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We introduce the modular continuous g-Riesz basis to improve one existing result for continuous g-Riesz basis in Hilbert 𝐶∗-
modules, and then we study the equivalency relations between continuous g-frames in Hilbert 𝐶∗-modules, and, in particular, we
obtain two necessary and sufficient conditions under which two continuous g-frames are similar. Finally, we generalize a stability
result for alternate duals of g-frames in Hilbert spaces to alternate duals of continuous g-frames in Hilbert 𝐶∗-modules.

1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and
Schaeffer [1] in 1952 to study some deep problems in non-
harmonic Fourier series, reintroduced in 1986 by Daubechies
et al. [2] and popularized from then on.The theory of frames
plays an important role in theoretics and applications, which
has been extensively applied in signal processing, sampling
theory, system modelling, and many other fields. We refer to
[3–9] for an introduction to frame theory and its applications.

The theory of frames was rapidly generalized and, until
2006, various generalizations consisting of vectors in Hilbert
spaces were developed. In 2006, Sun introduced the concept
of g-frame in a Hilbert space in [10] and showed that this
includes more of the other cases of generalizations of frame
concept and proved thatmany basic properties can be derived
within this more general context.

On the other hand, the concept of frames especially the
g-frames was introduced in Hilbert 𝐶∗-modules, and some
of their properties were investigated in [11–13]. As for Hilbert
𝐶
∗-module, it is a generalization ofHilbert spaces by allowing

the inner product to take values in a 𝐶∗-algebra rather than
the field of complex numbers. Note that the theory of Hilbert
𝐶
∗-modules is quite different from that of Hilbert spaces.

Unlike Hilbert space cases, not every closed submodule
of a Hilbert 𝐶∗-module is complemented. Moreover, the

well-known Riesz representation theorem for continuous
functionals in Hilbert spaces does not hold in Hilbert 𝐶∗-
modules, which implies that not all bounded linear operators
on Hilbert 𝐶∗-modules are adjointable. It should also be
remarked that, due to the complexity of the 𝐶

∗-algebras
involved in the Hilbert 𝐶∗-modules and the fact that some
useful techniques available in Hilbert spaces are either absent
or unknown in Hilbert 𝐶∗-modules, the problems about
frames and g-frames for Hilbert 𝐶∗-modules are more com-
plicated than those forHilbert spaces.Thismakes the study of
the frames forHilbert𝐶∗-modules important and interesting.
The properties of g-frames for Hilbert 𝐶∗-modules were
further investigated in [14, 15].

The concept of a generalization of frames to a family
indexed by some locally compact space endowed with a
Radon measure was proposed by Kaiser [16] and indepen-
dently byAli et al. [17].These frames are known as continuous
frames. Gabardo andHan in [18] called these frames “Frames
associated with measurable spaces”; Askari-Hemmat et al.
in [19] called them generalized frames, and in mathematical
physics they are referred to as coherent states [20].

The continuous g-frames in Hilbert 𝐶∗-modules, which
were proposed by Kouchi and Nazari in [21], are an extension
to g-frames in Hilbert𝐶∗-modules and continuous frames in
Hilbert spaces, and theymade a discussion of someproperties
of continuous g-frames in Hilbert 𝐶

∗-modules in some
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aspects.The purpose of this paper is to further investigate the
properties of continuous g-frames in Hilbert 𝐶∗-modules.

The paper is organized in the following manner. We con-
tinue this introductory section with a review of the basic def-
initions and notations about Hilbert 𝐶∗-modules. Section 2
investigates some basic results of continuous g-frames in
Hilbert 𝐶∗-modules and introduces the so-called modular
continuous g-Riesz basis to improve one result for continuous
g-Riesz basis obtained by Kouchi and Nazari plus a bit
more. Equivalency relations between continuous g-frames
are included in Section 3, where two necessary and sufficient
conditions for two continuous g-frames to be similar are
obtained. The last section of this paper generalizes a stability
result for alternate duals of g-frames inHilbert spaces to alter-
nate duals of continuous g-frames in Hilbert 𝐶∗-modules.

Let us recall the definitions and some basic properties of
Hilbert 𝐶∗-modules. For more details, the interested readers
can refer to the books by Lance [22] and Wegge-Olsen [23].
Let 𝐴 be a 𝐶∗-algebra with involution ∗. A pre-Hilbert 𝐶∗-
module over 𝐴 or, simply, a pre-Hilbert 𝐴-module, is a
complex linear space U which is a left 𝐴-module with map
⟨⋅, ⋅⟩ : U ×U → 𝐴, called an 𝐴-valued inner product, and it
possesses the following properties:

(1) ⟨𝑓, 𝑓⟩ ≥ 0 for all 𝑓 ∈ U and ⟨𝑓, 𝑓⟩ = 0 if and only if
𝑓 = 0;

(2) ⟨𝑓, 𝑔⟩ = ⟨𝑔, 𝑓⟩
∗ for all 𝑓, 𝑔 ∈ U;

(3) ⟨𝑎𝑓+𝑔, ℎ⟩ = 𝑎⟨𝑓, ℎ⟩+⟨𝑔, ℎ⟩ for all 𝑎 ∈ 𝐴,𝑓, 𝑔, ℎ ∈ U;
(4) ⟨𝜆𝑓, 𝑔⟩ = 𝜆⟨𝑓, 𝑔⟩ whenever 𝜆 ∈ C and 𝑓, 𝑔 ∈ U.

For𝑓 ∈ U, we define a norm onU by ‖𝑓‖U = ‖⟨𝑓, 𝑓⟩‖
1/2

𝐴
.

If U is complete with this norm, it is called a Hilbert 𝐶∗-
module over 𝐴 or a Hilbert 𝐴-module.

Let (U, ⟨⋅, ⋅⟩
1
) and (V, ⟨⋅, ⋅⟩

2
) be two Hilbert 𝐴-modules.

A map 𝑇 : U → V is said to be adjointable if there exists a
map 𝑆 : V → U such that ⟨𝑇𝑓, 𝑔⟩

2
= ⟨𝑓, 𝑆𝑔⟩

1
for all 𝑓 ∈ U

and 𝑔 ∈ V. We denote by End∗
𝐴
(U,V) the collection of all

adjointable 𝐴-linear maps from U to V. The following two
lemmas will be used in the later section.

Lemma 1 (see [24]). LetM andN be two Hilbert 𝐴-modules
over a 𝐶∗-algebra 𝐴 and let 𝑇 : M → N be a linear map.
Then the following conditions are equivalent:

(1) the operator 𝑇 is bounded and 𝐴-linear;
(2) there exists a constant 𝐾 ≥ 0 such that the inequality

⟨𝑇𝑥, 𝑇𝑥⟩ ≤ 𝐾⟨𝑥, 𝑥⟩ holds in 𝐴 for all 𝑥 ∈ M.

Lemma 2 (see [25]). Let 𝐴 be a 𝐶∗-algebra, let U and V be
two Hilbert 𝐴-modules, and let 𝑇 ∈ End∗

𝐴
(U,V). The follow-

ing statements are equivalent:

(1) 𝑇 is surjective;
(2) 𝑇∗ is bounded below with respect to norm; that is, there

is𝑚 > 0 such that ‖𝑇∗𝑓‖ ≥ 𝑚‖𝑓‖ for all 𝑓 ∈ V;
(3) 𝑇∗ is bounded below with respect to inner product; that

is, there is𝑚󸀠 > 0 such that ⟨𝑇∗𝑓, 𝑇∗𝑓⟩ ≥ 𝑚
󸀠

⟨𝑓, 𝑓⟩ for
all 𝑓 ∈ V.

Let V be a Hilbert 𝐴-module and {V
𝑚
}
𝑚∈M a sequence

of closed submodules ofV. Set

⨁

𝑚∈M

V
𝑚

= {𝑔 = {𝑔
𝑚
} : 𝑔
𝑚
∈ V
𝑚
,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

⟨𝑔
𝑚
, 𝑔
𝑚
⟩ 𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

< ∞} .

(1)

For any 𝑓 = {𝑓
𝑚

: 𝑚 ∈ M} and 𝑔 = {𝑔
𝑚

: 𝑚 ∈

M}, if the 𝐴-valued inner product is defined by ⟨𝑓, 𝑔⟩ =

∫
𝑚∈M

⟨𝑓
𝑚
, 𝑔
𝑚
⟩𝑑𝜇(𝑚) and the norm is defined by ‖𝑓‖ =

‖⟨𝑓, 𝑓⟩‖
1/2, then⨁

𝑚∈MV
𝑚
is a Hilbert𝐴-module (see [22]).

Throughout this paper, 𝐴 is a unital 𝐶∗-algebra, U and
V are Hilbert 𝐴-modules, and {V

𝑚
}
𝑚∈M is a sequence of

closed submodules of V. For 𝑇 ∈ End∗
𝐴
(U,V), we use

Ran(𝑇) and N(𝑇) to denote the range and the null space
of 𝑇, respectively. As usual, we use 𝐼U to denote the identity
operator onU.

