 𝑐
𝑁
+ 𝑑

𝑁1
𝑢
1
+ ⋅ ⋅ ⋅ + 𝑑

𝑁𝑁
𝑢
𝑁

+

𝑁𝑡

∑

𝑗=1

𝜕𝐿
𝑟𝑁−1

𝑓
ℎ
𝑁

𝜕𝑋
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
) ,

̇𝜂
𝑘
(𝑡) = 𝐿

𝑓
Ω

𝑘
+

𝑁𝑡

∑

𝑗=1

𝜕Ω
𝑘

𝜕𝑋
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
)

= 𝑞
𝑘
+

𝑁𝑡

∑

𝑗=1

𝜕Ω
𝑘

𝜕𝑋
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
) .

(36)
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Since

𝑐
𝑖
(𝜉 (𝑡) , 𝜂 (𝑡)) ≡ 𝐿

𝑟𝑖

𝑓
ℎ
𝑖
(𝑋 (𝑡)) , 1 ≤ 𝑖 ≤ 𝑁, (37)

𝑑
𝑖𝑗
≡ 𝐿

𝑔𝑗
𝐿

𝑟𝑖−1

𝑓
ℎ
𝑖
(𝑋) , 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑁, (38)

𝑞
𝑘
(𝜉 (𝑡) , 𝜂 (𝑡)) = 𝐿

𝑓
Ω

𝑘
(𝑋) , 𝑘 = 𝑟 + 1, 𝑟 + 2, . . . , 𝑁

𝑡
.

(39)

The dynamic equations of systems (3a) and (3b) can be
rewritten as follows:

̇𝜉
1

𝑖
(𝑡) = 𝜉

1

𝑖+1
(𝑡) +

𝑁𝑡

∑

𝑗=1

𝜕

𝜕𝑋
𝐿

𝑖−1

𝑓
ℎ
1
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
) ,

𝑖 = 1, 2, . . . , 𝑟
1
− 1,

(40)

̇𝜉
1

𝑟1

(𝑡) = 𝑐
1
(𝜉 (𝑡) , 𝜂 (𝑡)) + 𝑑

11
(𝜉 (𝑡) , 𝜂 (𝑡)) 𝑢

1

+ ⋅ ⋅ ⋅ + 𝑑
1𝑁
(𝜉 (𝑡) , 𝜂 (𝑡)) 𝑢

𝑁

+

𝑁𝑡

∑

𝑗=1

𝜕

𝜕𝑋
𝐿

𝑟1−1

𝑓
ℎ
1
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
) ,

...

(41)

̇𝜉
𝑁

𝑖
(𝑡) = 𝜉

𝑁

𝑖+1
(𝑡) +

𝑁𝑡

∑

𝑗=1

𝜕

𝜕𝑋
𝐿

𝑖−1

𝑓
ℎ
𝑁
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
) ,

𝑖 = 1, 2, . . . , 𝑟
𝑁
− 1,

(42)

̇𝜉
𝑁

𝑟𝑁

(𝑡) = 𝑐
𝑁
(𝜉 (𝑡) , 𝜂 (𝑡)) + 𝑑

𝑁1
(𝜉 (𝑡) , 𝜂 (𝑡)) 𝑢

1

+ ⋅ ⋅ ⋅ + 𝑑
𝑁𝑁
(𝜉 (𝑡) , 𝜂 (𝑡)) 𝑢

𝑁

+

𝑁𝑡

∑

𝑗=1

𝜕

𝜕𝑋
𝐿

𝑟𝑁−1

𝑓
ℎ
𝑁
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
) ,

(43)

̇𝜂
𝑘
(𝑡) = 𝑞

𝑘
(𝜉 (𝑡) , 𝜂 (𝑡)) +

𝑁𝑡

∑

𝑗=1

𝜕

𝜕𝑋
Ω

𝑘
(𝑋) 𝑞

∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
) ,

𝑘 = 𝑟 + 1, . . . , 𝑁
𝑡
,

(44)

𝑦
𝑖
(𝑡) = 𝜉

𝑖

1
(𝑡) , 1 ≤ 𝑖 ≤ 𝑁. (45)

