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We prove the generalizedHyers-Ulam stability of the heat equation,Δ𝑢 = 𝑢
𝑡
, in a class of twice continuously differentiable functions

under certain conditions.

1. Introduction

Let 𝑋 be a normed space and let 𝐼 be an open interval. If for
any function 𝑓 : 𝐼 → 𝑋 satisfying the differential inequality
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(1)

for all 𝑥 ∈ 𝐼 and for some 𝜀 ≥ 0, there exists a solution 𝑓
0

:

𝐼 → 𝑋 of the differential equation
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(2)

such that ‖𝑓(𝑥) − 𝑓
0
(𝑥)‖ ≤ 𝐾(𝜀) for any 𝑥 ∈ 𝐼, where 𝐾(𝜀) is

an expression of 𝜀 only, then we say that the above differential
equation has the Hyers-Ulam stability.

If the above statement is also true when we replace 𝜀

and 𝐾(𝜀) by 𝜑(𝑥) and Φ(𝑥), where 𝜑, Φ : 𝐼 → [0, ∞)

are functions not depending on 𝑓 and 𝑓
0
explicitly, then

we say that the corresponding differential equation has the
generalized Hyers-Ulam stability. (This type of stability is
sometimes called the Hyers-Ulam-Rassias stability.)

We may apply these terminologies for other differen-
tial equations and partial differential equations. For more
detailed definitions of the Hyers-Ulam stability and the
generalized Hyers-Ulam stability, refer to [1–7].

Obloza seems to be the first author who has investigated
the Hyers-Ulam stability of linear differential equations (see

[8, 9]). Here, we will introduce a result of Alsina and Ger (see
[1]). If a differentiable function 𝑓 : 𝐼 → R is a solution of the
differential inequality |𝑦

󸀠
(𝑥) − 𝑦(𝑥)| ≤ 𝜀, where 𝐼 is an open

subinterval of R, then there exists a solution 𝑓
0

: 𝐼 → R

of the differential equation 𝑦
󸀠
(𝑥) = 𝑦(𝑥) such that |𝑓(𝑥) −

𝑓
0
(𝑥)| ≤ 3𝜀 for any 𝑥 ∈ 𝐼. This result was generalized by

Miura et al. (see [10, 11]).
In 2007, Jung and Lee [12] proved the Hyers-Ulam

stability of the first-order linear partial differential equation

𝑎𝑢
𝑥

(𝑥, 𝑦) + 𝑏𝑢
𝑦

(𝑥, 𝑦) + 𝑐𝑢 (𝑥, 𝑦) + 𝑑 = 0, (3)

where 𝑎, 𝑏 ∈ R and 𝑐, 𝑑 ∈ C are constants with R(𝑐) ̸= 0. It
seems that the first paper dealing with Hyers-Ulam stability
of partial differential equations was written by Prástaro and
Rassias [13]. For a recent result on this subject, refer to [14].

In this paper, using an idea from the paper [15], we
investigate the generalized Hyers-Ulam stability of the heat
equation

Δ𝑢 (𝑥, 𝑡) − 𝑢
𝑡
(𝑥, 𝑡) = 0 (4)

in the class of radially symmetric functions, where Δ denotes
the Laplace operator, 𝑡 > 0, 𝑥 ∈ 𝐼, and 𝐼 ⊂ R𝑛 is open. The
heat equation plays an important role in a number of fields
of science. It is strongly related to the Brownian motion in
probability theory. The heat equation is also connected with
chemical diffusion and it is sometimes called the diffusion
equation.
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2. Main Result

For a given integer 𝑛 ≥ 2, 𝑥
𝑖
denotes the 𝑖th coordinate of any

point 𝑥 inR𝑛; that is, 𝑥 = (𝑥
1
, . . . , 𝑥

𝑖
, . . . , 𝑥

𝑛
). We assume that

𝑎, 𝑏, and 𝑡
1
are constants with 0 < 𝑎 < 𝑏 ≤ ∞ and 0 < 𝑡

1
≤ ∞,

and we define

𝐷 = {𝑥 ∈ R
𝑛

| 𝑎 < |𝑥| < 𝑏} , 𝑇 = {𝑡 ∈ R | 0 < 𝑡 < 𝑡
1
} ,

(5)

where |𝑥| = √𝑥
2

1
+ ⋅ ⋅ ⋅ + 𝑥2

𝑛
.

Due to an idea from [16, Section 2.3.1], we may search for
a solution of (4) of the form 𝑢(𝑥, 𝑡) = (1/𝑡

𝛼
)V(|𝑥|/𝑡

𝛽
) for some

twice continuously differentiable function V and constants 𝛼

and 𝛽 > 0. Based on this argument, we define

𝑈 = {𝑢 : 𝐷 × 𝑇 󳨀→ R | 𝑢 (𝑥, 𝑡) =
1

𝑡𝛼
𝑤 (𝑟) ∀𝑥 ∈ 𝐷, 𝑡 ∈ 𝑇

and for some function 𝑤 : (𝑟
0
, ∞) 󳨀→ R

with 𝑟 =
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𝑡𝛽
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𝑟
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󸀠
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(6)

where we set

𝑟
0

:=
{

{

{

𝑎

𝑡
𝛽

1

(for 0 < 𝑡
1

< ∞) ,

0 (for 𝑡
1

= ∞)

(7)

and the constants 𝛼 and 𝛽 will be chosen appropriately.