2. Basic Results of Continuous g-Frames and
Modular Continuous g-Riesz Bases

In this section, we recall some basic properties of continu-
ous g-frames in Hilbert 𝐶∗-modules and, in particular, we
obtain an equivalent condition under which a Hilbert 𝐶∗-
module has a continuous g-frame. Moreover, we introduce
the modular continuous g-Riesz basis to improve one result
for continuous g-Riesz basis in Hilbert 𝐶∗-modules.

Definition 3 (see [21]). We call a family of adjointable 𝐴-
linear operators {Λ

𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} a contin-

uous generalized frame or simply a continuous g-frame for
Hilbert 𝐶∗-moduleU with respect to {V

𝑚
: 𝑚 ∈ M} if

(1) for any𝑓 ∈ U, the function ̃
𝑓 : M → V

𝑚
defined by

̃
𝑓(𝑚) = Λ

𝑚
𝑓 is measurable;

(2) there is a pair of constants 𝐴, 𝐵 > 0 such that, for any
𝑓 ∈ U,

𝐴⟨𝑓, 𝑓⟩ ≤ ∫

𝑚∈M

⟨Λ
𝑚
𝑓,Λ
𝑚
𝑓⟩ 𝑑𝜇 (𝑚) ≤ 𝐵 ⟨𝑓, 𝑓⟩ . (2)

The constants𝐴 and 𝐵 are called continuous g-frame bounds.
We call {Λ

𝑚
: 𝑚 ∈ M} a continuous tight g-frame if 𝐴 = 𝐵

and a continuous Parseval g-frame if 𝐴 = 𝐵 = 1. If only the
right-hand inequality of (2) is satisfied, we call {Λ

𝑚
: 𝑚 ∈ M}

a continuous g-Bessel sequence for U with respect to {V
𝑚
:

𝑚 ∈ M} with Bessel bound 𝐵.
We have the following equivalent definition for continu-

ous g-Bessel sequences in Hilbert 𝐶∗-modules.

Proposition 4. Let {Λ
𝑚

∈ End∗
𝐴
(U,V

𝑚
) : 𝑚 ∈ M} be a

sequence of adjointable 𝐴-linear operators on U. Then {Λ
𝑚
:

𝑚 ∈ M} is a continuous g-Bessel sequence with Bessel bound
𝐷 if and only if, for all 𝑓 ∈ U,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

⟨Λ
𝑚
𝑓,Λ
𝑚
𝑓⟩ 𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐷
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2

. (3)
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Proof. “⇒”. It is obvious.
“⇐”. Define a linear operator 𝑇 : U → ⨁

𝑚∈MV
𝑚
by

𝑇𝑓 = {Λ
𝑚
𝑓 : 𝑚 ∈ M} for all 𝑓 ∈ U. Then

󵄩
󵄩
󵄩
󵄩
𝑇𝑓

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
⟨𝑇𝑓, 𝑇𝑓⟩

󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

⟨Λ
𝑚
𝑓,Λ
𝑚
𝑓⟩ 𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐷

󵄩
󵄩
󵄩
󵄩
𝑓

󵄩
󵄩
󵄩
󵄩

2

,

(4)

which implies that ‖𝑇𝑓‖ ≤ √𝐷‖𝑓‖. Hence, 𝑇 is bounded. It is
clear that𝑇 is𝐴-linear.Then by Lemma 1, we have ⟨𝑇𝑓, 𝑇𝑓⟩ ≤
𝐷⟨𝑓, 𝑓⟩, equivalently, ∫

𝑚∈M
⟨Λ
𝑚
𝑓,Λ
𝑚
𝑓⟩𝑑𝜇(𝑚) ≤ 𝐷⟨𝑓, 𝑓⟩,

as desired.

The following proposition gives an equivalent condition
for a continuous g-Bessel sequence to be a continuous g-
frame.

Proposition 5. Let {Λ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} be a con-

tinuous g-Bessel sequence forUwith respect to {V
𝑚
: 𝑚 ∈ M}.

Then {Λ
𝑚
: 𝑚 ∈ M} is a continuous g-frame forU if and only

if there exists a constant 𝐶 > 0 such that

𝐶

󵄩
󵄩
󵄩
󵄩
𝑓

󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

⟨Λ
𝑚
𝑓,Λ
𝑚
𝑓⟩ 𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

, ∀𝑓 ∈ U. (5)

Proof. “⇒”. It is straightforward.
“⇐”. We define a linear operator as follows:

𝑇 : U 󳨀→ ⨁

𝑚∈M

V
𝑚
, 𝑇𝑓 = {Λ

𝑚
𝑓 : 𝑚 ∈ M} , ∀𝑓 ∈ U.

(6)

Then 𝑇 is adjointable. Indeed,

⟨𝑇𝑓, 𝑔⟩ = ∫

𝑚∈M

⟨Λ
𝑚
𝑓, 𝑔
𝑚
⟩ 𝑑𝜇 (𝑚)

= ⟨𝑓,∫

𝑚∈M

Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇 (𝑚)⟩ ,

(7)

for all 𝑓 ∈ U, 𝑔 = {𝑔
𝑚
} ∈ ⨁

𝑚∈MV
𝑚
. It follows from (5) that

󵄩
󵄩
󵄩
󵄩
𝑇𝑓

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
⟨𝑇𝑓, 𝑇𝑓⟩

󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

⟨Λ
𝑚
𝑓,Λ
𝑚
𝑓⟩ 𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≥ 𝐶

󵄩
󵄩
󵄩
󵄩
𝑓

󵄩
󵄩
󵄩
󵄩

2

.

(8)

Thus, ‖𝑇𝑓‖ ≥ √𝐶‖𝑓‖ for all 𝑓 ∈ U. Then by Lemma 2, there
exists𝑀 > 0 such that ⟨𝑇𝑓, 𝑇𝑓⟩ ≥ 𝑀⟨𝑓, 𝑓⟩; that is,𝑀⟨𝑓, 𝑓⟩ ≤

∫
𝑚∈M

⟨Λ
𝑚
𝑓,Λ
𝑚
𝑓⟩𝑑𝜇(𝑚). The proof is over.

Using the above equivalent definition of continuous g-
frames we can easily prove the following result that will be
used in the proof of Lemma 20.

Proposition 6. Let {Λ
𝑚

∈ End∗
𝐴
(U,V

𝑚
) : 𝑚 ∈ M} and

{Γ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} be two continuous g-Bessel

sequences for U with respect to {V
𝑚

: 𝑚 ∈ M}. If 𝑓 =

∫
𝑚∈M

Λ
∗

𝑚
Γ
𝑚
𝑓𝑑𝜇(𝑚) holds for all 𝑓 ∈ U, then both {Λ

𝑚
:

𝑚 ∈ M} and {Γ
𝑚
: 𝑚 ∈ M} are continuous g-frames for U

with respect to {V
𝑚
: 𝑚 ∈ M}.

Proof. Let us denote the Bessel bound of {Γ
𝑚
: 𝑚 ∈ M} by𝐷.

For all 𝑓 ∈ U, we have

󵄩
󵄩
󵄩
󵄩
𝑓

󵄩
󵄩
󵄩
󵄩

4

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

⟨∫

𝑚∈M

Λ
∗

𝑚
Γ
𝑚
𝑓𝑑𝜇 (𝑚) , 𝑓⟩

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

⟨Λ
𝑚
𝑓, Γ
𝑚
𝑓⟩𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

⟨Λ
𝑚
𝑓,Λ
𝑚
𝑓⟩𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

×

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

⟨Γ
𝑚
𝑓, Γ
𝑚
𝑓⟩𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐷

󵄩
󵄩
󵄩
󵄩
𝑓

󵄩
󵄩
󵄩
󵄩

2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

⟨Λ
𝑚
𝑓,Λ
𝑚
𝑓⟩𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

.

(9)

It follows that

𝐷
−1󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

⟨Λ
𝑚
𝑓,Λ
𝑚
𝑓⟩ 𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

. (10)

Similarly, we can show that {Γ
𝑚
: 𝑚 ∈ M} is a continuous

g-frame forU.

Let {Λ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} be a continuous g-

Bessel sequence for U with respect to {V
𝑚
: 𝑚 ∈ M}, we

define the synthesis operator 𝑇
Λ
: ⨁
𝑚∈MV

𝑚
→ U by

𝑇
Λ
𝑔 = ∫

𝑚∈M

Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇 (𝑚) , ∀𝑔 = {𝑔

𝑚
} ∈ ⨁

𝑚∈M

V
𝑚
. (11)

It follows immediately from the observation that for all 𝑓 ∈

U, 𝑔 = {𝑔
𝑚
} ∈ ⨁

𝑚∈MV
𝑚
, and

⟨𝑇
Λ
𝑔, 𝑓⟩ = ∫

𝑚∈M

⟨𝑔
𝑚
, Λ
𝑚
𝑓⟩ 𝑑𝜇 (𝑚)

= ⟨𝑔, {Λ
𝑚
𝑓 : 𝑚 ∈ M}⟩ ,

(12)

𝑇
Λ

is adjointable and its adjoint operator 𝑇
∗

Λ
: U →

⨁
𝑚∈MV

𝑚
is given by 𝑇

∗

Λ
𝑓 = {Λ

𝑚
𝑓 : 𝑚 ∈ M} for all

𝑓 ∈ U. We call 𝑇∗
Λ
the analysis operator. By composing 𝑇

Λ

and 𝑇
∗

Λ
, we obtain the frame operator 𝑆

Λ
: U → U. Note

that 𝑆
Λ
is a positive, self-adjoint operator which is invertible

if and only if {Λ
𝑚
: 𝑚 ∈ M} is a continuous g-frame of U.

