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An inverse problem for Dirac differential operators with discontinuity conditions and discontinuous coefficient is studied. It is
shown by Hochstadt and Lieberman’s method that if the potential function 𝑝(𝑥) in Ω(𝑥) is prescribed over the interval (𝜋/2, 𝜋),
then a single spectrum suffices to determine 𝑝(𝑥) on the interval (0, 𝜋) and it is also shown here that 𝜌(𝑥) is uniquely determined
by a spectrum.

1. Introduction

In this paper, we are concerned with the Dirac operator 𝐿
generated by equation

ℓ (𝑦) := 𝐵𝑦
󸀠

(𝑥) + Ω (𝑥) 𝑦 (𝑥) = 𝜆𝜌 (𝑥) 𝑦 (𝑥) ,

𝑥 ∈ 𝐼 := (0,
𝜋

2
) ∪ (

𝜋

2
, 𝜋)

(1)

with

𝐵 = (
0 1

−1 0
) , Ω (𝑥) = (

𝑝 (𝑥) 𝑞 (𝑥)

𝑞 (𝑥) −𝑝 (𝑥)
) ,

𝜌 (𝑥) =
{

{

{

1, 0 ≤ 𝑥 <
𝜋

2

𝛼,
𝜋

2
< 𝑥 ≤ 𝜋,

(2)

where 1 < 𝛼 ∈ R+, 𝑦(𝑥) = (
𝑦
1
(𝑥)

𝑦
2
(𝑥)
), subject to the boundary

conditions

𝑦
1
(0) = 0, (3)

𝑦
2
(𝜋) = 0, (4)

and discontinuity conditions

𝑦(
𝜋

2
+ 0) = 𝐴𝑦(

𝜋

2
− 0) , (5)

where 𝑝(𝑥) and 𝑞(𝑥) are real valued functions in 𝐿
2
(0, 𝜋), 𝜆

is a spectral parameter, and 𝐴 = (
𝛽 0

0 𝛽
−1 ), 𝛽 ∈ R+ \ {1}.

Inverse problems of spectral analysis implicate the recon-
struction of a linear operator from its spectral data (e.g., see
[1–5]). Half inverse problem for a Dirac operator consists in
reconstruction of this operator from its spectrum and half of
the potential.

The first result on the half-inverse problem is due to
Hochstadt and Lieberman [6]. After that, Hald [7] proved
that if the potential is known over half of the interval and
if one boundary conditions is given, then the potential and
the other boundary condition are uniquely determined by
the eigenvalues. In [8, 9], Malamud and Gesztesy and Simon
obtained some new uniqueness results in inverse spectral
analysis with partial information on the potential for scalar
and matrix Sturm-Liouville equations, respectively. In 2001,
Sakhnovich [10] studied the existence of solution to the half-
inverse problem. In [11], necessary and sufficient condition
for solvability of the half-inverse spectral problem for Sturm-
Liouville operators with singular operator was taken. In
[12], by using the Hochstadt and Lieberman’s method, half-
inverse problem was solved for diffusion operators. In [13],
the authors presented half-inverse problem for the Sturm-
Liouville equationwith eigenparameter-dependent boundary
conditions.

On the other hand, the fundamental and detailed results
about Dirac operators were given in [14]. Moreover, direct or
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inverse spectral problems for Dirac operators are largely well
studied in [1, 8, 15].

There are also some studies about the interior inverse
problems. Arutyunyan [16] proved that the eigenvalues 𝜆

𝑛
,

𝑛 = 0, 1, . . . and normalizing coefficients 𝛼
𝑛
= ‖𝑦
𝑛
‖
{𝐿
2
(0.1)}

2 ,
𝑛 = 0, 1, . . . uniquely determined the potential 𝑄(𝑥).
Malamud [8] proved an analog of Borg theorem [17]; he
showed that the spectra of two boundary value problems for
an operator with different boundary conditions at one end
uniquely determined the potential 𝑄(𝑥). He also proved an
analog of the theorem of Hochstadt and Lieberman [6]; one
spectrum and a potential on the interval (0, 1/2) uniquely
determined the potential 𝑄(𝑥) on the whole interval [0, 1].
On the other hand, in 2001, Del Rio and Grébert [18] proved
that in the casewhere𝜑 is a priori known on [𝑎, 1], then only a
part (depending on 𝑎) of two spectra determined 𝜑 on [0, 1].
Furthermore, inverse problems for interior spectral data of
the Sturm-Liouville and Dirac operators were studied in [19–
22].

