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We investigate the following typical form of a certain class of quadratic functional equations: 𝑓(𝑎𝑥 + 𝑏𝑦) + 𝑓(𝑎𝑥 − 𝑏𝑦) + 𝑐[𝑓(𝑥 +
𝑦) + 𝑓(𝑥 − 𝑦) − 2𝑓(𝑥) − 2𝑓(𝑦)] = 2𝑎2𝑓(𝑥) + 2𝑏2𝑓(𝑦). Furthermore, we provide a systematic program to prove the generalized
Hyers-Ulam stability for the class of functional equations via the stability for the typical form.

1. Introduction

In 1964, Ulam [1] proposed the following stability problem:

“let 𝐺
1
be a group and 𝐺

2
a metric group with the

metric 𝑑. Given a constant 𝛿 > 0, does there exist
a constant 𝑐 > 0 such that if a mapping 𝑓 : 𝐺

1
→

𝐺
2
satisfies 𝑑(𝑓(𝑥𝑦), 𝑓(𝑥)𝑓(𝑦)) < 𝑐 for all 𝑥, 𝑦 ∈

𝐺
1
, then there exists a unique homomorphism ℎ :

𝐺
1
→ 𝐺
2
with 𝑑(𝑓(𝑥), ℎ(𝑥)) < 𝛿 for all𝑥 ∈ 𝐺

1
?”

In 1941, Hyers [2] answered this problem under the
assumption that the groups are Banach spaces. Aoki [3]
and Rassias [4] generalized the result of Hyers. Rassias [4]
solved the generalized Hyers-Ulam stability of the functional
inequality

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)
 ≤ 𝜖 (‖𝑥‖

𝑝 +
𝑦

𝑝

) (1)

for some 𝜖 ≥ 0 and 𝑝 with 𝑝 < 1 and for all 𝑥, 𝑦 ∈ 𝑋,
where 𝑓 : 𝑋 → 𝑌 is a function between Banach spaces.
The paper of Rassias [4] has provided a lot of influence in
the development of what we call the generalized Hyers-Ulam
stability or the Hyers-Ulam-Rassias stability of functional
equations. A generalization of the Rassias theorem was
obtained by Găvruţa [5] by replacing the unbounded Cauchy

difference by a general control function in the spirit of Rassias
approach.

The functional equation

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) + 2𝑓 (𝑦) (2)

is called a quadratic functional equation and a solution of
a quadratic functional equation is called quadratic. A gen-
eralized Hyers-Ulam stability problem for the quadratic
functional equation was proved by Skof [6] for mappings
𝑓 : 𝑋 → 𝑌, where 𝑋 is a normed space and 𝑌 is a Banach
space. Cholewa [7] noticed that the theorem of Skof is still
true if the relevant domain𝑋 is replaced by an Abelian group.
Czerwik [8] proved the generalized Hyers-Ulam stability for
the quadratic functional equation, and Park [9] proved the
generalized Hyers-Ulam stability of the quadratic functional
equation in Banach modules over a 𝐶∗-algebra. Also, the
stability problems of functional equations related to quadratic
functions can be found in many papers (e.g., [10, 11], etc.).

Rassias [12] investigated the following Euler-Lagrange
functional equation:

𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑏𝑥 − 𝑎𝑦) = 2 (𝑎2 + 𝑏2) [𝑓 (𝑥) + 𝑓 (𝑦)] ,

(3)
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and Gordji and Khodaei [13] investigated other Euler-
Lagrange functional equations

𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑎𝑥 − 𝑏𝑦)

=
𝑏 (𝑎 + 𝑏)

2
𝑓 (𝑥 + 𝑦) +

𝑏 (𝑎 + 𝑏)

2
𝑓 (𝑥 − 𝑦)

+ (2𝑎2 − 𝑎𝑏 − 𝑏2) 𝑓 (𝑥) + (𝑏
2 − 𝑎𝑏) 𝑓 (𝑦)

(4)

for fixed integers 𝑎, 𝑏 with 𝑏 ̸= 𝑎, −𝑎, −3𝑎, and

𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑎𝑥 − 𝑏𝑦) = 2𝑎2𝑓 (𝑥) + 2𝑏
2𝑓 (𝑦) (5)

for fixed integers 𝑎, 𝑏 with 𝑎2 ̸= 𝑏2 and 𝑎𝑏 ̸= 0.
In this paper, we consider the sumof two functional equa-

tions (2) and (5), that is,
𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑎𝑥 − 𝑏𝑦)

+ 𝑐 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)]

= 2𝑎2𝑓 (𝑥) + 2𝑏
2𝑓 (𝑦)

(6)

for fixed nonzero real numbers 𝑎, 𝑏, 𝑐 with 𝑎 ̸= 1, −1 and
𝑎2 ̸= 𝑏2, and prove the generalized Hyers-Ulam stability for it.

As applications of theorems in Sections 2 and 3, we have
a systematic program to prove the generalized Hyers-Ulam
stability for functional inequalities which can be deformed
into the following functional inequality:
𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑎𝑥 − 𝑏𝑦) − 2𝑎

2𝑓 (𝑥) − 2𝑏
2𝑓 (𝑦)

+𝑐 [𝑓 (𝑥 + 𝑦)+𝑓 (𝑥 − 𝑦)−2𝑓 (𝑥)−2𝑓 (𝑦)]
 ≤ 𝜙 (𝑥, 𝑦) .

(7)

Throughout this paper, assume that 𝑋 is a normed space
and 𝑌 is a Banach space.

2. Solutions of (6)
In this section, we investigate solutions of (6). In Corollary 5,
it can be concluded that any solution of (6) is quadratic if 𝑎 is
a rational number. We start with the following lemma.