If {Λ
𝑚
: 𝑚 ∈ M} is a continuous g-frame, then every 𝑓 ∈ U

has a representation of the form

𝑓 = ∫

𝑚∈M

Λ
∗

𝑚
Λ
𝑚
𝑆
−1

Λ
𝑓𝑑𝜇 (𝑚) = ∫

𝑚∈M

𝑆
−1

Λ
Λ
∗

𝑚
Λ
𝑚
𝑓𝑑𝜇 (𝑚) .

(13)

We can characterize the continuous g-frames in Hilbert
𝐶
∗-modules in terms of the associated synthesis and analysis

operators.

Proposition 7. Let {Λ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} be a fam-

ily of adjointable 𝐴-linear operators on U. Then the following
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statements are equivalent:
(1) {Λ

𝑚
: 𝑚 ∈ M} is a continuous g-frame for U with

respect to {V
𝑚
: 𝑚 ∈ M};

(2) the synthesis operator 𝑇
Λ
is well defined and surjective;

(3) the analysis operator 𝑇∗
Λ
is bounded below with respect

to norm.

Proof. (1) ⇔ (2). See [21, Theorem 4.3].
(2) ⇔ (3). It follows directly from Lemma 2.

We are now ready to present a necessary and sufficient
condition for a Hilbert 𝐶∗-module to have a continuous g-
frame.

Theorem 8. A Hilbert 𝐴-moduleU has a continuous g-frame
with respect to {V

𝑚
: 𝑚 ∈ M} if and only if there exists an

adjointable and invertible map from U to a closed submodule
of⨁
𝑚∈MV

𝑚
.

Proof. “⇒”. Assume that {Λ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} is a

continuous g-frame forUwith respect to {V
𝑚
: 𝑚 ∈ M}with

synthesis operator 𝑇
Λ
. It follows from Proposition 7 that the

analysis operator 𝑇∗
Λ
is bounded below with respect to norm;

and, consequently, 𝑇∗
Λ
is injective with closed range. Now,

𝑇
∗

Λ
is an adjointable and invertible map from U to Ran(𝑇∗

Λ
),

which is a closed submodule of⨁
𝑚∈MV

𝑚
.

“⇐”. Suppose that𝑀 is a closed submodule of⨁
𝑚∈MV

𝑚

and 𝑆 : U → 𝑀 is an adjointable and invertible map. We
define a family of adjointable operators as follows:

𝑃
𝑚
: ⨁

𝑚∈M

V
𝑚
󳨀→ V

𝑚
, 𝑃

𝑚
({𝐹
𝑚
}) = 𝐹

𝑚
,

∀ {𝐹
𝑚
} ∈ ⨁

𝑚∈M

V
𝑚
.

(14)

Taking Λ
𝑚
= 𝑃
𝑚
𝑆 for each𝑚 ∈ M, then

∫

𝑚∈M

⟨Λ
𝑚
𝑓,Λ
𝑚
𝑓⟩𝑑𝜇 (𝑚) = ∫

𝑚∈M

⟨𝑃
𝑚
𝑆𝑓, 𝑃
𝑚
𝑆𝑓⟩ 𝑑𝜇 (𝑚)

= ⟨𝑆𝑓, 𝑆𝑓⟩ = ⟨𝑆
∗

𝑆𝑓, 𝑓⟩ .

(15)

Hence, by [22, Proposition 1.2], we have
󵄩
󵄩
󵄩
󵄩
󵄩
𝑆
−1
󵄩
󵄩
󵄩
󵄩
󵄩

−2

⟨𝑓, 𝑓⟩ ≤ ∫

𝑚∈M

⟨Λ
𝑚
𝑓,Λ
𝑚
𝑓⟩ 𝑑𝜇 (𝑚) ≤ ‖𝑆‖

2

⟨𝑓, 𝑓⟩ .

(16)

It is easy to see that a continuous g-Bessel sequence {Λ
𝑚
∈

End∗
𝐴
(U,V

𝑚
) : 𝑚 ∈ M} forUwith respect to {V

𝑚
: 𝑚 ∈ M}

is a continuous g-frame if and only if there exists a continuous
g-Bessel sequence {Γ

𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} forU with

respect to {V
𝑚
: 𝑚 ∈ M} such that

𝑓 = ∫

𝑚∈M

Λ
∗

𝑚
Γ
𝑚
𝑓𝑑𝜇 (𝑚) , ∀𝑓 ∈ U. (17)

In this case, we call {Γ
𝑚

: 𝑚 ∈ M} a dual continuous g-
frame of {Λ

𝑚
: 𝑚 ∈ M}. If 𝑆

Λ
is the frame operator of

{Λ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M}, a continuous g-frame for

U with respect to {V
𝑚
: 𝑚 ∈ M}, then, a direct calculation

yields that {Λ
𝑚
𝑆
−1

Λ
: 𝑚 ∈ M} is a dual continuous g-frame of

{Λ
𝑚
: 𝑚 ∈ M}; it is called the canonical dual. A dual which

is not the canonical dual is called an alternate dual or simply
a dual.

Our next result is a generalization of Lemma 2.1 in [10].

Proposition 9. Let {Λ
𝑚

∈ End∗
𝐴
(U,V

𝑚
) : 𝑚 ∈ M} be a

continuous g-frame forUwith respect to {V
𝑚
: 𝑚 ∈ M}which

possesses more than one dual, and let 𝑆
Λ
be the frame operator

for {Λ
𝑚

: 𝑚 ∈ M}. Then for any dual continuous g-frame
{Γ
𝑚
: 𝑚 ∈ M} of {Λ

𝑚
: 𝑚 ∈ M}, the inequality

∫

𝑚∈M

⟨Λ
𝑚
𝑆
−1

Λ
𝑓,Λ
𝑚
𝑆
−1

Λ
𝑓⟩𝑑𝜇 (𝑚)

≤ ∫

𝑚∈M

⟨Γ
𝑚
𝑓, Γ
𝑚
𝑓⟩ 𝑑𝜇 (𝑚)

(18)

is valid for all 𝑓 ∈ U. Besides, the quality holds precisely if
Γ
𝑚
= Λ
𝑚
𝑆
−1

Λ
for all𝑚 ∈ M.

More generally, whenever 𝑓 = ∫
𝑚∈M

Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇(𝑚) for

certain 𝑔 = {𝑔
𝑚
} ∈ ⨁

𝑚∈MV
𝑚
, we have

∫

𝑚∈M

⟨𝑔
𝑚
, 𝑔
𝑚
⟩ 𝑑𝜇 (𝑚)

= ∫

𝑚∈M

⟨Λ
𝑚
𝑆
−1

Λ
𝑓,Λ
𝑚
𝑆
−1

Λ
𝑓⟩𝑑𝜇 (𝑚)

+ ∫

𝑚∈M

⟨𝑔
𝑚
− Λ
𝑚
𝑆
−1

Λ
𝑓, 𝑔
𝑚
− Λ
𝑚
𝑆
−1

Λ
𝑓⟩𝑑𝜇 (𝑚) .

(19)

Proof. We begin with showing the first statement. Since {Γ
𝑚
:

𝑚 ∈ M} is a dual continuous g-frame of {Λ
𝑚
: 𝑚 ∈ M}, it

follows that ∫
𝑚∈M

(Λ
∗

𝑚
Γ
𝑚
𝑓 − Λ

∗

𝑚
Λ
𝑚
𝑆
−1

Λ
𝑓)𝑑𝜇(𝑚) = 0 for all

𝑓 ∈ U. Therefore,

∫

𝑚∈M

⟨Γ
𝑚
𝑓, Γ
𝑚
𝑓⟩𝑑𝜇 (𝑚)

= ∫

𝑚∈M

⟨Γ
𝑚
𝑓 − Λ

𝑚
𝑆
−1

Λ
𝑓 + Λ

𝑚
𝑆
−1

Λ
𝑓, Γ
𝑚
𝑓

−Λ
𝑚
𝑆
−1

Λ
𝑓 + Λ

𝑚
𝑆
−1

Λ
𝑓⟩𝑑𝜇 (𝑚)

= ∫

𝑚∈M

⟨Λ
𝑚
𝑆
−1

Λ
𝑓,Λ
𝑚
𝑆
−1

Λ
𝑓⟩𝑑𝜇 (𝑚)

+ ∫

𝑚∈M

⟨Γ
𝑚
𝑓 − Λ

𝑚
𝑆
−1

Λ
𝑓, Γ
𝑚
𝑓 − Λ

𝑚
𝑆
−1

Λ
𝑓⟩𝑑𝜇 (𝑚) ,

(20)

showing that the first part of the assertion holds since

∫

𝑚∈M

⟨Γ
𝑚
𝑓 − Λ

𝑚
𝑆
−1

Λ
𝑓, Γ
𝑚
𝑓 − Λ

𝑚
𝑆
−1

Λ
𝑓⟩𝑑𝜇 (𝑚) ≥ 0. (21)

Now, suppose that 𝑓 ∈ U has two decompositions

𝑓 = ∫

𝑚∈M

Λ
∗

𝑚
Λ
𝑚
𝑆
−1

Λ
𝑓𝑑𝜇 (𝑚) = ∫

𝑚∈M

Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇 (𝑚) ,

𝑔 = {𝑔
𝑚
} ∈ ⨁

𝑚∈M

V
𝑚
.