Applying (14), (34), (37), and (38) yields the controller as

𝑢 = 𝐴
−1

non [−𝑢𝑏
+ 𝑢V] . (46)

The dynamic equations of systems (3a) and (3b) can be
rewritten as follows by substituting (46) into (41) and (43):

[
[
[
[
[
[
[
[
[
[

[

̇𝜉
𝑖

1
(𝑡)

̇𝜉
𝑖

2
(𝑡)

...
̇𝜉
𝑖

𝑟𝑖−1
(𝑡)

̇𝜉
𝑖

𝑟𝑖

(𝑡)

]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 1 0 ⋅ ⋅ ⋅ 0

...
...

0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[

[

𝜉
𝑖

1
(𝑡)

𝜉
𝑖

2
(𝑡)

...
𝜉
𝑖

𝑟𝑖−1
(𝑡)

𝜉
𝑖

𝑟𝑖

(𝑡)

]
]
]
]
]
]
]
]
]
]

]

+

[
[
[
[
[
[

[

0

0

...
0

1

]
]
]
]
]
]

]

V
𝑖
+

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑁𝑡

∑

𝑗=1

𝜕

𝜕𝑋
ℎ
𝑖
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
)

𝑁𝑡

∑

𝑗=1

𝜕

𝜕𝑋
𝐿

1

𝑓
ℎ
𝑖
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
)

...
𝑁𝑡

∑

𝑗=1

𝜕

𝜕𝑋
𝐿

𝑟𝑖−1

𝑓
ℎ
𝑖
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
)

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

[
[
[
[
[
[

[

̇𝜂
𝑟+1
(𝑡)

̇𝜂
𝑟+2
(𝑡)

...
̇𝜂
𝑁𝑡−1

(𝑡)

̇𝜂
𝑁𝑡
(𝑡)

]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

𝑞
𝑟+1
(𝑡)

𝑞
𝑟+2
(𝑡)

...
𝑞
𝑁𝑡−1

(𝑡)

𝑞
𝑁𝑡
(𝑡)

]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑁𝑡

∑

𝑗=1

𝜕

𝜕𝑋
Ω

𝑟+1
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
)

𝑁𝑡

∑

𝑗=1

𝜕

𝜕𝑋
Ω

𝑟+2
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
)

...
𝑁𝑡

∑

𝑗=1

𝜕

𝜕𝑋
Ω

𝑁𝑡−1
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
)

𝑁𝑡

∑

𝑗=1

𝜕

𝜕𝑋
Ω

𝑁𝑡
𝑞
∗

𝑗
(𝜃

𝑗𝑑
+ 𝐷

𝑒𝑗
)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑦
𝑖
= [1 0 ⋅ ⋅ ⋅ 0 0]

𝑟×1

[
[
[
[
[
[
[
[
[
[

[

𝜉
𝑖

1
(𝑡)

𝜉
𝑖

2
(𝑡)

...
𝜉
𝑖

𝑟𝑖−1
(𝑡)

𝜉
𝑖

𝑟𝑖

(𝑡)

]
]
]
]
]
]
]
]
]
]

]
𝑟×1

= 𝜉
𝑖

1
(𝑡) , 1 ≤ 𝑖 ≤ 𝑁.

(47)
Combining (14), (16), (17), (22), and (34) yields the transfor-
mation of (47):

̇𝜂 (𝑡) = 𝑞 (𝜉 (𝑡) , 𝜂 (𝑡)) + Ω
𝜂
(𝜃

𝑑
+ 𝐷)

≡ 𝑞
22
(𝑡, 𝜂 (𝑡) , 𝑒) + Ω

𝜂
(𝜃

𝑑
+ 𝐷) ,

(48a)

𝜅
̇
𝑒𝑖 (𝑡) = 𝐴

𝑖

phase𝑒
𝑖 + Ω

𝑖

𝜉
(𝜃

𝑑
+ 𝐷) , 1 ≤ 𝑖 ≤ 𝑁,

(48b)