The jump conditions like (5) appear in-some important
physical problems. The work in [7] is a well-known work
about discontinuous inverse eigenvalue problems. Direct and
inverse problems for Dirac operators with discontinuities
inside the interval were investigated in [23].

In this paper, by using the Hochstadt and Lieberman’s
method in [6], we discuss the half-inverse problem for Dirac
operator with discontinuity conditions and discontinuous
coefficients (1)–(5). Furthermore, the potential 𝑝(𝑥) and
discontinuous coefficient 𝜌(𝑥) are uniquely determined.

2. Statement of Results

Let the function 𝜑(⋅, 𝜆) : 𝐼 → 𝑅
2 be solution of (1) which

satisfies the initial conditions

𝜑 (0, 𝜆) = (
0

−1
) (6)

and the jump conditions (5).
It is shown in [14] that, for the solution 𝜑(𝑥, 𝜆), the

following representation holds:

𝜑 (𝑥, 𝜆)=𝜑
0
(𝑥, 𝜆) + ∫

𝑥

0

𝐾 (𝑥, 𝑡) 𝜑
0
(𝑡, 𝜆) 𝑑𝑡, for 0 < 𝑥 < 𝜋

2
,

(7)

where 𝜑
0
(𝑥, 𝜆) = (𝜑

01
(𝑥, 𝜆), 𝜑

02
(𝑥, 𝜆))

𝑇 has the form

𝜑
01
(𝑥, 𝜆) =

{{{

{{{

{

sin 𝜆𝑥, 0 ≤ 𝑥 <
𝜋

2
𝛽
+ sin 𝜆𝜇 (𝑥)
+𝛽
− sin 𝜆 (𝜋 − 𝜇 (𝑥)) , 𝜋

2
< 𝑥 ≤ 𝜋,

(8)

𝜑
02
(𝑥, 𝜆) =

{{{

{{{

{

− cos 𝜆𝑥, 0 ≤ 𝑥 <
𝜋

2
−𝛽
+ cos 𝜆𝜇 (𝑥)
+𝛽
− cos 𝜆 (𝜋 − 𝜇 (𝑥)) , 𝜋

2
< 𝑥 ≤ 𝜋,

(9)

𝛽
±
= (1/2)(𝛽 ± 𝛽), 𝐾(𝑥, 𝑡) = (𝐾

𝑖𝑗
(𝑥, 𝑡))

𝑖,𝑗=1,2
, and𝐾

𝑖𝑗
(𝑥, 𝑡) are

real valued continuous functions for 𝑖, 𝑗 = 1, 2 and for each

𝑥, 𝜇 (𝑥) = {
𝑥, 0 ≤ 𝑥 < 𝜋/2

𝛼𝑥 − 𝛼 (𝜋/2) + (𝜋/2) , 𝜋/2 < 𝑥 ≤ 𝜋.
(10)

Next, we define the function

Δ (𝜆) = 𝜑
2
(𝜋, 𝜆) . (11)

The zeros of Δ(𝜆) which is called the characteristic
function of the problem (1)–(5) are the eigenvalues of 𝐿.

From the equalities (7)–(11), we have

Δ (𝜆) = Δ
0
(𝜆) + 𝑜 (exp 𝜏𝜇 (𝜋)) , (12)

where Δ
0
(𝜆) = −𝛽

+ cos 𝜆𝜇(𝜋) + 𝛽− cos 𝜆(𝜋 − 𝜇(𝜋)) and 𝜏 =
| Im 𝜆|.

Theorem 1. (i) The problem 𝐿 has denumerable many eigen-
values such that all of them are real and simple.

(ii) The eigenvalues 𝜆
𝑛
are expressed by the following

asymptotic formula:

𝜆
𝑛
= 𝜆
0

𝑛
+ 𝑂 (1) , (13)

where 𝜆0
𝑛
are the zeros of Δ

0
(𝜆) and 𝜆

0

𝑛
= 𝑛𝜋/𝜇(𝜋) + ℎ

𝑛
,

sup
𝑛
|ℎ
𝑛
| < ∞.