(22)
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Since

∫

𝑚∈M

⟨𝑔
𝑚
, Λ
𝑚
𝑆
−1

Λ
𝑓⟩𝑑𝜇 (𝑚)

= ⟨𝑓, 𝑆
−1

Λ
𝑓⟩

= ∫

𝑚∈M

⟨Λ
𝑚
𝑆
−1

Λ
𝑓, 𝑔
𝑚
⟩ 𝑑𝜇 (𝑚) ,

(23)

it follows that

∫

𝑚∈M

⟨𝑔
𝑚
, 𝑔
𝑚
⟩ 𝑑𝜇 (𝑚)

= ∫

𝑚∈M

⟨Λ
𝑚
𝑆
−1

Λ
𝑓,Λ
𝑚
𝑆
−1

Λ
𝑓⟩𝑑𝜇 (𝑚)

+ ∫

𝑚∈M

⟨𝑔
𝑚
− Λ
𝑚
𝑆
−1

Λ
𝑓, 𝑔
𝑚
− Λ
𝑚
𝑆
−1

Λ
𝑓⟩𝑑𝜇 (𝑚) .

(24)

Definition 10 (see [21]). A continuous g-frame {Λ
𝑚

∈

End∗
𝐴
(U,V

𝑚
) : 𝑚 ∈ M} for Hilbert 𝐶∗-module U with

respect to {V
𝑚
: 𝑚 ∈ M} is said to be a continuous g-Riesz

basis if it satisfies the following:

(1) Λ
𝑚

̸= 0 for any𝑚 ∈ M;
(2) if ∫

𝑚∈K
Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇(𝑚) = 0, then Λ∗

𝑚
𝑔
𝑚
is equal to zero

for each 𝑚 ∈ K, where {𝑔
𝑚
}
𝑚∈K ∈ ⨁

𝑚∈MV
𝑚
and

K is a measurable subset ofM.

By using the synthesis operator, Kouchi and Nazari gave
a characterization for continuous g-Riesz basis as follows.

Theorem 11 (see [21]). A family of adjointable 𝐴-linear oper-
ators {Λ

𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} is a continuous g-Riesz

basis for U with respect to {V
𝑚
: 𝑚 ∈ M} if and only if the

synthesis operator 𝑇
Λ
is a homeomorphism.

We note, however, that in the proof of the above theorem,
they said that “Λ∗

𝑚
𝑓
𝑚
= 0 for any𝑚 ∈ M andΛ

𝑚
̸= 0, so𝑓

𝑚
=

0”, which is not true, because if Λ
𝑚
has a dense range, then

Λ
∗

𝑚
is one-to-one.We can improve their result by introducing

the following modular continuous g-Riesz basis.

Definition 12 (see [26]). We call a family {Λ
𝑚

∈

End∗
𝐴
(U,V

𝑚
) : 𝑚 ∈ M} of adjointable 𝐴-linear operators

onU a modular continuous g-Riesz basis if

(1) {𝑓 ∈ U : Λ
𝑚
𝑓 = 0,𝑚 ∈ M} = {0};

(2) there exist constants 𝐴, 𝐵 > 0 such that for any 𝑔 =

{𝑔
𝑚
} ∈ ⨁

𝑚∈MV
𝑚
,

𝐴
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝐵
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩

2

. (25)

Theorem 13 (see [26]). A sequence {Λ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) :

𝑚 ∈ M} is a modular continuous g-Riesz basis for U with
respect to {V

𝑚
: 𝑚 ∈ M} if and only if the synthesis operator

𝑇
Λ
is a homeomorphism.

Proof. Suppose first that {Λ
𝑚

∈ End∗
𝐴
(U,V

𝑚
) : 𝑚 ∈ M}

is a modular continuous g-Riesz basis for U with synthesis
operator 𝑇

Λ
. Then (25) turns to be

𝐴

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
𝑇
Λ
𝑔

󵄩
󵄩
󵄩
󵄩

2

≤ 𝐵

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

, ∀𝑔 = {𝑔
𝑚
} ∈ ⨁

𝑚∈M

V
𝑚
, (26)

showing that 𝑇
Λ
is bounded below with respect to norm.

Hence, by Lemma 2, its adjoint operator 𝑇∗
Λ
is surjective.

Since condition (1) in Definition 12 implies that 𝑇∗
Λ
is injec-

tive, it follows that 𝑇∗
Λ
is invertible, and so 𝑇

Λ
is invertible.

Conversely, let 𝑇
Λ
be a homeomorphism. Then 𝑇

∗

Λ
is

injective. So condition (1) in Definition 12 holds. Now, for any
𝑔 = {𝑔

𝑚
} ∈ ⨁

𝑚∈MV
𝑚
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
−1

Λ

󵄩
󵄩
󵄩
󵄩
󵄩

−2󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝑇
Λ
𝑔
󵄩
󵄩
󵄩
󵄩

2

≤
󵄩
󵄩
󵄩
󵄩
𝑇
Λ

󵄩
󵄩
󵄩
󵄩

2󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩

2

.

(27)

Therefore, {Λ
𝑚

∈ End∗
𝐴
(U,V

𝑚
) : 𝑚 ∈ M} is a modular

continuous g-Riesz basis for U with respect to {V
𝑚
: 𝑚 ∈

M}.

The following is an immediate consequence of Theorem
13.

Corollary 14. Let {Λ
𝑚

∈ End∗
𝐴
(U,V

𝑚
) : 𝑚 ∈ M} be a

continuous g-frame forU with respect to {V
𝑚
: 𝑚 ∈ M} with

synthesis operator 𝑇
Λ
, then it is a modular continuous g-Riesz

basis forU with respect to {V
𝑚
: 𝑚 ∈ M} if and only if 𝑇∗

Λ
is

surjective.

Let {Λ
𝑚

∈ End∗
𝐴
(U,V

𝑚
) : 𝑚 ∈ M} and {Γ

𝑚
∈

End∗
𝐴
(U,V

𝑚
) : 𝑚 ∈ M} be continuous g-Bessel sequences

for U with respect to {V
𝑚
: 𝑚 ∈ M}. In [21], the authors

defined an adjointable operator 𝐿 about them as follows:

𝐿 : U 󳨀→ U, 𝐿𝑓 = ∫

𝑚∈M

Γ
∗

𝑚
Λ
𝑚
𝑓𝑑𝜇 (𝑚) . (28)

Theorem 15. Let {Λ
𝑚

∈ End∗
𝐴
(U,V

𝑚
) : 𝑚 ∈ M} be a

continuous g-frame forU with respect to {V
𝑚
: 𝑚 ∈ M} with

bounds𝐴, 𝐵 and frame operator 𝑆
Λ
, and {Γ

𝑚
∈ End∗

𝐴
(U,V

𝑚
) :

𝑚 ∈ M} is a continuous g-Bessel sequence forUwith respect to
{V
𝑚
: 𝑚 ∈ M}. Suppose that there exists a number 0 < 𝜆 < 𝐴

such that for all 𝑓 ∈ U,

󵄩
󵄩
󵄩
󵄩
𝐿𝑓 − 𝑆

Λ
𝑓

󵄩
󵄩
󵄩
󵄩
≤ 𝜆

󵄩
󵄩
󵄩
󵄩
𝑓

󵄩
󵄩
󵄩
󵄩
. (29)

Then {Λ
𝑚
: 𝑚 ∈ M} is a modular continuous g-Riesz basis for

U if and only if {Γ
𝑚
: 𝑚 ∈ M} is a modular continuous g-Riesz

basis forU.

Proof. For any 𝑓 ∈ U, we have

󵄩
󵄩
󵄩
󵄩
𝐿𝑓

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
𝐿𝑓 − 𝑆

Λ
𝑓 + 𝑆
Λ
𝑓

󵄩
󵄩
󵄩
󵄩

≥

󵄩
󵄩
󵄩
󵄩
𝑆
Λ
𝑓

󵄩
󵄩
󵄩
󵄩
−

󵄩
󵄩
󵄩
󵄩
𝐿𝑓 − 𝑆

Λ
𝑓

󵄩
󵄩
󵄩
󵄩
≥ (𝐴 − 𝜆)

󵄩
󵄩
󵄩
󵄩
𝑓

󵄩
󵄩
󵄩
󵄩
.