𝑦
𝑖
(𝑡) = 𝜉

𝑖

1
(𝑡) , 1 ≤ 𝑖 ≤ 𝑁. (49)
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We consider 𝐿(𝑒, 𝜂) denoted by a weighted sum of 𝑇(𝜂) and
𝑊(𝑒), and

𝐿 (𝑒, 𝜂) ≡ 𝑇 (𝜂) + 𝑘 (𝜅)𝑊 (𝑒)

≡ 𝑇 (𝜂) + 𝑘 (𝜅) (𝑊
1

(𝑒1) + ⋅ ⋅ ⋅ + 𝑊
𝑁

(𝑒𝑁)) ,

(50)

where

𝑊(𝑒) ≡ 𝑊
1

(𝑒1) + ⋅ ⋅ ⋅ + 𝑊
𝑁

(𝑒𝑁) (51)

as a composite Lyapunov function of the subsystems (48a)
and (48b) [33, 34], where𝑊(𝑒𝑖) satisfies

𝑊
𝑖

(𝑒𝑖) ≡
1

2
𝑒𝑖

𝑇

𝑄
𝑖

𝑒𝑖. (52)

Utilizing (14), (25) and (30a), (30b), and (30c) result in the
derivative of 𝐿 along the trajectories of (48a) and (48b) as

𝐿̇ = [∇
𝑡
𝑇 + (∇

𝜂
𝑇)

𝑇

̇𝜂]

+
𝑘

2

[

[

(

∙

𝑒1)

𝑇

𝑄
1

𝑒1 + (𝑒1)
𝑇

𝑄
1

(

∙

𝑒1)

+ ⋅ ⋅ ⋅ + (

∙

𝑒𝑁)

𝑇

𝑄
𝑁

𝑒𝑁 + (𝑒𝑁)
𝑇

𝑄
𝑁

(

∙

𝑒𝑁)]

]

≤ [∇
𝑡
𝑇 + (∇

𝜂
𝑇)

𝑇

𝑞
22
(𝑡, 𝜂 (𝑡) , 𝑒) + (∇

𝜂
𝑉)

𝑇

Ω
𝜂
(𝜃

𝑑
+ 𝐷)]

−
𝑘

2𝜅
[(𝑒1)

𝑇

𝑒1 + ⋅ ⋅ ⋅ + (𝑒𝑁)
𝑇

𝑒𝑁]

+
𝑘

𝜅
[
󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝐷)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
Ω

1

𝜉

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑄

1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑒1
󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝐷)

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
Ω

𝑁

𝜉

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑄

𝑁
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
𝑒𝑁
󵄩󵄩󵄩󵄩󵄩󵄩
]

≤ −
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

[2𝛼
𝑥
−

1

100
Δ

2

3
𝐿

2

𝑚
− 25Δ

2

3

󵄩󵄩󵄩󵄩󵄩
Ω

𝜂

󵄩󵄩󵄩󵄩󵄩

2

]

− ‖𝑒‖
2

[
𝑘

2𝜅
−
25𝑘

2

𝜅2

󵄩󵄩󵄩󵄩󵄩
Ω

1

𝜉

󵄩󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑄

1
󵄩󵄩󵄩󵄩󵄩

2

− ⋅ ⋅ ⋅ −
25𝑘

2

𝜅2

󵄩󵄩󵄩󵄩󵄩
Ω

𝑁

𝜉

󵄩󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑄

𝑁
󵄩󵄩󵄩󵄩󵄩

2

− 25]

+
𝑁 + 1

100

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝐷)
󵄩󵄩󵄩󵄩

2

.

(53)

That is,

𝐿̇ ≤ −𝑘
11
‖𝑒‖

2

− 𝑘
22

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

+
𝑁 + 1

100

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝐷)
󵄩󵄩󵄩󵄩

2

. (54)

From (35c), we obtain

𝐿̇ ≤ −𝑁
2
(‖𝑒‖

2

+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

) +
𝑁 + 1

100

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝐷)
󵄩󵄩󵄩󵄩

2

. (55)

Define

𝑒 ≡

[
[
[
[
[

[

𝑒1

𝑒2

...
𝑒𝑁

]
]
]
]
]

]

≡ [
𝑒
1

1

𝑒1rem
] , 𝑒1rem ∈ R

𝑟−1

. (56)

Hence

𝐿̇ ≤ −𝑁
2
(
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
1

1

󵄩󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑒1rem

󵄩󵄩󵄩󵄩󵄩

2

) +
𝑁 + 1

100

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝐷)
󵄩󵄩󵄩󵄩

2

.