Lemma 1. Let 𝑓 : 𝑋 → 𝑌 be a mapping with 𝑓(0) = 0.
Suppose that 𝑓 satisfies (6); then the following equation holds:

(𝑐 +
𝑐2

𝑎2
) [𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦)]

− 2(𝑏2 + 2𝑐 +
𝑐2

𝑎2
) [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)]

+ (4𝑏2 + 5𝑐 +
𝑏2𝑐

𝑎2
+
2𝑐2

𝑎2
)𝑓 (𝑦)

+ (𝑐 −
𝑏2𝑐

𝑎2
)𝑓 (−𝑦) + 4(𝑏2 + 2𝑐 +

𝑐2

𝑎2
)𝑓 (𝑥)

− 2(𝑐 +
𝑐2

𝑎2
)𝑓 (2𝑥) = 0

(8)

for all 𝑥, 𝑦 ∈ 𝑋.

Proof. Letting 𝑦 = 0 in (6), we have

𝑓 (𝑎𝑥) = 𝑎
2𝑓 (𝑥) (9)

for all 𝑥 ∈ 𝑋. Setting 𝑥 = 0 and 𝑦 = 𝑥 in (6), we have

𝑓 (𝑏𝑥) + 𝑓 (−𝑏𝑥) + 𝑐 [𝑓 (−𝑥) − 𝑓 (𝑥)] = 2𝑏
2𝑓 (𝑥) (10)

for all 𝑥 ∈ 𝑋. Letting 𝑥 = −𝑥 in (10) and adding the two
equations, we have

𝑓 (𝑏𝑥) + 𝑓 (−𝑏𝑥) = 𝑏
2 [𝑓 (𝑥) + 𝑓 (−𝑥)] (11)

for all 𝑥 ∈ 𝑋.
Replacing 𝑦 by 𝑥 + 𝑦 in (6), we have

𝑓 (𝑎𝑥 + 𝑏 (𝑥 + 𝑦)) + 𝑓 (𝑎𝑥 − 𝑏 (𝑥 + 𝑦))

+ 𝑐 [𝑓 (2𝑥 + 𝑦) + 𝑓 (−𝑦)]

= 2 (𝑎2 + 𝑐) 𝑓 (𝑥) + 2 (𝑏
2 + 𝑐) 𝑓 (𝑥 + 𝑦)

(12)

for all 𝑥, 𝑦 ∈ 𝑋, and letting 𝑦 = −𝑦 in (12), we have

𝑓 (𝑎𝑥 + 𝑏 (𝑥 − 𝑦)) + 𝑓 (𝑎𝑥 − 𝑏 (𝑥 − 𝑦))

+ 𝑐 [𝑓 (2𝑥 − 𝑦) + 𝑓 (𝑦)]

= 2 (𝑎2 + 𝑐) 𝑓 (𝑥) + 2 (𝑏
2 + 𝑐) 𝑓 (𝑥 − 𝑦)

(13)

for all 𝑥, 𝑦 ∈ 𝑋.
Replacing 𝑥 and 𝑦 by 𝑥+(𝑏/𝑎)𝑦 and 𝑥 in (6), respectively,

we have
𝑓 (𝑎𝑥 + 𝑏 (𝑥 + 𝑦)) + 𝑓 (𝑎𝑥 − 𝑏 (𝑥 − 𝑦))

+ 𝑐 [𝑓(2𝑥 +
𝑏

𝑎
𝑦) + 𝑓(

𝑏

𝑎
𝑦)]

= 2 (𝑎2 + 𝑐) 𝑓(𝑥 +
𝑏

𝑎
𝑦) + 2 (𝑏2 + 𝑐) 𝑓 (𝑥)

(14)

for all 𝑥, 𝑦 ∈ 𝑋, and letting 𝑦 = −𝑦 in (14), we have

𝑓 (𝑎𝑥 + 𝑏 (𝑥 − 𝑦)) + 𝑓 (𝑎𝑥 − 𝑏 (𝑥 + 𝑦))

+ 𝑐 [𝑓(2𝑥 −
𝑏

𝑎
𝑦) + 𝑓(−

𝑏

𝑎
𝑦)]

= 2 (𝑎2 + 𝑐) 𝑓(𝑥 −
𝑏

𝑎
𝑦) + 2 (𝑏2 + 𝑐) 𝑓 (𝑥)

(15)

for all 𝑥, 𝑦 ∈ 𝑋. By (12), (13), (14), and (15), we have

𝑐 [𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) + 𝑓 (𝑦) + 𝑓 (−𝑦)]

−
𝑏2𝑐

𝑎2
[𝑓 (𝑦) + 𝑓 (−𝑦)]

−
𝑐

𝑎2
[𝑓 (2𝑎𝑥 + 𝑏𝑦) + 𝑓 (2𝑎𝑥 − 𝑏𝑦)]

= 4 (𝑎2 − 𝑏2) 𝑓 (𝑥) + 2 (𝑏
2 + 𝑐) [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)]

− 2 (1 +
𝑐

𝑎2
) [𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑎𝑥 − 𝑏𝑦)]

(16)
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for all 𝑥, 𝑦 ∈ 𝑋. By (6) and (16), we have

𝑐 [𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) + 𝑓 (𝑦) + 𝑓 (−𝑦)]

−
𝑏2𝑐

𝑎2
[𝑓 (𝑦) + 𝑓 (−𝑦)]

+
𝑐2

𝑎2
[𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) − 2𝑓 (2𝑥) − 2𝑓 (𝑦)

−2𝑎2𝑓 (2𝑥) − 2𝑏
2𝑓 (𝑦)]

= 4 (𝑎2 − 𝑏2) 𝑓 (𝑥) + 2 (𝑏
2 + 𝑐) [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)]

+ 2𝑐 (1 +
𝑐

𝑎2
) [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥)

−2𝑓 (𝑦) − 2𝑎2𝑓 (𝑥) − 2𝑏
2𝑓 (𝑦)]

(17)

for all 𝑥, 𝑦 ∈ 𝑋. Now, just simplifying this equation, we can
get the result.