(30)



6 Journal of Applied Mathematics

So, 𝐿 is bounded below with respect to norm. On the other
hand, since
󵄩
󵄩
󵄩
󵄩
𝐿
∗

𝑓 − 𝑆
Λ
𝑓

󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
𝐿
∗

− 𝑆
Λ

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑓

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
(𝐿 − 𝑆

Λ
)

∗󵄩󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑓

󵄩
󵄩
󵄩
󵄩
≤ 𝜆

󵄩
󵄩
󵄩
󵄩
𝑓

󵄩
󵄩
󵄩
󵄩
,

∀𝑓 ∈ U,

(31)

by the above result, 𝐿∗ is also bounded below with respect to
norm, and hence, by Lemma 2, both 𝐿 and 𝐿∗ are surjective,
and furthermore, 𝐿 is invertible. Let 𝑇

Λ
and 𝑇

Γ
be the

synthesis operators of {Λ
𝑚
: 𝑚 ∈ M} and {Γ

𝑚
: 𝑚 ∈ M},

respectively. It is easy to check that 𝐿 = 𝑇
Γ
𝑇
∗

Λ
. Thus, 𝑇∗

Λ
is

invertible if and only if 𝑇∗
Γ
is invertible, and consequently,

{Λ
𝑚
: 𝑚 ∈ M} is a modular continuous g-Riesz basis for U

if and only if {Γ
𝑚
: 𝑚 ∈ M} is a modular continuous g-Riesz

basis forU.

3. The Equivalency Relations between
Continuous g-Frames in Hilbert 𝐶∗-Modules

The definitions of similar and unitary equivalent frames give
rise to definitions of similar and unitary equivalent continu-
ous g-frames in Hilbert 𝐶∗-modules.

Definition 16. Let {Λ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} and {Γ

𝑚
∈

End∗
𝐴
(U,V

𝑚
) : 𝑚 ∈ M} be two continuous g-frames for U

with respect to {V
𝑚
: 𝑚 ∈ M}. One has the following.

(1) They are said to be similar or equivalent if there is an
adjointable and invertible operator 𝑇 : U → U such
that Γ
𝑚
= Λ
𝑚
𝑇 for each𝑚 ∈ M.

(2) They are said to be unitary equivalent if there exists an
adjointable and unitary linear operator 𝑈 : U → U
such that Γ

𝑚
= Λ
𝑚
𝑈 for each𝑚 ∈ M.

Theorem 17. Let {Λ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} and {Γ

𝑚
∈

End∗
𝐴
(U,V

𝑚
) : 𝑚 ∈ M} be two continuous g-frames for U

with respect to {V
𝑚
: 𝑚 ∈ M}with synthesis operators 𝑇

Λ
and

𝑇
Γ
, respectively. Then the following statements are equivalent:

(1) there is an adjointable and invertible operator𝑇 : U →

U such that Γ
𝑚

= Λ
𝑚
𝑇
∗ for each 𝑚 ∈ M; that is,

{Λ
𝑚
: 𝑚 ∈ M} and {Γ

𝑚
: 𝑚 ∈ M} are similar;

(2) there exists a constant𝑀 > 0 such that

⟨(𝑇
Λ
− 𝑇
Γ
) 𝑔, (𝑇

Λ
− 𝑇
Γ
) 𝑔⟩

≤ 𝑀 ⋅min {⟨𝑇
Λ
𝑔, 𝑇
Λ
𝑔⟩ , ⟨𝑇

Γ
𝑔, 𝑇
Γ
𝑔⟩}

(32)

for all 𝑔 = {𝑔
𝑚
} ∈ ⨁

𝑚∈MV
𝑚
. Moreover, if (2) holds, then

1

(1 + √𝑀)

2

⟨𝑓, 𝑓⟩ ≤ ⟨𝑇𝑓, 𝑇𝑓⟩

≤ (1 + √𝑀)

2

⟨𝑓, 𝑓⟩ , ∀𝑓 ∈ U.

(33)

Proof. (1) ⇒ (2). Suppose that 𝑇 : U → U is an adjointable
and invertible operator such that Γ

𝑚
= Λ
𝑚
𝑇
∗ for each 𝑚 ∈

M. If 𝑓 = ∫
𝑚∈M

Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇(𝑚) for certain 𝑔 = {𝑔

𝑚
} ∈

⨁
𝑚∈MV

𝑚
, then we have

𝑇𝑓 = ∫

𝑚∈M

𝑇Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇 (𝑚) = ∫

𝑚∈M

(Λ
𝑚
𝑇
∗

)

∗

𝑔
𝑚
𝑑𝜇 (𝑚)

= ∫

𝑚∈M

Γ
∗

𝑚
𝑔
𝑚
𝑑𝜇 (𝑚) .

(34)

Therefore,

⟨𝑓 − 𝑇𝑓, 𝑓 − 𝑇𝑓⟩ = ⟨𝑓, 𝑓⟩ + ⟨𝑇𝑓, 𝑇𝑓⟩ + ⟨(−𝑇
∗

− 𝑇)𝑓, 𝑓⟩

≤ ⟨𝑓, 𝑓⟩ + ‖𝑇‖
2

⟨𝑓, 𝑓⟩ +
󵄩
󵄩
󵄩
󵄩
𝑇
∗

+ 𝑇
󵄩
󵄩
󵄩
󵄩
⟨𝑓, 𝑓⟩

≤ (1 + ‖𝑇‖)
2

⟨𝑓, 𝑓⟩ .

(35)

On the other hand,

⟨𝑓 − 𝑇𝑓, 𝑓 − 𝑇𝑓⟩ = ⟨𝑓, 𝑓⟩ + ⟨𝑇𝑓, 𝑇𝑓⟩

+ ⟨(−𝑇
∗

− 𝑇)𝑓, 𝑓⟩

= ⟨𝑇
−1

𝑇𝑓, 𝑇
−1

𝑇𝑓⟩ + ⟨𝑇𝑓, 𝑇𝑓⟩

+ ⟨(−𝑇
∗

− 𝑇)𝑇
−1

𝑇𝑓, 𝑇
−1

𝑇𝑓⟩

≤ (

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
−1
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 1) ⟨𝑇𝑓, 𝑇𝑓⟩

+ ⟨(𝑇
−1

)

∗

(−𝑇
∗

− 𝑇)𝑇
−1

𝑇𝑓, 𝑇𝑓⟩

≤ (

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
−1
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 1) ⟨𝑇𝑓, 𝑇𝑓⟩

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝑇
−1

)

∗

(−𝑇
∗

− 𝑇)𝑇
−1
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

⟨𝑇𝑓, 𝑇𝑓⟩

≤ (1 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
−1
󵄩
󵄩
󵄩
󵄩
󵄩
)

2

⟨𝑇𝑓, 𝑇𝑓⟩ .

(36)

Hence, (32) follows.
(2) ⇒ (1). For each 𝑓 = ∫

𝑚∈M
Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇(𝑚) ∈ U, we

define an operator 𝑇 : U → U as follows:

𝑇𝑓 = 𝑇(∫

𝑚∈M

Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇 (𝑚)) = ∫

𝑚∈M

Γ
∗

𝑚
𝑔
𝑚
𝑑𝜇 (𝑚) . (37)

It is clear that 𝑇 is well defined, and furthermore, 𝑇 is adjoin-
table. A simple calculation shows that its adjoint operator 𝑇∗
is given by

𝑇
∗

ℎ = ∫

𝑚∈M

𝑆
−1

Λ
Λ
∗

𝑚
Γ
𝑚
ℎ𝑑𝜇 (𝑚) , ∀ℎ ∈ U, (38)

where 𝑆
Λ
is the frame operator of {Λ

𝑚
: 𝑚 ∈ M}. Since 𝑇

Γ
is

surjective by Proposition 7, it follows that 𝑇 is also surjective.
And (32) implies that 𝑇 is injective, and so 𝑇 is invertible.
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It remains to establish that Γ
𝑚
= Λ
𝑚
𝑇
∗ for each𝑚 ∈ M. For

all 𝑓 ∈ U, 𝑔 = {𝑔
𝑚
} ∈ ⨁

𝑚∈MV
𝑚
, we have

∫

𝑚∈M

⟨𝑔
𝑚
, Λ
𝑚
𝑇
∗

𝑓⟩ 𝑑𝜇 (𝑚) = ⟨∫

𝑚∈M

𝑇Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇 (𝑚) , 𝑓⟩

= ⟨𝑇∫

𝑚∈M

Λ
∗

𝑚
𝑔
𝑚
𝑑𝜇 (𝑚) , 𝑓⟩

= ⟨∫

𝑚∈M

Γ
∗

𝑚
𝑔
𝑚
𝑑𝜇 (𝑚) , 𝑓⟩

= ∫

𝑚∈M

⟨𝑔
𝑚
, Γ
𝑚
𝑓⟩ 𝑑𝜇 (𝑚) .

(39)

That is, ⟨𝑔, {Λ
𝑚
𝑇
∗

𝑓 − Γ
𝑚
𝑓 : 𝑚 ∈ M}⟩ = 0. Hence, Γ

𝑚
=

Λ
𝑚
𝑇
∗ for each𝑚 ∈ M.