(57)

Utilizing (57) easily yields

∫

𝑡

𝑡0

(𝑦
1
(𝜏) − 𝑦

1

𝑑

(𝜏))
2

𝑑𝜏

≤
𝐿 (𝑡

0
)

𝑁
2

+
𝑁 + 1

100𝑁
2

∫

𝑡

𝑡0

󵄩󵄩󵄩󵄩(𝜃𝑑 (𝜏) + 𝐷)
󵄩󵄩󵄩󵄩

2

𝑑𝜏.

(58)

Similarly, it is easy to prove that

∫

𝑡

𝑡0

(𝑦
𝑖
(𝜏) − 𝑦

𝑖

𝑑
(𝜏))

2

𝑑𝜏

≤
𝐿 (𝑡

0
)

𝑁
2

+
𝑁 + 1

100𝑁
2

∫

𝑡

𝑡0

󵄩󵄩󵄩󵄩(𝜃𝑑(𝜏) + 𝐷)
󵄩󵄩󵄩󵄩

2

𝑑𝜏,

2 ≤ 𝑖 ≤ 𝑁

(59)

so that statement (29) is satisfied. From (55), we get

𝐿̇ ≤ −𝑁
2
(
󵄩󵄩󵄩󵄩𝑦total

󵄩󵄩󵄩󵄩

2

) +
𝑁 + 1

100

󵄩󵄩󵄩󵄩(𝜃𝑑 + 𝐷)
󵄩󵄩󵄩󵄩

2

, (60a)

where
󵄩󵄩󵄩󵄩𝑦total

󵄩󵄩󵄩󵄩

2

≡ ‖𝑒‖
2

+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

. (60b)

Utilizing [31, Theorem 5.2] and (60a) implies the input-to-
state stable property for the overall system. Furthermore, it is
easy to obtain the following inequality:

Δmin (‖𝑒‖
2

+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

) ≤ 𝐿 ≤ Δmax (‖𝑒‖
2

+
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩

2

) . (61)

That is,

Δmin (
󵄩󵄩󵄩󵄩𝑦total

󵄩󵄩󵄩󵄩

2

) ≤ 𝐿 ≤ Δmax (
󵄩󵄩󵄩󵄩𝑦total

󵄩󵄩󵄩󵄩

2

) , (62)

where Δmin ≡ min{Δ
1
, (𝑘/2)𝜆

∗

min} and Δmax ≡

max{Δ
2
, (𝑘/2)𝜆

∗

max}. From (55) and (62), we get

𝐿̇ ≤ −
𝑁

2

Δmax
𝐿 +

𝑁 + 1

100
( sup

𝑡0≤𝜏≤𝑡

󵄩󵄩󵄩󵄩(𝜃𝑑 (𝜏) + 𝐷)
󵄩󵄩󵄩󵄩)

2

. (63)

Hence,

𝐿 (𝑡) ≤ 𝐿 (𝑡
0
) 𝑒

(−𝑁2/Δmax)(𝑡−𝑡0)

+
Δmax (𝑁 + 1)

100𝑁
2

( sup
𝑡0≤𝜏≤𝑡

󵄩󵄩󵄩󵄩(𝜃𝑑(𝜏) + 𝐷)
󵄩󵄩󵄩󵄩)

2

,

𝑡 ≥ 𝑡
0

(64)



8 Abstract and Applied Analysis

which implies

󵄨󵄨󵄨󵄨󵄨
𝑦
1
(𝑡) − 𝑦

1

𝑑
(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ √

2𝐿 (𝑡
0
)

𝑘𝜆
∗

min
𝑒
(−𝑁2/2Δmax)(𝑡−𝑡0)

+ √
Δmax (𝑁 + 1)

50𝑘𝜆
∗

min𝑁2

( sup
𝑡0≤𝜏≤𝑡

󵄩󵄩󵄩󵄩(𝜃𝑑 (𝜏) + 𝐷)
󵄩󵄩󵄩󵄩) .