Next three theorems deal with (6) for the different cases.

Theorem 2. Let 𝑓 : 𝑋 → 𝑌 be a mapping with 𝑓(0) = 0.
Suppose that 𝑓 satisfies (6). If 𝑐 ̸= − 𝑏2 and 𝑐2 ̸= 𝑎2𝑏2, then 𝑓 is
quadratic.

Proof. By (10) and (11) in the proof of Lemma 1, we have

(𝑏2 + 𝑐) 𝑓 (𝑥) = (𝑏
2 + 𝑐) 𝑓 (−𝑥) (18)

for all 𝑥 ∈ 𝑋. Since 𝑏2 + 𝑐 ̸= 0, we have

𝑓 (−𝑥) = 𝑓 (𝑥) (19)

for all 𝑥 ∈ 𝑋. By (10) and (19), we have

𝑓 (𝑏𝑥) = 𝑏
2𝑓 (𝑥) (20)

for all 𝑥 ∈ 𝑋. Replacing 𝑥 and 𝑦 by 𝑏𝑥 and 𝑎𝑦 in (6), respec-
tively, by (20), we have

𝑎2𝑏2 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)]

+ 𝑐 [𝑓 (𝑏𝑥 + 𝑎𝑦) + 𝑓 (𝑏𝑥 − 𝑎𝑦) − 2𝑏2𝑓 (𝑥) − 2𝑎
2𝑓 (𝑦)]

= 2𝑎2𝑏2 [𝑓 (𝑥) + 𝑓 (𝑦)]

(21)

for all 𝑥, 𝑦 ∈ 𝑋. Replacing 𝑥 and 𝑦 by 𝑦 and 𝑥 in (6), respec-
tively, by (19), we have

𝑓 (𝑏𝑥 + 𝑎𝑦) + 𝑓 (𝑏𝑥 − 𝑎𝑦)

+ 𝑐 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)]

= 2𝑎2𝑓 (𝑦) + 2𝑏2𝑓 (𝑥)

(22)

for all 𝑥, 𝑦 ∈ 𝑋. By (21) and (22), we have

(𝑎2𝑏2 − 𝑐2) [𝑓 (𝑥 − 𝑦) + 𝑓 (𝑥 + 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)] = 0

(23)

for all 𝑥, 𝑦 ∈ 𝑋. Since 𝑎2𝑏2 − 𝑐2 ̸= 0, then

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) + 2𝑓 (𝑦) (24)

for all 𝑥, 𝑦 ∈ 𝑋. Hence, 𝑓 is quadratic.

Theorem 3. Let 𝑓 : 𝑋 → 𝑌 be a mapping with 𝑓(0) = 0.
Suppose that 𝑓 satisfies (6) and 𝑎 is a rational number. If 𝑐2 =
𝑎2𝑏2, then 𝑓 is quadratic.

Proof. Since 𝑏2 + 𝑐 = 𝑏(𝑏 ± 𝑎) ̸= 0, by the first few lines in
the proof ofTheorem 2, 𝑓 is even. Hence, in this case, we can
easily check that (8) can be reduced to

𝑏 (𝑏 ± 𝑎) [𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦)]

= 𝑏 (𝑏 ± 𝑎) [4𝑓 (𝑥 + 𝑦) + 4𝑓 (𝑥 − 𝑦) − 6𝑓 (𝑦)

+8𝑓 (𝑥) − 2𝑓 (2𝑥)]

(25)

for all 𝑥, 𝑦 ∈ 𝑋. Since 𝑏(𝑏 ± 𝑎) ̸= 0, we have

𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) = 4𝑓 (𝑥 + 𝑦) + 4𝑓 (𝑥 − 𝑦) − 6𝑓 (𝑦)

+ 8𝑓 (𝑥) − 2𝑓 (2𝑥)

(26)

for all𝑥, 𝑦 ∈ 𝑋. By [14], a function𝑓 satisfying (26) is quartic-
quadratic. But in our case, 𝑓 also satisfies (26) and since
𝑓(𝑎𝑥) = 𝑎2𝑓(𝑥), 𝑓 is quadratic.

Theorem 4. Let 𝑓 : 𝑋 → 𝑌 be a mapping with 𝑓(0) = 0.
Suppose that 𝑓 satisfies (6) and 𝑎 is a rational number. If 𝑐 =
−𝑏2, then 𝑓 is quadratic.

Proof. Suppose that 𝑐 = −𝑏2. By (8), we have

𝑏2

𝑎2
(𝑏2 − 𝑎2) [𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦)]

=
𝑏2

𝑎2
(𝑏2 − 𝑎2) [2𝑓 (𝑥 + 𝑦) + 2𝑓 (𝑥 − 𝑦) − 4𝑓 (𝑥)

+2𝑓 (2𝑥) − 𝑓 (𝑦) − 𝑓 (−𝑦)]

(27)

for all 𝑥, 𝑦 ∈ 𝑋. By [15], 𝑓 is quadratic-cubic and since
𝑓(𝑎𝑥) = 𝑎2𝑓(𝑥), 𝑓 is quadratic.