For the last statement, the assumptions implies that ‖𝑓 −

𝑇𝑓‖ ≤ √𝑀‖𝑓‖ and ‖𝑓 − 𝑇𝑓‖ ≤ √𝑀‖𝑇𝑓‖ for all 𝑓 ∈ U. If
we replace 𝑓 by 𝑇−1𝑓 in the last inequality, we have ‖(𝑇−1 −
𝐼U)𝑓‖ ≤

√𝑀‖𝑓‖. Therefore,

⟨𝑓, 𝑓⟩ = ⟨𝑓 − 𝑇𝑓, 𝑓 − 𝑇𝑓⟩ + ⟨𝑇𝑓, 𝑇𝑓⟩

+ (⟨𝑓 − 𝑇𝑓, 𝑇𝑓⟩ + ⟨𝑇𝑓, 𝑓 − 𝑇𝑓⟩)

≤ (𝑀 + 1) ⟨𝑇𝑓, 𝑇𝑓⟩

+ ⟨(𝑇
−1

)

∗

(𝑇
∗

(𝐼U − 𝑇) + (𝐼U − 𝑇)

∗T)

×𝑇
−1

𝑇𝑓, 𝑇𝑓⟩

≤ (𝑀 + 1) ⟨𝑇𝑓, 𝑇𝑓⟩

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝑇
−1

)

∗

(𝑇
∗

(𝐼U − 𝑇) + (𝐼U − 𝑇)

∗

𝑇)𝑇
−1
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

× ⟨𝑇𝑓, 𝑇𝑓⟩

≤ (1 +𝑀 + 2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
−1

− 𝐼U

󵄩
󵄩
󵄩
󵄩
󵄩
) ⟨𝑇𝑓, 𝑇𝑓⟩

≤ (1 + √𝑀)

2

⟨𝑇𝑓, 𝑇𝑓⟩ ,

⟨𝑇𝑓, 𝑇𝑓⟩ = ⟨𝑇𝑓 − 𝑓, 𝑇𝑓 − 𝑓⟩ + ⟨𝑓, 𝑓⟩

+ ⟨𝑇𝑓 − 𝑓, 𝑓⟩ + ⟨𝑓, 𝑇𝑓 − 𝑓⟩

≤ (𝑀 + 1) ⟨𝑓, 𝑓⟩

+ ⟨((𝑇 − 𝐼U) + (𝑇 − 𝐼U)
∗

) 𝑓, 𝑓⟩

≤ ((𝑀 + 1) +

󵄩
󵄩
󵄩
󵄩
󵄩
(𝑇 − 𝐼U) + (𝑇 − 𝐼U)

∗󵄩󵄩
󵄩
󵄩
󵄩
)

× ⟨𝑓, 𝑓⟩

≤ (1 +𝑀 + 2
󵄩
󵄩
󵄩
󵄩
𝑇 − 𝐼U

󵄩
󵄩
󵄩
󵄩
) ⟨𝑓, 𝑓⟩

≤ (1 + √𝑀)

2

⟨𝑓, 𝑓⟩ .

(40)

This completes the proof.

To complete this section, we generalize the results in [27]
for g-frames in Hilbert spaces to continuous g-frames in
Hilbert 𝐶∗-modules.

Proposition 18. Let {Λ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} and

{Γ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} be two continuous Parseval

g-frames for U with respect to {V
𝑚
: 𝑚 ∈ M} with synthesis

operators 𝑇
Λ
and 𝑇

Γ
, respectively. Then

(1) Ran(𝑇∗
Γ
) ⊆ Ran(𝑇∗

Λ
) if and only if there exists an

adjointable operator 𝑈 : U → U which preserves
inner product such that Γ

𝑚
= Λ
𝑚
𝑈 for each 𝑚 ∈ M.

Conversely, if 𝑈 : U → U is an adjointable operator
which preserves inner product such that Γ

𝑚
= Λ
𝑚
𝑈 for

each𝑚 ∈ M, then

Ran (𝑇∗
Λ
) = 𝑇
∗

Λ
(N (𝑈

∗

)) ⊕ Ran (𝑇∗
Γ
) ; (41)

(2) Ran(𝑇∗
Γ
) = Ran(𝑇∗

Λ
) if and only if {Λ

𝑚
: 𝑚 ∈ M} and

{Γ
𝑚
: 𝑚 ∈ M} are unitary equivalent.

Proof. (1) “⇒”. Assume that Ran(𝑇∗
Γ
) ⊆ Ran(𝑇∗

Λ
). Let us

denote 𝑃 = 𝑇
∗

Λ
𝑇
Λ
and 𝑄 = 𝑇

∗

Γ
𝑇
Γ
. Since both 𝑇

Λ
and 𝑇

Γ
are

surjective, we know that Ran(𝑃) = Ran(𝑇∗
Λ
) and Ran(𝑄) =

Ran(𝑇∗
Γ
). Since {Λ

𝑚
: 𝑚 ∈ M} and {Γ

𝑚
: 𝑚 ∈ M}

are two continuous Parseval g-frames for U, it follows that
𝑃 and 𝑄 are orthogonal projections from ⨁

𝑚∈MV
𝑚
onto

Ran(𝑇∗
Λ
) and Ran(𝑇∗

Γ
), respectively. Let 𝑈 = 𝑇

Λ
𝑇
∗

Γ
, then, for

an arbitrary element 𝑓 of U, recalling that 𝑇∗
Γ
𝑓 ∈ Ran(𝑇∗

Λ
),

we have

𝑈
∗

𝑈𝑓 = 𝑇
Γ
𝑇
∗

Λ
𝑇
Λ
𝑇
∗

Γ
𝑓 = 𝑇

Γ
𝑇
∗

Γ
𝑓 = 𝑓. (42)

Thus, 𝑈 preserves inner product. Also,

𝑈
∗

𝑓 = 𝑇
Γ
𝑇
∗

Λ
𝑓 = ∫

𝑚∈M

Γ
∗

𝑚
Λ
𝑚
𝑓𝑑𝜇 (𝑚) , (43)

and so,

∫

𝑚∈M

⟨Λ
𝑚
𝑈𝑓, Γ
𝑚
𝑓⟩𝑑𝜇 (𝑚) = ⟨∫

𝑚∈M

Γ
∗

𝑚
Λ
𝑚
𝑈𝑓𝑑𝜇 (𝑚) , 𝑓⟩

= ⟨𝑈
∗

𝑈𝑓, 𝑓⟩ = ⟨𝑓, 𝑓⟩.

(44)

Note that

∫

𝑚∈M

⟨Γ
𝑚
𝑓, Γ
𝑚
𝑓⟩ 𝑑𝜇 (𝑚) = ⟨𝑓, 𝑓⟩ ,

∫

𝑚∈M

⟨Λ
𝑚
𝑈𝑓,Λ

𝑚
𝑈𝑓⟩𝑑𝜇 (𝑚) = ⟨𝑈𝑓,𝑈𝑓⟩ = ⟨𝑓, 𝑓⟩ ;

(45)

it follows that

⟨{(Γ
𝑚
− Λ
𝑚
𝑈)𝑓 : 𝑚 ∈ M} , {(Γ

𝑚
− Λ
𝑚
𝑈)𝑓 : 𝑚 ∈ M}⟩

= ∫

𝑚∈M

⟨(Γ
𝑚
− Λ
𝑚
𝑈)𝑓, (Γ

𝑚
− Λ
𝑚
𝑈)𝑓⟩ 𝑑𝜇 (𝑚)
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= ∫

𝑚∈M

⟨Γ
𝑚
𝑓, Γ
𝑚
𝑓⟩ 𝑑𝜇 (𝑚)

− ∫

𝑚∈M

⟨Γ
𝑚
𝑓,Λ
𝑚
𝑈𝑓⟩𝑑𝜇 (𝑚)

− ∫

𝑚∈M

⟨Λ
𝑚
𝑈𝑓, Γ
𝑚
𝑓⟩ 𝑑𝜇 (𝑚)

+ ∫

𝑚∈M

⟨Λ
𝑚
𝑈𝑓,Λ

𝑚
𝑈𝑓⟩𝑑𝜇 (𝑚)

= ⟨𝑓, 𝑓⟩ − ⟨𝑓, 𝑓⟩ − ⟨𝑓, 𝑓⟩ + ⟨𝑓, 𝑓⟩ = 0.

(46)

Hence, {(Γ
𝑚
− Λ
𝑚
𝑈)𝑓 : 𝑚 ∈ M} = 0 for each 𝑓 ∈ U, and

Γ
𝑚
= Λ
𝑚
𝑈 for each𝑚 ∈ M as a consequence.

“⇐”. It is obvious.
For the second part of (1), since 𝑇

∗

Λ
is an isometry, it

follows that

Ran (𝑇∗
Λ
) = 𝑇
∗

Λ
(N (𝑈

∗

) ⊕ (N (𝑈
∗

))

⊥

)

= 𝑇
∗

Λ
(N (𝑈

∗

) ⊕ Ran (𝑈))

= 𝑇
∗

Λ
(N (𝑈

∗

)) ⊕ Ran (𝑇∗
Λ
𝑈)

= 𝑇
∗

Λ
(N (𝑈

∗

)) ⊕ Ran (𝑇∗
Γ
) .