(65)

Similarly, it is easy to prove that
󵄨󵄨󵄨󵄨󵄨
𝑦
𝑖
(𝑡) − 𝑦

1

𝑑
(𝑡)
󵄨󵄨󵄨󵄨󵄨

≤ √
2𝐿 (𝑡

0
)

𝑘𝜆
∗

min
𝑒
(−𝑁2/2Δmax)(𝑡−𝑡0) + √

Δmax (𝑁 + 1)

50𝑘𝜆
∗

min𝑁2

× ( sup
𝑡0≤𝜏≤𝑡

󵄩󵄩󵄩󵄩(𝜃𝑑 (𝜏) + 𝐷)
󵄩󵄩󵄩󵄩) , 2 ≤ 𝑖 ≤ 𝑁

(66)

so that statement (28) is proved, and then the tracking
problem with almost disturbance decoupling is globally
solved.

If the sum 𝑟
1
+𝑟

2
+⋅ ⋅ ⋅+𝑟

𝑚
is equal to the system dimension

𝑛, thenTheorem 4 will be reduced to the following simplified
version with cancelling Assumption 1 and (30a), (30b), and
(30c).

Theorem 5. The tracking problem with almost disturbance
decoupling performance for time-delay large-scale system is
globally solved by the control law:

𝑢 = 𝐴
−1

𝑛𝑜𝑛
{−𝑢

𝑏
+ 𝑢V} ,

𝑢
𝑏
≡ [𝐿

𝑟1

𝑓
ℎ
1
𝐿

𝑟2

𝑓
ℎ
2
⋅ ⋅ ⋅ 𝐿

𝑟𝑁

𝑓
ℎ
𝑁]

𝑇

,

𝑢V ≡ [V1 V
2
⋅ ⋅ ⋅ V

𝑁
]
𝑇

,

V
𝑖
≡ 𝑦

𝑖

𝑑

(𝑟𝑖)

− 𝜅
−𝑟𝑖𝑎

𝑖

1
[𝐿

0

𝑓
ℎ
𝑖
(𝑋) − 𝑦

𝑖

𝑑
]

− 𝜅
1−𝑟𝑖𝑎

𝑖

2
[𝐿

1

𝑓
ℎ
𝑖
(𝑋) − 𝑦

𝑖

𝑑

(1)

]

− ⋅ ⋅ ⋅ − 𝜅
−1

𝑎
𝑖

𝑟𝑖

[𝐿
𝑟𝑖−1

𝑓
ℎ
𝑖
(𝑋) − 𝑦

𝑖

𝑑

(𝑟𝑖−1)

] , 1 ≤ 𝑖 ≤ 𝑁.

(67)

Moreover, the influence of disturbances on the 𝐿
2
norm of

the tracking error can be arbitrarily reduced by adjusting
parameter 𝑘

11
> 1:

𝑘
11
≡
𝑘

2𝜅
−
25𝑘

2

𝜅2

󵄩󵄩󵄩󵄩󵄩
𝜙

1

𝜉

󵄩󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑄

1
󵄩󵄩󵄩󵄩󵄩

2

− ⋅ ⋅ ⋅ −
25𝑘

2

𝜅2

󵄩󵄩󵄩󵄩󵄩
𝜙

𝑁

𝜉

󵄩󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑄

𝑁
󵄩󵄩󵄩󵄩󵄩

2

.

(68)

3. Illustrative Example

Consider the two inverted pendulums coupled by a spring
with disturbances as shown in Figure 1. The dynamic equa-
tions are given as follows:

b

u1
u2

𝜃1 𝜃2Interconnection
function
spring

r

r/2

M1, J1 M2, J2

Figure 1: The two-inverted-pendulum system coupled by a spring.