CombiningTheorems 2, 3, and 4 we can get the following
corollary as the conclusion of this section.

Corollary 5. Let 𝑓 : 𝑋 → 𝑌 be a mapping with 𝑓(0) = 0.
Suppose that 𝑓 satisfies (6) and 𝑎 is a rational number. Then 𝑓
is quadratic.
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3. The Generalized Hyers-Ulam
Stability for (6)

In this section, we will prove the generalized Hyers-Ulam
stability for (6).

Theorem 6. Let 𝜙 : 𝑋2 → [0,∞) be a function such that

∞

∑
𝑛=0

𝑎−2𝑛𝜙 (𝑎𝑛𝑥, 𝑎𝑛𝑦) < ∞ (28)

for all 𝑥, 𝑦 ∈ 𝑋. Let 𝑓 : 𝑋 → 𝑌 be a mapping such that
𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑎𝑥 − 𝑏𝑦) − 2𝑎

2𝑓 (𝑥) − 2𝑏
2𝑓 (𝑦)

+𝑐 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)]


≤ 𝜙 (𝑥, 𝑦)

(29)

for a fixed rational number 𝑎 and fixed nonzero real numbers
𝑏, 𝑐 with 𝑎 ̸= 1, 0 − 1 and 𝑎2 ̸= 𝑏2. Then there exists a unique
quadratic mapping 𝑄 : 𝑋 → 𝑌 satisfying (6) and

𝑄 (𝑥) − 𝑓 (𝑥) − 𝑓 (0)


≤
1

2

∞

∑
𝑛=0

𝑎−2(𝑛+1) [𝜙 (𝑎𝑛𝑥, 0) + 𝜙 (0, 0)]
(30)

for all 𝑥 ∈ 𝑋.

Proof. Let 𝑔(𝑥) = 𝑓(𝑥) − 𝑓(0). Then 𝑔(0) = 0 and
𝑔 (𝑎𝑥 + 𝑏𝑦) + 𝑔 (𝑎𝑥 − 𝑏𝑦) − 2𝑎

2𝑔 (𝑥) − 2𝑏
2𝑔 (𝑦)

+ 𝑐 [𝑔 (𝑥 + 𝑦) + 𝑔 (𝑥 − 𝑦) − 2𝑔 (𝑥) − 2𝑔 (𝑦)]


≤ 𝜙 (𝑥, 𝑦) + 𝜙 (0, 0)

(31)

for all 𝑥, 𝑦 ∈ 𝑋. Setting 𝑦 = 0 in (31), we have

𝑎
2𝑔 (𝑥) − 𝑔 (𝑎𝑥)

 ≤
1

2
𝜙
0
(𝑥, 0) (32)

for all 𝑥 ∈ 𝑋, where 𝜙
0
(𝑥, 𝑦) = 𝜙(𝑥, 𝑦) + 𝜙(0, 0). Replacing 𝑥

by 𝑎𝑛𝑥 in (32) and dividing (32) by 𝑎2(𝑛+1), we have

𝑎
−2𝑛𝑔 (𝑎𝑛𝑥) − 𝑎−2(𝑛+1)𝑔 (𝑎𝑛+1𝑥)

 ≤
1

2
𝑎−2(𝑛+1)𝜙

0
(𝑎𝑛𝑥, 0)

(33)

for all𝑥 ∈ 𝑋 and all nonnegative integers 𝑛. For𝑚, 𝑛 ∈ N ∪{0}
with𝑚 < 𝑛,

𝑎
−2𝑚𝑔 (𝑎𝑚𝑥) − 𝑎−2𝑛𝑔 (𝑎𝑛𝑥)

 ≤
1

2

𝑛−1

∑
𝑘=𝑚

𝑎−2(𝑘+1)𝜙
0
(𝑎𝑘𝑥, 0)

=
1

2𝑎2

𝑛−1

∑
𝑘=𝑚

𝑎−2𝑘𝜙
0
(𝑎𝑘𝑥, 0)

(34)

for all 𝑥 ∈ 𝑋. Since (28) holds for 𝑦 = 0, ∑𝑛−1
𝑘=𝑚

𝑎−2𝑘𝜙
0
(𝑎𝑘𝑥, 0)

goes to 0 as 𝑚 → ∞. So {𝑎−2𝑛𝑔(𝑎𝑛𝑥)} is a Cauchy sequence
in 𝑌, and since 𝑌 is a Banach space, there exists a mapping
𝑄 : 𝑋 → 𝑌 such that

𝑄 (𝑥) = lim
𝑛→∞

𝑎−2𝑛𝑔 (𝑎𝑛𝑥) (35)

for all 𝑥 ∈ 𝑋 and

𝑄 (𝑥) − 𝑔 (𝑥)
 ≤

1

2

∞

∑
𝑛=0

𝑎−2(𝑛+1)𝜙
0
(𝑎𝑛𝑥, 0) (36)

for all 𝑥 ∈ 𝑋. Replacing 𝑥 and 𝑦 by 𝑎𝑛𝑥 and 𝑎𝑛𝑦 in (31), re-
spectively, and dividing (31) by 𝑎2𝑛, we have

𝑎
−2𝑛𝑔 (𝑎𝑛 (𝑎𝑥 + 𝑏𝑦)) + 𝑎−2𝑛𝑔 (𝑎𝑛 (𝑎𝑥 − 𝑏𝑦))

− 𝑐 [𝑎−2𝑛𝑔 (𝑎𝑛 (𝑥 + 𝑦)) + 𝑎−2𝑛𝑔 (𝑎𝑛 (𝑥 − 𝑦))

−2 ⋅ 𝑎−2𝑛𝑔 (𝑎𝑛𝑥) − 2 ⋅ 𝑎−2𝑛𝑔 (𝑎𝑛𝑦)]

− 2 ⋅ 𝑎2 ⋅ 𝑎−2𝑛𝑔 (𝑎𝑛𝑥) −2 ⋅ 𝑏2 ⋅ 𝑎−2𝑛𝑔 (𝑎𝑛𝑦)


≤ 𝑎−2𝑛𝜙
0
(𝑎𝑛𝑥, 𝑎𝑛𝑦)

(37)

for all𝑥, 𝑦 ∈ 𝑋 and letting 𝑛 → ∞ in the above inequality, we
can show that 𝑄 satisfies (6). By Corollary 5, 𝑄 is quadratic.