Theorem 1. Let 𝜑 : (𝑟
0
, ∞) → [0, ∞) and 𝜓 : 𝑇 → [0, ∞)

be functions such that

∫
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𝑢
2
/4
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𝑐 := inf
𝑡∈𝑇
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𝑛/2+1

𝜓 (𝑡) > 0. (9)

If a twice continuously differentiable function 𝑢 ∈ 𝑈 satisfies
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for all 𝑥 ∈ 𝐷 and 𝑡 ∈ 𝑇, then there exists a solution 𝑢
0

: 𝐷 ×

𝑇 → R of the heat equation (4) such that 𝑢
0

∈ 𝑈 and
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for all 𝑥 ∈ 𝐷 and 𝑡 ∈ 𝑇.

Proof. Since 𝑢(𝑥, 𝑡) belongs to 𝑈, there exists a function 𝑤 :

(𝑟
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, ∞) → R such that
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for any 𝑥 ∈ 𝐷 and 𝑡 ∈ 𝑇, where we set 𝑟 = |𝑥|/𝑡
𝛽. Using this

notation, we calculate 𝑢
𝑡
and Δ𝑢:
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So we have
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for any 𝑥 ∈ 𝐷, 𝑡 ∈ 𝑇 and 𝑟 > 𝑟
0
.

If we set 𝛼 = 𝑛/2 and 𝛽 = 1/2 in the previous equality,
then we have
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for all 𝑥 ∈ 𝐷, 𝑡 ∈ 𝑇 and 𝑟 > 𝑟
0
. Moreover, from the last

equality and (10), it follows that
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for all 𝑟 > 𝑟
0
and 𝑡 ∈ 𝑇. In view of (9), we have
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0
.

We integrate each term of the last inequality from 𝑟 to ∞

and take account of the definition of 𝑈 to get
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.

According to [17, Theorem 1], together with (8), there
exists a unique 𝛾 ∈ R such that
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0
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∫

∞

𝑢

𝑠
𝑛−1

𝜑 (𝑠) 𝑑𝑠 𝑑𝑢,

(22)

for all 𝑥 ∈ 𝐷 and 𝑡 ∈ 𝑇.
Now, we set

𝑢
0

(𝑥, 𝑡) :=
𝛾

𝑡𝑛/2
𝑒
−(|𝑥|/2√𝑡)

2

(23)

for all𝑥 ∈ 𝐷 and 𝑡 ∈ 𝑇.Then it is easy to show that 𝑢
0

∈ 𝑈 and
𝑢
0
is a solution of the heat equation (4). Moreover, inequality

(11) is an immediate consequence of (22).

Corollary 2. Let 𝜑 : (𝑟
0
, ∞) → [0, ∞) and 𝜓 : 𝑇 → [0, ∞)

be functions. Assume that 𝑛 > 2, 0 < 𝑡
1

< ∞ and that there
exist constants 𝑐 and 𝜃 such that

𝜑 (
|𝑥|

√𝑡
) ≤ 𝜃𝑒

−(|𝑥|/2√𝑡)
2

(
|𝑥|

√𝑡
)

2−𝑛

(∀𝑥 ∈ 𝐷, 𝑡 ∈ 𝑇) , (24)

𝑐 := inf
𝑡∈𝑇

𝑡
𝑛/2+1

𝜓 (𝑡) > 0. (25)

If a twice continuously differentiable function 𝑢 ∈ 𝑈 satisfies

󵄨󵄨󵄨󵄨Δ𝑢 (𝑥, 𝑡) − 𝑢
𝑡
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝜑 (
|𝑥|

√𝑡
) 𝜓 (𝑡) (26)

for all 𝑥 ∈ 𝐷 and 𝑡 ∈ 𝑇, then there exists a solution 𝑢
0

: 𝐷 ×

𝑇 → R of the heat equation (4) such that 𝑢
0

∈ 𝑈 and

󵄨󵄨󵄨󵄨𝑢 (𝑥, 𝑡) − 𝑢
0

(𝑥, 𝑡)
󵄨󵄨󵄨󵄨 ≤

2𝑐𝜃

𝑛 − 2

|𝑥|
2−𝑛

𝑡
𝑒
−(|𝑥|/2√𝑡)

2

, (27)

for all 𝑥 ∈ 𝐷 and 𝑡 ∈ 𝑇.

Proof. It follows from (24) that

∫

∞

𝑢

𝑠
𝑛−1

𝜑 (𝑠) 𝑑𝑠 ≤ ∫

∞

𝑢

𝑠
𝑛−1

𝜃𝑒
−𝑠
2
/4

𝑠
2−𝑛

𝑑𝑠 = 2𝜃𝑒
−𝑢
2
/4 (28)

for all 𝑢 > 𝑟
0
. Moreover, by the previous inequality, it holds

that

∫

∞

𝑟0

𝑒
𝑢
2
/4

𝑢𝑛−1
∫

∞

𝑢

𝑠
𝑛−1

𝜑 (𝑠) 𝑑𝑠 𝑑𝑢

≤ ∫

∞

𝑟0

𝑒
𝑢
2
/4

𝑢𝑛−1
2𝜃𝑒
−𝑢
2
/4

𝑑𝑢 =
2𝜃

𝑛 − 2
𝑟
2−𝑛

0
< ∞,

(29)

since the assumption, 0 < 𝑡
1

< ∞, implies that 𝑟
0

> 0.
According toTheorem 1, there exists a solution 𝑢

0
∈ 𝑈 of

the heat equation (4) such that inequality (27) holds, for all
𝑥 ∈ 𝐷 and 𝑡 ∈ 𝑇.
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