(47)

(2) Suppose that Ran(𝑇∗
Γ
) = Ran(𝑇∗

Λ
), then (41) implies

that 𝑇∗
Λ
(N(𝑈

∗

)) = 0, and hence, N(𝑈
∗

) = 0. Thus, 𝑈∗ is
injective, and so, 𝑈 is invertible. Since 𝑈∗𝑈 = 𝐼U, it follows
that 𝑈 is unitary. For the other implication, let 𝑈 : U → U
be a unitary linear operator such that Γ

𝑚
= Λ
𝑚
𝑈 for each

𝑚 ∈ M. Then 𝑇∗
Γ
= 𝑇
∗

Λ
𝑈, and so, Ran(𝑇∗

Γ
) = Ran(𝑇∗

Λ
).

For the general case, we have the following proposition.

Proposition 19. Let {Λ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} and

{Γ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} be two continuous g-frames

for U with respect to {V
𝑚
: 𝑚 ∈ M} with synthesis operators

𝑇
Λ
and 𝑇

Γ
and frame operators 𝑆

Λ
and 𝑆
Γ
, respectively. Then

(1) Ran(𝑇∗
Γ
) ⊆ Ran(𝑇∗

Λ
) if and only if there exists an

adjointable operator 𝑈 : U → U such that Γ
𝑚

=

Λ
𝑚
𝑈 for each𝑚 ∈ M;

(2) Ran(𝑇∗
Γ
) = Ran(𝑇∗

Λ
) if and only if {Λ

𝑚
: 𝑚 ∈ M} and

{Γ
𝑚
: 𝑚 ∈ M} are similar.

Proof. (1) “⇒”. Assume that Ran(𝑇∗
Γ
) ⊆ Ran(𝑇∗

Λ
). We already

know that Ran(𝑇∗
Λ
) and Ran(𝑇∗

Γ
) are closed submodules of

⨁
𝑚∈MV

𝑚
. Then Ran(𝑇∗

Λ
) = (N(𝑇

Λ
))
⊥ and Ran(𝑇∗

Γ
) =

(N(𝑇
Γ
))
⊥, and thus,N(𝑇

Λ
) ⊆ N(𝑇

Γ
). It is easy to check that

Λ
󸀠

= {Λ
𝑚
𝑆
−1/2

Λ
: 𝑚 ∈ M} and Γ

󸀠

= {Γ
𝑚
𝑆
−1/2

Γ
: 𝑚 ∈ M}

are both continuous Parseval g-frames. Let us denote by 𝑇
Λ
󸀠

and 𝑇
Γ
󸀠 the synthesis operators of Λ󸀠 and Γ

󸀠, respectively.
Then 𝑇

Λ
󸀠 = 𝑆
−1/2

Λ
𝑇
Λ
and 𝑇

Γ
󸀠 = 𝑆
−1/2

Γ
𝑇
Γ
. Therefore, N(𝑇

Λ
󸀠) =

N(𝑇
Λ
) and N(𝑇

Γ
󸀠) = N(𝑇

Γ
). By Proposition 18, there exists

an adjointable operator 𝑆 : U → U such that Γ
𝑚
𝑆
−1/2

Γ
=

Λ
𝑚
𝑆
−1/2

Λ
𝑆 for each𝑚 ∈ M. Hence, the result follows by letting

𝑈 = 𝑆
−1/2

Λ
𝑆𝑆
1/2

Γ
.

“⇐”. It is straightforward.
(2) “⇒”. If Ran(𝑇∗

Γ
) = Ran(𝑇∗

Λ
), then Ran(𝑇∗

Γ
󸀠) =

Ran(𝑇∗
Λ
󸀠). By part (2) of Proposition 18, 𝑆 is unitary, and

consequently, 𝑈 = 𝑆
−1/2

Λ
𝑆𝑆
1/2

Γ
is invertible.

“⇐”. It is obvious.

4. Stability of Duals of Continuous g-Frames
in Hilbert 𝐶∗-Modules

Thestability of frames is important in practice and is therefore
studied widely by many authors. The stability of dual frames
is also needed in practice.However,most of the known results
on this topic are stated about canonical dual; see [28] for
frames in Hilbert spaces and [29, 30] for g-frames in Hilbert
spaces. Fortunately, Arefijamaal andGhasemi [31] presented a
stability result for alternate duals of g-frames inHilbert spaces
by observing the difference between an alternate dual and
the canonical dual. In what follows, we will generalize their
result to alternate duals of continuous g-frames in Hilbert
𝐶
∗-modules. We start with the following lemma, which

shows that the difference between an alternate dual and the
canonical dual can be considered as an adjointable operator.

Lemma 20. Let {Λ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} be a contin-

uous g-frame forUwith respect to {V
𝑚
: 𝑚 ∈ M}with bounds

𝐴, 𝐵 and the synthesis operator 𝑇
Λ
. Then there exists a one-to-

one correspondence between the duals of {Λ
𝑚
: 𝑚 ∈ M} and

operator 𝜓 ∈ End∗
𝐴
(U,⨁

𝑚∈MV
𝑚
) such that 𝑇

Λ
𝜓 = 0.

Proof. Assume first that {Γ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} is a

dual continuous g-frame of {Λ
𝑚
: 𝑚 ∈ M} with bounds 𝐴

1

and 𝐵
1
, and let 𝑆

Λ
be the frame operator of {Λ

𝑚
: 𝑚 ∈ M}.

Define 𝜓 : U → ⨁
𝑚∈MV

𝑚
, 𝑓 󳨃→ 𝜓𝑓 by

(𝜓𝑓)
𝑚
= Γ
𝑚
𝑓 − Λ

𝑚
𝑆
−1

Λ
𝑓, 𝑚 ∈ M. (48)

Then 𝜓 is adjointable, that is; 𝜓 ∈ End∗
𝐴
(U,⨁

𝑚∈MV
𝑚
).

Indeed,

⟨𝜓𝑓, 𝑔⟩ = ∫

𝑚∈M

⟨(𝜓𝑓)
𝑚
, 𝑔
𝑚
⟩ 𝑑𝜇 (𝑚)

= ∫

𝑚∈M

⟨Γ
𝑚
𝑓 − Λ

𝑚
𝑆
−1

Λ
𝑓, 𝑔
𝑚
⟩ 𝑑𝜇 (𝑚)

= ∫

𝑚∈M

⟨𝑓, Γ
∗

𝑚
𝑔
𝑚
⟩ 𝑑𝜇 (𝑚)

− ∫

𝑚∈M

⟨𝑓, 𝑆
−1

Λ
Λ
∗

𝑚
𝑔
𝑚
⟩ 𝑑𝜇 (𝑚)

= ∫

𝑚∈M

⟨𝑓, Γ
∗

𝑚
𝑔
𝑚
− 𝑆
−1

Λ
Λ
∗

𝑚
𝑔
𝑚
⟩ 𝑑𝜇 (𝑚)

= ⟨𝑓,∫

𝑚∈M

(Γ
∗

𝑚
𝑔
𝑚
− 𝑆
−1

Λ
Λ
∗

𝑚
𝑔
𝑚
) 𝑑𝜇 (𝑚)⟩ ,

(49)
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for all 𝑓 ∈ U, 𝑔 = {𝑔
𝑚
} ∈ ⨁

𝑚∈MV
𝑚
. Moreover, we have

𝑇
Λ
𝜓𝑓 = ∫

𝑚∈M

Λ
∗

𝑚
(𝜓𝑓)
𝑚
𝑑𝜇 (𝑚)

= ∫

𝑚∈M

Λ
∗

𝑚
(Γ
𝑚
𝑓 − Λ

𝑚
𝑆
−1

Λ
𝑓) 𝑑𝜇 (𝑚)

= ∫

𝑚∈M

Λ
∗

𝑚
Γ
𝑚
𝑓𝑑𝜇 (𝑚) − ∫

𝑚∈M

Λ
∗

𝑚
Λ
𝑚
𝑆
−1

Λ
𝑓𝑑𝜇 (𝑚)

= 𝑓 − 𝑓 = 0.

(50)

Conversely, let 𝜓 ∈ End∗
𝐴
(U,⨁

𝑚∈MV
𝑚
) and 𝑇

Λ
𝜓 = 0.

Take

Γ
𝑚
𝑓 = (𝜓𝑓)

𝑚
+ Λ
𝑚
𝑆
−1

Λ
𝑓, 𝑓 ∈ U, 𝑚 ∈ M. (51)

Since
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

⟨Γ
𝑚
𝑓, Γ
𝑚
𝑓⟩ 𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1/2

=

󵄩
󵄩
󵄩
󵄩
󵄩
{Γ
𝑚
𝑓}
𝑚∈M

󵄩
󵄩
󵄩
󵄩
󵄩
≤

󵄩
󵄩
󵄩
󵄩
󵄩
{(𝜓𝑓)

𝑚
}
𝑚∈M

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

{Λ
𝑚
𝑆
−1

Λ
𝑓}
𝑚∈M

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
𝜓𝑓

󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

⟨Λ
𝑚
𝑆
−1

Λ
𝑓,Λ
𝑚
𝑆
−1

Λ
𝑓⟩𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1/2

≤

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑓

󵄩
󵄩
󵄩
󵄩
+

1

√𝐴

󵄩
󵄩
󵄩
󵄩
𝑓

󵄩
󵄩
󵄩
󵄩
,

(52)

it follows that {Γ
𝑚

: 𝑚 ∈ M} is a continuous g-Bessel
sequence forUwith respect to {V

𝑚
: 𝑚 ∈ M}. Furthermore,

∫

𝑚∈M

Λ
∗

𝑚
Γ
𝑚
𝑓𝑑𝜇 (𝑚) = ∫

𝑚∈M

Λ
∗

𝑚
(𝜓𝑓)
𝑚
𝑑𝜇 (𝑚)

+ ∫

𝑚∈M

Λ
∗

𝑚
Λ
𝑚
𝑆
−1

Λ
𝑓𝑑𝜇 (𝑚)

= 𝑇
Λ
𝜓𝑓 + 𝑓 = 𝑓.