Now, we show the uniqueness of the quadratic mapping
𝑄. Suppose that 𝑄

0
is a quadratic mapping satisfying (6) and

(30). Then we have
𝑄 (𝑥) − 𝑄0 (𝑥)

 = 𝑎
−2𝑘 𝑄 (𝑎

𝑘𝑥) − 𝑄
0
(𝑎𝑘𝑥)



≤ 𝑎−2𝑘
𝑄 (𝑎

𝑘𝑥) − 𝑔 (𝑎𝑘𝑥)


+ 𝑎−2𝑘
𝑄0 (𝑎

𝑘𝑥) − 𝑔 (𝑎𝑘𝑥)


≤ 𝑎−2𝑘
∞

∑
𝑛=0

𝑎−2(𝑛+1)𝜙
0
(𝑎𝑛+𝑘𝑥, 0)

= 𝑎−2
∞

∑
𝑛=0

𝑎−2(𝑛+𝑘)𝜙
0
(𝑎𝑛+𝑘𝑥, 0)

(38)

for all 𝑥 ∈ 𝑋 and for all positive integers 𝑘. Hence, letting
𝑘 → ∞ in the above inequality by (28) the tail part
∑
∞

𝑛=0
𝑎−2(𝑛+𝑘)𝜙

0
(𝑎𝑛+𝑘𝑥, 0) = ∑

∞

𝑛=𝑘
𝑎−2𝑛𝜙
0
(𝑎𝑛𝑥, 0) goes to 0. So

we have

𝑄 (𝑥) = 𝑄
0
(𝑥) (39)

for all 𝑥 ∈ 𝑋.

We remark that if 𝑓(0) = 0 in Theorem 6, inequality (30)
can be replaced by

𝑄 (𝑥) − 𝑓 (𝑥)
 ≤

1

2

∞

∑
𝑛=0

𝑎−2(𝑛+1)𝜙 (𝑎𝑛𝑥, 0) . (40)

Related with Theorem 6, we can also have the following
theorem. And the proof is similar to that of Theorem 6.
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Theorem 7. Let 𝜙 : 𝑋2 → [0,∞) be a function such that
∞

∑
𝑛=0

𝑎2𝑛𝜙 (𝑎−𝑛𝑥, 𝑎−𝑛𝑦) < ∞ (41)

for all 𝑥, 𝑦 ∈ 𝑋. Let 𝑓 : 𝑋 → 𝑌 be a mapping such that
𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑎𝑥 − 𝑏𝑦) − 2𝑎

2𝑓 (𝑥) − 2𝑏
2𝑓 (𝑦)

+𝑐 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)]


≤ 𝜙 (𝑥, 𝑦)

(42)

for a fixed rational number 𝑎 and fixed nonzero real numbers
𝑏, 𝑐 with 𝑎 ̸= 1, 0 − 1 and 𝑎2 ̸= 𝑏2. Then there exists a unique
quadratic mapping 𝑄 : 𝑋 → 𝑌 such that

𝑄 (𝑥) − 𝑓 (𝑥) − 𝑓 (0)
 ≤

1

2

∞

∑
𝑛=0

𝑎2(𝑛+1) [𝜙 (𝑎−𝑛𝑥, 0) + 𝜙 (0, 0)]

(43)

for all 𝑥 ∈ 𝑋.

For the stability problem of quadratic functional equa-
tions, we can show that many quadratic functional equations
turn out to be types of (6) or to be deformed into the type
of (6). For example, Gordji and Khodaei [13] investigated the
following functional equation:

𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑎𝑥 − 𝑏𝑦)

=
𝑏 (𝑎 + 𝑏)

2
𝑓 (𝑥 + 𝑦) +

𝑏 (𝑎 + 𝑏)

2
𝑓 (𝑥 − 𝑦)

+ (2𝑎2 − 𝑎𝑏 − 𝑏2) 𝑓 (𝑥) + (𝑏
2 − 𝑎𝑏) 𝑓 (𝑦) ,

(44)

𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑎𝑥 − 𝑏𝑦) = 2𝑎2𝑓 (𝑥) + 𝑏
2𝑓 (𝑦) . (45)

Indeed, the functional equation (44) can be written as

𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑎𝑥 − 𝑏𝑦)

+ 𝑐 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)]

= 2𝑎2𝑓 (𝑥) + 2𝑏
2𝑓 (𝑦) ,

(46)

where 𝑐 = −𝑏(𝑎 + 𝑏)/2. Hence the functional equations (44)
and (45) are special cases of the functional equation (6).