𝑆
1
(inverted pendulum 1):

̈𝜃
1
(𝑡) = (−

𝑘𝑟
2

4𝐽
1

+
𝑚

1
𝑔𝑟

𝐽
1

) sin (𝜃
1
(𝑡))

+
𝑘𝑟 (𝑙 − 𝑏)

2𝐽
1

+
𝑘𝑟

2

4𝐽
1

sin (𝜃
2
(𝑡))

+
𝑢
1

𝐽
1

+
𝜃
1
(𝑡 − 𝜏

1,2
(𝑡))

1 + 𝜃
2

1
(𝑡 − 𝜏

1,2
(𝑡))

,

𝜏
1,2
(𝑡) ≡ 0.4 (1 + sin2

(𝑡)) ,

𝑦
1
= 𝜃

1
(𝑡) ,

(69)

𝑆
2
(inverted pendulum 2):

̈𝜃
2
(𝑡) = (−

𝑘𝑟
2

4𝐽
2

+
𝑚

2
𝑔𝑟

𝐽
2

) sin (𝜃
2
(𝑡))

+
𝑘𝑟 (𝑙 − 𝑏)

2𝐽
2

+
𝑘𝑟

2

4𝐽
2

sin ( ̇𝜃
1
(𝑡))

+
𝑢
2

𝐽
2

+
𝜃
2
(𝑡 − 𝜏

2,2
(𝑡))

1 + 𝜃
2

2
(𝑡 − 𝜏

2,2
(𝑡))

,

𝜏
2,2
(𝑡) ≡ 0.4 (1 + sin2

(𝑡))

𝑦
2
= 𝜃

2
(𝑡) ,

(70)

where 𝑢
𝑖
is the torque input generated by the actuator for

pendulum 𝑖 (𝑖 = 1, 2), 𝜃
𝑖
is the angular displacement of

pendulum 𝑖 (𝑖 = 1, 2),𝑚
𝑖
is the mass of pendulum 𝑖 (𝑖 = 1, 2),

𝐽
𝑖
is the moment of inertia (𝑖 = 1, 2), 𝑘 is the spring constant,

𝑟 is the pendulum height, 𝑙 is the length of pendulum,
𝑔 is the gravitational acceleration constant, and 𝑏 is the
distance between the pendulums. Defining the state variables
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𝑥
1
≡ 𝜃

1
(𝑡), 𝑥

2
≡ ̇𝜃

1
(𝑡), 𝑥

3
≡ 𝜃

2
(𝑡), and 𝑥

4
≡ ̇𝜃

2
(𝑡) yields the

following state space models:

𝑥̇
1
(𝑡) = 𝑥

2
(𝑡) ,

𝑥̇
2
(𝑡) = (−

𝑘𝑟
2

4𝐽
1

+
𝑚

1
𝑔𝑟

𝐽
1

) sin (𝑥
1
(𝑡))

+
𝑘𝑟 (𝑙 − 𝑏)

2𝐽
1

+
𝑘𝑟

2

4𝐽
1

sin (𝑥
3
(𝑡))

+
𝑢
1

𝐽
1

+
𝑥

1
(𝑡 − 𝜏

1,2
(𝑡))

1 + 𝑥
2

1
(𝑡 − 𝜏

1,2
(𝑡))

,

𝑥̇
3
(𝑡) = 𝑥

4
(𝑡) ,

𝑥̇
4
(𝑡) = (−

𝑘𝑟
2

4𝐽
1

+
𝑚

1
𝑔𝑟

𝐽
1

) sin (𝑥
3
(𝑡))

+
𝑘𝑟 (𝑙 − 𝑏)

2𝐽
1

+
𝑘𝑟

2

4𝐽
1

sin (𝑥
2
(𝑡))

+
𝑢
2

𝐽
2

+
𝑥

3
(𝑡 − 𝜏

1,2
(𝑡))

1 + 𝑥
2

3
(𝑡 − 𝜏

1,2
(𝑡))

,

𝜏
1,2
(𝑡) ≡ 𝜏

2,2
(𝑡) ≡ 0.4 (1 + sin2

(𝑡)) ,

𝑦
1
= 𝑥

1
(𝑡) ,

𝑦
2
= 𝑥

3
(𝑡) .