(53)

Thus, {Γ
𝑚
: 𝑚 ∈ M} is a dual continuous g-frame of {Λ

𝑚
:

𝑚 ∈ M}, by Proposition 6.

Theorem 21. Let {Λ
𝑚

∈ End∗
𝐴
(U,V

𝑚
) : 𝑚 ∈ M} and

{Γ
𝑚
∈ End∗

𝐴
(U,V

𝑚
) : 𝑚 ∈ M} be two continuous g-frames

forU with respect to {V
𝑚
: 𝑚 ∈ M} with bounds 𝐴

1
, 𝐵
1
and

𝐴
2
, 𝐵
2
, respectively. Also, let {Λ󸀠

𝑚
: 𝑚 ∈ M} be a fixed dual of

{Λ
𝑚
: 𝑚 ∈ M} with frame bounds 𝐴

3
, 𝐵
3
. If {Λ

𝑚
− Γ
𝑚
: 𝑚 ∈

M} is a continuous g-Bessel sequence with Bessel bound 𝜖, then
there exists a dual {Γ󸀠

𝑚
: 𝑚 ∈ M} of {Γ

𝑚
: 𝑚 ∈ M} such that

{Λ
󸀠

𝑚
− Γ
󸀠

𝑚
: 𝑚 ∈ M} is also a continuous g-Bessel sequence.

Proof. Let us denote by 𝑇
Λ
, 𝑇
Γ
and 𝑆

Λ
, 𝑆
Γ
the synthesis

operators and frame operators of {Λ
𝑚
: 𝑚 ∈ M} and {Γ

𝑚
:

𝑚 ∈ M}, respectively. By the proof of Lemma 20 we know
that there exists 𝜓 ∈ End∗

𝐴
(U,⨁

𝑚∈MV
𝑚
) with

(𝜓𝑓)
𝑚
=

1

2√𝜖

1

(√𝐵
3
+ 1/√𝐴

1
)

(Λ
󸀠

𝑚
𝑓 − Λ

𝑚
𝑆
−1

Λ
𝑓) (54)

such that 𝑇
Λ
𝜓 = 0 for all 𝑓 ∈ U, 𝑚 ∈ M. A simple calcula-

tion shows that

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩
≤

1

2√𝜖

1

(√𝐵
3
+ 1/√𝐴

1
)

(√𝐵
3
+

1

√𝐴
1

) =

1

2√𝜖

. (55)

Let

Θ
𝑚
𝑓 = Γ
𝑚
𝑆
−1

Γ
𝑓 + (𝜓𝑓)

𝑚
, ∀𝑓 ∈ U, 𝑚 ∈ M. (56)

It is easy to see that {Θ
𝑚
: 𝑚 ∈ M} is a continuous g-Bessel

sequence. Let 𝑇
Θ
be the synthesis operator of {Θ

𝑚
: 𝑚 ∈ M},

then ‖𝑇
Θ
‖ = ‖𝑇

∗

Θ
‖ ≤ 1/√𝐴

2
+ 1/(2√𝜖) and

󵄩
󵄩
󵄩
󵄩
𝑓 − 𝑇
Γ
𝑇
∗

Θ
𝑓
󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑓 − ∫

𝑚∈M

Γ
∗

𝑚
Θ
𝑚
𝑓𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑓 − ∫

𝑚∈M

Γ
∗

𝑚
Γ
𝑚
𝑆
−1

Γ
𝑓𝑑𝜇 (𝑚)

−∫

𝑚∈M

Γ
∗

𝑚
(𝜓𝑓)
𝑚
𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
𝑇
Γ
𝜓𝑓

󵄩
󵄩
󵄩
󵄩
=

󵄩
󵄩
󵄩
󵄩
𝑇
Γ
𝜓𝑓 − 𝑇

Λ
𝜓𝑓

󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
𝑇
Γ
− 𝑇
Λ

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩

≤ √𝜖

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑓

󵄩
󵄩
󵄩
󵄩

≤ √𝜖

1

2√𝜖

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
=

1

2

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
.

(57)

Hence, ‖𝐼U −𝑇
Γ
𝑇
∗

Θ
‖ < 1, and furthermore, 𝑇

Γ
𝑇
∗

Θ
is invertible.

Therefore, every 𝑓 ∈ U can be represented by

𝑓 = 𝑇
Γ
𝑇
∗

Θ
(𝑇
Γ
𝑇
∗

Θ
)

−1

𝑓 = ∫

𝑚∈M

Γ
∗

𝑚
Θ
𝑚
(𝑇
Γ
𝑇
∗

Θ
)

−1

𝑓𝑑𝜇 (𝑚) ,

(58)

showing that {Γ󸀠
𝑚
: 𝑚 ∈ M} = {Θ

𝑚
(𝑇
Γ
𝑇
∗

Θ
)
−1

: 𝑚 ∈ M} is
a dual of {Γ

𝑚
: 𝑚 ∈ M}. In what follows, we will show that

{Γ
󸀠

𝑚
: 𝑚 ∈ M} is the desired continuous g-frame.
If we take 𝑇 = (𝑇

Γ
𝑇
∗

Θ
)
−1, then

‖𝑇‖ ≤

1

1 −

󵄩
󵄩
󵄩
󵄩
𝐼U − 𝑇

−1
󵄩
󵄩
󵄩
󵄩

≤

1

1 − √𝜖

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩

, (59)

and so,

󵄩
󵄩
󵄩
󵄩
𝐼U − 𝑇

󵄩
󵄩
󵄩
󵄩
≤ ‖𝑇‖

󵄩
󵄩
󵄩
󵄩
󵄩
𝐼U − 𝑇

−1
󵄩
󵄩
󵄩
󵄩
󵄩
≤

√𝜖

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩

1 − √𝜖
󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩

. (60)
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Denoting by 𝑇
Λ
󸀠 the synthesis operator of {Λ󸀠

𝑚
: 𝑚 ∈ M}, we

have

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

(Λ
󸀠

𝑚
)

∗

𝑔
𝑚
𝑑𝜇 (𝑚)

−∫

𝑚∈M

(Γ
󸀠

𝑚
)

∗

𝑔
𝑚
𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑚∈M

(Λ
󸀠

𝑚
)

∗

𝑔
𝑚
𝑑𝜇 (𝑚)

−∫

𝑚∈M

𝑇
∗

Θ
∗

𝑚
𝑔
𝑚
𝑑𝜇 (𝑚)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
𝑇
Λ
󸀠𝑔 − 𝑇

∗

𝑇
Θ
𝑔

󵄩
󵄩
󵄩
󵄩

=
󵄩
󵄩
󵄩
󵄩
𝑇
Λ
󸀠𝑔 − 𝑇

∗

𝑇
Λ
󸀠𝑔 + 𝑇

∗

𝑇
Λ
󸀠𝑔 − 𝑇

∗

𝑇
Θ
𝑔
󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
𝐼U − 𝑇

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑇
Λ
󸀠𝑔

󵄩
󵄩
󵄩
󵄩

+ ‖𝑇‖

󵄩
󵄩
󵄩
󵄩
𝑇
Λ
󸀠𝑔 − 𝑇

Θ
𝑔
󵄩
󵄩
󵄩
󵄩

≤ (

󵄩
󵄩
󵄩
󵄩
𝐼U − 𝑇

󵄩
󵄩
󵄩
󵄩
+ ‖𝑇‖)

󵄩
󵄩
󵄩
󵄩
𝑇
Λ
󸀠𝑔

󵄩
󵄩
󵄩
󵄩

+ ‖𝑇‖

󵄩
󵄩
󵄩
󵄩
𝑇
Θ
𝑔
󵄩
󵄩
󵄩
󵄩

≤

1 + √𝜖

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩

1 − √𝜖
󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩

√
𝐵
󸀠
󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩

+

1

1 − √𝜖

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩

(

1

√𝐴
2

+

1

2√𝜖

)
󵄩
󵄩
󵄩
󵄩
𝑔
󵄩
󵄩
󵄩
󵄩

=

(1 + √𝜖

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩
)√𝐵
1
+ 1/√𝐴

2
+ 1/2√𝜖

1 − √𝜖
󵄩
󵄩
󵄩
󵄩
𝜓
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑔

󵄩
󵄩
󵄩
󵄩
,

(61)

where 𝐵󸀠 is the upper frame bound of {Λ󸀠
𝑚
: 𝑚 ∈ M}. The

proof is completed.
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