As another example, Jun et al. [16] investigated the follow-
ing functional equation:

𝑓 (𝑎𝑥 + 𝑦) + 𝑎𝑓 (𝑥 − 𝑦) = (𝑎 + 1) 𝑓 (𝑦) + 𝑎 (𝑎 + 1) 𝑓 (𝑥) ,
(47)

where 𝑎 is an integer with 𝑎 ̸= − 1, 0. Suppose that 𝑓
satisfies (47).Then clearly,𝑓 is even, and hence the functional
equation (47) can be deformed into

𝑓 (𝑎𝑥 + 𝑦) + 𝑓 (𝑎𝑥 − 𝑦)

+ 𝑎 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)]

= 2𝑎2𝑓 (𝑥) + 2𝑓 (𝑦)

(48)

for all 𝑥, 𝑦 ∈ 𝑋. That is, we can transform (47) into the type
of (6).

As an example of𝜙(𝑥, 𝑦) inTheorems 6 and 7, we can take
𝜙(𝑥, 𝑦) = 𝜖(‖𝑥‖𝑝‖𝑦‖𝑝+‖𝑥‖2𝑝+‖𝑦‖2𝑝)which appeared in [17].
Then we can formulate the following corollary.

Corollary 8. Let 𝑝 be a real number with 𝑝 ̸= 1. Let 𝑓 : 𝑋 →
𝑌 be a mapping such that
𝑓 (𝑎𝑥 + 𝑏𝑦) + 𝑓 (𝑎𝑥 − 𝑏𝑦) − 2𝑎

2𝑓 (𝑥)

− 2𝑏2𝑓 (𝑦) + 𝑐 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) −2𝑓 (𝑦)]


≤ 𝜖 (‖𝑥‖
𝑝𝑦


𝑝

+ ‖𝑥‖
2𝑝 +

𝑦

2𝑝

)

(49)

for a fixed rational number 𝑎 and fixed nonzero real numbers
𝑏, 𝑐 with 𝑎 ̸= 1, 0, −1 and 𝑎2 ̸= 𝑏2. Then there exists a unique
quadratic mapping 𝑄 : 𝑋 → 𝑌 such that

𝑄 (𝑥) − 𝑓 (𝑥) − 𝑓 (0)
 ≤

𝜖‖𝑥‖2𝑝

2 [1 − 𝑎2(1−𝑝)]

(𝑝 > 1, |𝑎| > 1, 𝑜𝑟 𝑝 < 1, |𝑎| < 1) ,

𝑄 (𝑥) − 𝑓 (𝑥) − 𝑓 (0)
 ≤

𝜖‖𝑥‖2𝑝

2 [1 − 𝑎2(𝑝−1)]

(𝑝 < 1, |𝑎| < 1, 𝑜𝑟 𝑝 > 1, |𝑎| > 1)

(50)

for all 𝑥 ∈ 𝑋.

We remark that the functional equation (6) is not stable
for 𝑝 = 1 in Corollary 8. The following example, which is a
special case of the example in [18], shows that (6) is not stable
for 𝑝 = 1 especially in the case of 𝑎 = 2, 𝑏 = 1, and 𝑐 = −1.
We give a proof for the reader’s convenience.

Example 9. Let 𝑡 : R → R be a mapping defined by

𝑡 (𝑥) = {
𝑥2, if |𝑥| < 1,
1, otherwise,

(51)

and define a mapping 𝑓 : R → R by

𝑓 (𝑥) =
∞

∑
𝑛=0

𝑡 (2𝑛𝑥)

4𝑛
. (52)

We will show that 𝑓 satisfies the functional inequality
𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) − 8𝑓 (𝑥) − 2𝑓 (𝑦)

− [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)]


≤
640

3
(|𝑥|

𝑦
 + |𝑥|

2 +
𝑦

2

)

(53)

for all 𝑥, 𝑦 ∈ R, but there do not exist a quadratic mapping
𝑄 : R → R and a positive constant𝐾 such that

𝑄 (𝑥) − 𝑓 (𝑥)
 ≤ 𝐾‖𝑥‖

2 (54)

for all 𝑥 ∈ R.



6 Abstract and Applied Analysis

Note that |𝑓(𝑥)| ≤ 4/3 for all 𝑥 ∈ R. For any mapping
𝑔 : R → R, let

𝐷𝑔 (𝑥, 𝑦) = 𝑔 (2𝑥 + 𝑦) + 𝑔 (2𝑥 − 𝑦) − 8𝑔 (𝑥)

− 2𝑔 (𝑦) − [𝑔 (𝑥 + 𝑦) + 𝑔 (𝑥 − 𝑦)

−2𝑔 (𝑥) − 2𝑔 (𝑦)]

(55)

for all 𝑥, 𝑦 ∈ R.
First, suppose that 1/16 ≤ |𝑥||𝑦| + |𝑥|2 + |𝑦|2. Then

|𝐷𝑓(𝑥, 𝑦)| ≤ (640/3)(|𝑥||𝑦| + |𝑥|2 + |𝑦|2) for all 𝑥, 𝑦 ∈ R.
Now suppose that 1/16 > |𝑥||𝑦| + |𝑥|2 + |𝑦|2. Then there

is a positive integer𝑚 such that

1

22𝑚+3
≤ |𝑥|

𝑦
 + |𝑥|

2 +
𝑦

2

<
1

22𝑚+2
, (56)

and so

2𝑚 |𝑥| <
1

2
, 2𝑚

𝑦
 <

1

2
. (57)

Hence, we have

{2𝑚−1 (2𝑥 ± 𝑦) , 2𝑚−1 (𝑥 ± 𝑦) , 2𝑚−1𝑥, 2𝑚−1𝑦}

⊆ (−1, 1) .
(58)

Hence for any 𝑛 = 0, 1, 2, . . . , 𝑚 − 1,

𝐷𝑡 (2𝑛𝑥, 2𝑛𝑦) = 0, (59)

and so

𝐷𝑓 (𝑥, 𝑦) ≤
∞

∑
𝑛=0

1

4𝑛
𝐷𝑡 (2𝑛𝑥, 2𝑛𝑦)

=
∞

∑
𝑛=𝑚

1

4𝑛
𝐷𝑡 (2𝑛𝑥, 2𝑛𝑦)

≤
40

3 × 22𝑚
≤
320

3
(|𝑥|

𝑦
 + |𝑥|

2 +
𝑦

2

) .