(71)

The following physical parameters are chosen in our sim-
ulation: 𝑚

1
= 2 kg, 𝑚

2
= 2.5 kg, 𝐽

1
= 1 kg/m2, 𝐽

2
=

1 kg/m2, 𝑘 = 10N/m, 𝑟 = 0.1m, 𝑙 = 0.5m, 𝑔 = 9.8m/s2,
and 𝑏 = 0.5m. Hence the mathematical model can be
rewritten as

𝑥̇
1
(𝑡) = 𝑥

2
(𝑡) ,

𝑥̇
2
(𝑡) = 1.935 sin (𝑥

1
(𝑡)) + 0.025 sin (𝑥

3
(𝑡))

+ 𝑢
1
+

𝑥
1
(𝑡 − 0.4 (1 + sin2

(𝑡)))

1 + 𝑥
2

1
(𝑡 − 0.4 (1 + sin2

(𝑡)))
,

𝑥̇
3
(𝑡) = 𝑥

4
(𝑡) ,

𝑥̇
4
(𝑡) = 2.425 sin (𝑥

3
(𝑡)) +

𝑘𝑟 (𝑙 − 𝑏)

2𝐽
1

+ 0.025 sin (𝑥
2
(𝑡)) + 𝑢

2

+

𝑥
3
(𝑡 − 0.4 (1 + sin2

(𝑡)))

1 + 𝑥
2

3
(𝑡 − 0.4 (1 + sin2

(𝑡)))
,

𝑦
1
= 𝑥

1
(𝑡) ,

𝑦
2
= 𝑥

3
(𝑡) .

(72)
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Figure 2: The output angular position 𝑥
1
(𝜃

1
) of the two inverted

pendulums.

Now we will show how to explicitly construct a controller
that tracks the desired signals 𝑦1

𝑑
= 𝑦

2

𝑑
= 0 and attenuates

the disturbance’s effect on the output terminal to an arbitrary
degree of accuracy. Let us arbitrarily choose 𝑎1

1
= 𝑎

1

2
= 𝑎

2

1
=

𝑎
2

2
= 10, and the solution of Lyapunov equation is given

as 𝐴1

phase = 𝐴
2

phase = [
0 1

−10 −10
] , 𝑄

1

= 𝑄
2

= [
1.05 0.05

0.05 0.055
],

𝜆max(𝑄
1

) = 𝜆max(𝑄
2

) = 1.0525, 𝜆min(𝑄
1

) = 𝜆min(𝑄
2

) =

0.0525, 𝜆∗

max = 1.0525, and 𝜆∗

min = 0.0525. From (31), we
obtain the desired tracking controllers

𝑢
1
= −1000𝑥

1
− 100𝑥

2
− 1.935 sin𝑥

1
− 0.025 sin𝑥

3
,

𝑢
2
= −1000𝑥

3
− 100𝑥

4
− 2.425 sin𝑥

3
− 0.025 sin𝑥

2
.

(73)

It can be verified that the relative conditions of Theorem 4
are satisfied with 𝜅 = 0.1, 𝐵1

𝑑
= 𝐵

2

𝑑
= 0, 𝑁

2
= 2.82, 𝑘 =

20√𝜅, and 𝑘
11
= 2.82. Hence the tracking controllers will

steer the output tracking errors of the closed-loop system,
starting from any initial value to be asymptotically attenuated
to zero by virtue of Theorem 4. The complete trajectories of
the outputs are depicted in Figures 2 and 3.

4. Conclusion

In this paper, we propose a novel control design which
globally solves the almost disturbance decoupling problem
for multiinput multioutput nonlinear time delay large-scale
system via the fuzzy feedback linearization approach. The
investigation of feedback linearization of nonlinear time-
delay large-scale control systems by diffeomorphismhas been
proposed. Moreover, a practical industrial system of two
inverted pendulums coupled by a spring demonstrates the
applicability of the proposed feedback linearization method.
Simulation results exploit the fact that the proposed method-
ology is successfully utilized to solve the feedback lineariza-
tion problem and achieve the desired almost disturbance
decoupling performance of the overall system.
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Figure 3: The output angular position 𝑥
3
(𝜃

2
) of the two inverted

pendulums.
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