(60)

Thus 𝑓 satisfies (53).
Suppose that there exist a quadraticmapping𝑄 : R → R

and a positive constant𝐾 with (54). Since |𝑓(𝑥)| ≤ 4/3,

−𝐾𝑥2 −
4

3
≤ 𝑄 (𝑥) ≤ 𝐾𝑥

2 +
4

3
(61)

for all 𝑥 ∈ R, and since 𝑄 is quadratic,

−𝐾𝑥2 −
4

3𝑛2
≤ 𝑄 (𝑥) ≤ 𝐾𝑥

2 +
4

3𝑛2
(62)

for all 𝑥 ∈ R and all natural numbers 𝑛. Hence, we have

|𝑄 (𝑥)| ≤ 𝐾𝑥
2 (63)

for all 𝑥 ∈ R, and so, by (54), we have

𝑓 (𝑥)
 ≤ 2𝐾𝑥

2 (64)

for all 𝑥 ∈ R.

Take a positive integer 𝑙 such that 𝑙 > 2𝐾, and pick 𝑥 ∈ R

with 2𝑙−1|𝑥| < 1. Then

𝑓 (𝑥) =
∞

∑
𝑛=0

𝑡 (2𝑛𝑥)

4𝑛
>
𝑙−1

∑
𝑛=0

𝑡 (2𝑛𝑥)

4𝑛
=
𝑙−1

∑
𝑛=0

𝑥2 = 𝑙𝑥2 > 2𝐾𝑥2,

(65)

which contradicts (64).

4. Deforming Inequalities into the Type of (29)
It turns out that lots of functional inequalities can be
deformed into inequality (29). So we can regard inequality
(29) as a typical form of a certain class of functional inequal-
ities. In this point of view, we have a following systematic
program to prove the generalized Hyers-Ulam stability of
certain functional inequalities.

Step 1. Deform a given inequality into the type of (29) and
get a modified bound function.

Step 2. Apply Theorem 6 for the modified bound function.

It should be remarked that if a functional inequality can
be deformed into the type of (29), then a solution of the
original functional equation is quadratic. And, it can be easily
checked that the resulting unique quadratic mapping 𝑄 in
Step 2 also satisfies the original functional equation. So we
don’t need to worry anything about the given functional
equation in our program. In this section, we illustrate just two
of them.

First, we consider the following functional equation:

𝑓 (𝑎𝑥 + 𝑦) + (𝑎 − 1) 𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥 + 𝑦)

= (𝑎 + 2) (𝑎 − 1) 𝑓 (𝑥) + (𝑎 − 1) 𝑓 (𝑦)
(66)

for some rational number 𝑎 with 𝑎 ̸= 1, −1, 0.

Theorem 10. Let 𝜙 : 𝑋2 → [0,∞) be a function with (28).
Let 𝑓 : 𝑋 → 𝑌 be a mapping satisfying 𝑓(0) = 0 and

𝑓 (𝑎𝑥 + 𝑦) + (𝑎 − 1) 𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥 + 𝑦)

− (𝑎 + 2) (𝑎 − 1) 𝑓 (𝑥) − (𝑎 − 1) 𝑓 (𝑦)
 ≤ 𝜙 (𝑥, 𝑦)

(67)

for some rational number 𝑎 with 𝑎 ̸= 1, −1, 0. Then there exists
a unique quadratic mapping 𝑄 : 𝑋 → 𝑌 such that 𝑄 satisfies
(66) and

𝑄 (𝑥) − 𝑓 (𝑥)
 ≤
∞

∑
𝑛=0

𝑎−2(𝑛+1) [𝜙 (𝑎𝑛𝑥, 0) +
1

2
𝜙 (0, 0)]

(68)

for all 𝑥 ∈ 𝑋.

Proof. Setting 𝑦 = −𝑦 in (67), we have
𝑓 (𝑎𝑥 − 𝑦) + (𝑎 − 1) 𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥 − 𝑦)

− (𝑎 + 2) (𝑎 − 1) 𝑓 (𝑥) − (𝑎 − 1) 𝑓 (−𝑦)
 ≤ 𝜙 (𝑥, −𝑦) ,

(69)
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and by (67) and (69), we have
𝑓 (𝑎𝑥 + 𝑦) + 𝑓 (𝑎𝑥 − 𝑦) − 2𝑎

2𝑓 (𝑥) − 2𝑓 (𝑦)

+ (𝑎 − 2) [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)]

+ (𝑎 − 1) [𝑓 (𝑦) − 𝑓 (−𝑦)]


≤ 𝜙 (𝑥, 𝑦) + 𝜙 (𝑥, −𝑦)

(70)

for all 𝑥, 𝑦 ∈ 𝑋. Letting 𝑥 = 0 in (67), we have
(𝑎 − 1) [𝑓 (𝑦) − 𝑓 (−𝑦)]

 ≤ 𝜙 (0, 𝑦) (71)

for all 𝑦 ∈ 𝑋. Hence, by (70) and (71), we have
𝑓 (𝑎𝑥 + 𝑦) + 𝑓 (𝑎𝑥 − 𝑦) − 2𝑎

2𝑓 (𝑥) − 2𝑓 (𝑦)

+ (𝑎 − 2) [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)]


≤ Φ (𝑥, 𝑦)

(72)

for all 𝑥, 𝑦 ∈ 𝑋, whereΦ(𝑥, 𝑦) = 𝜙(𝑥, 𝑦) + 𝜙(𝑥, −𝑦) + 𝜙(0, 𝑦).
So byTheorem 6, we get the result.

Remark 11. It would be interesting to see how Theorem 10
works well for a simple case of 𝜙. Take 𝜙(𝑥, 𝑦) = 𝜖 > 0. Then
the original inequality inTheorem 10 is

𝑓 (𝑎𝑥 + 𝑦) + (𝑎 − 1) 𝑓 (𝑥 − 𝑦) − 𝑓 (𝑥 + 𝑦)

− (𝑎 + 2) (𝑎 − 1) 𝑓 (𝑥) − (𝑎 − 1) 𝑓 (𝑦)
 ≤ 𝜖.

(73)

After the deforming process, inequality (73) turns into the
following new inequality which is standard in our sense:
𝑓 (𝑎𝑥 + 𝑦) + 𝑓 (𝑎𝑥 − 𝑦) − 2𝑎

2𝑓 (𝑥) − 2𝑓 (𝑦)

+ (𝑎 − 2) [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)]


≤ 3𝜖.

(74)

With 𝑓(0) = 0, apply Theorem 6 or Theorem 7 (𝜙(𝑥, 𝑦) = 3𝜖
in the theorems) to inequality (74); we get the following con-
clusion.

There exists a unique quadratic mapping 𝑄 : 𝑋 → 𝑌
such that 𝑄 satisfies (66) and

𝑄 (𝑥) − 𝑓 (𝑥)
 ≤

3𝜖

2
𝑎
2 − 1


. (75)

Now, we consider the following functional equation:

𝑓 (3𝑥 + 2𝑦) + 2𝑓 (3𝑥 − 2𝑦) − 6𝑓 (𝑥 − 𝑦)

= 21𝑓 (𝑥) + 6𝑓 (𝑦) .
(76)

Theorem 12. Let 𝜙 : 𝑋2 → [0,∞) be a function with (28) for
𝑎 = 3. Let 𝑓 : 𝑋 → 𝑌 be a mapping satisfying 𝑓(0) = 0 and

𝑓 (3𝑥 + 2𝑦) + 2𝑓 (3𝑥 − 2𝑦) − 6𝑓 (𝑥 − 𝑦)

−21𝑓 (𝑥) − 6𝑓 (𝑦)
 ≤ 𝜙 (𝑥, 𝑦) .

(77)

Then there exists a unique quadratic mapping 𝑄 : 𝑋 → 𝑌
such that 𝑄 satisfies (76) and

𝑄 (𝑥) − 𝑓 (𝑥)
 ≤

1

3

∞

∑
𝑛=0

3−2(𝑛+1) [𝜙 (3𝑛𝑥, 0) + 6𝜙 (0, 0)]

(78)

for all 𝑥 ∈ 𝑋.

Proof. Setting 𝑥 = 0 in (77), we have
𝑓 (2𝑦) + 2𝑓 (−2𝑦) − 6 [𝑓 (𝑦) + 𝑓 (−𝑦)]

 ≤ 𝜙 (0, 𝑦)
(79)

for all 𝑦 ∈ 𝑋. Letting 𝑦 = −𝑦 in (79), we have
2𝑓 (2𝑦) + 𝑓 (−2𝑦) − 6 [𝑓 (𝑦) + 6𝑓 (−𝑦)]

 ≤ 𝜙 (0, −𝑦)
(80)

for all 𝑦 ∈ 𝑋. By (79) and (80), we have
𝑓 (2𝑦) − 𝑓 (−2𝑦)

 ≤ 𝜙 (0, 𝑦) + 𝜙 (0, −𝑦) (81)

for all 𝑦 ∈ 𝑋. Hence by (81), we have

𝑓 (𝑦) − 𝑓 (−𝑦)
 ≤ 𝜙 (0,

𝑦

2
) + 𝜙(0,

−𝑦

2
) (82)

for all 𝑦 ∈ 𝑋.
Letting 𝑦 = −𝑦 in (77), we get

𝑓 (3𝑥 − 2𝑦) + 2𝑓 (3𝑥 + 2𝑦) − 6𝑓 (𝑥 + 𝑦)

− 21𝑓 (𝑥) − 6𝑓 (−𝑦)
 ≤ 𝜙 (𝑥, −𝑦) ,

(83)

and by (77) and (83), we have
3 [𝑓 (3𝑥 − 2𝑦) + 𝑓 (3𝑥 + 2𝑦) − 18𝑓 (𝑥) − 8𝑓 (𝑦)]

− 6 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)]

+6 [𝑓 (𝑦) − 𝑓 (−𝑦)]


≤ 𝜙 (𝑥, 𝑦) + 𝜙 (𝑥, −𝑦)

(84)

for all 𝑥, 𝑦 ∈ 𝑋, and so by (82), we have
[𝑓 (3𝑥 − 2𝑦) + 𝑓 (3𝑥 + 2𝑦) − 18𝑓 (𝑥) − 8𝑓 (𝑦)]

−2 [𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)]


≤ Φ (𝑥, 𝑦)

(85)

for all 𝑥, 𝑦 ∈ 𝑋, where Φ(𝑥, 𝑦) = (1/3)[𝜙(𝑥, 𝑦) + 𝜙(𝑥, −𝑦)] +
2[𝜙(0, 𝑦/2) + 𝜙(0, −𝑦/2)]. So byTheorem 6, we get the result.
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