Proof. (i) Since Δ(𝜆) is entire function, it has denumerable
many zeros. Moreover, from [23], zeros of {𝜆

𝑛
} are real and

simple.
(ii) It is shown in [24] that 𝜆0

𝑛
= 𝑛𝜋/𝜇(𝜋) + 𝑂(1). It is

obvious that |Δ
0
(𝜆)| ≥ 𝐶

𝛿
exp 𝜏𝜇(𝜋) for 𝜆 ∈ 𝐺

𝛿
:= {𝜆 : |𝜆 −

𝜆
𝑛
| > 𝛿} and Δ(𝜆) − Δ

0
(𝜆) = 𝑜(exp 𝜏𝜇(𝜋)).

Therefore, it follows from the Rouche’s theorem that the
functions Δ

0
(𝜆) and Δ(𝜆) have the same number of zeros

inside the contour 𝛾
𝜀
:= {𝜆 : |𝜆| = |𝜆

0

𝑛
| − 𝜀}; that is, the

eigenvalues 𝜆
𝑛
are given by the following asymptotic formula:

𝜆
𝑛
=

𝑛𝜋

𝜇 (𝜋)
(1 + 𝑂(

1

𝑛
)) . (14)

Consider a second operator 𝐿̃ generated by the differential
equation

𝐵𝑦
󸀠

(𝑥) + Ω̃ (𝑥) 𝑦 (𝑥) = 𝜆𝜌 (𝑥) 𝑦 (𝑥) ,

𝑥 ∈ 𝐼 := (0,
𝜋

2
) ∪ (

𝜋

2
, 𝜋)

(15)

subject to the same boundary conditions (3) and (4) and
discontinuity condition (5). Here, Ω̃(𝑥) = (

𝑝(𝑥) 𝑞(𝑥)

𝑞(𝑥) −𝑝(𝑥)
) with

a real valued function 𝑝(𝑥) ∈ 𝐿
2
(0, 𝜋).

We denote eigenvalues by 𝜆
𝑛
and the corresponding

eigenfunctions by 𝜑
𝑛
(𝑥) = 𝜑(𝑥, 𝜆

𝑛
) of the problem 𝐿 and

denote eigenvalues by 𝜆̃
𝑛
and the corresponding eigenfunc-

tions by 𝜑
𝑛
(𝑥) = 𝜑(𝑥, 𝜆̃

𝑛
) of the problem 𝐿̃.
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Lemma 2. If 𝜆
𝑛
= 𝜆̃
𝑛
, then 𝛼 = 𝛼̃ that is, 𝜌(𝑥) = 𝜌(𝑥).

Proof. Since 𝜆
𝑛

= (𝑛𝜋/𝜇(𝜋))(1 + 𝑂(1/𝑛)), then 𝜆̃
𝑛

=

(𝑛𝜋/𝜇(𝜋))(1+𝑂(1/𝑛)), (𝑛𝜋/𝜇(𝜋))(1+𝑂(1/𝑛))= (𝑛𝜋/𝜇(𝜋))(1+
𝑂(1/𝑛)). Letting 𝑛 → ∞, then we conclude that 𝜇(𝜋) =
𝜇(𝜋). Moreover, since 𝜇(𝜋) = (𝜋/2)(𝛼 + 1), then 𝛼 = 𝛼̃. So
𝜌(𝑥) = 𝜌(𝑥).

Theorem 3. If 𝜆
𝑛
= 𝜆̃
𝑛
, for all 𝑛 ∈ N and 𝑝(𝑥) = 𝑝(𝑥), for

𝑥 ∈ (𝜋/2, 𝜋), then 𝑝(𝑥) = 𝑝(𝑥) almost everywhere on (0, 𝜋).

Proof. Let us write (1) for the solutions 𝜑 and 𝜑 and take into
account Lemma 2 as

𝐵𝜑
󸀠

(𝑥, 𝜆) + Ω (𝑥) 𝜑 (𝑥, 𝜆) = 𝜆𝜌 (𝑥) 𝜑 (𝑥, 𝜆) ,

𝐵𝜑
󸀠

(𝑥, 𝜆) + Ω̃ (𝑥) 𝜑 (𝑥, 𝜆) = 𝜆𝜌 (𝑥) 𝜑 (𝑥, 𝜆) .

(16)

If we multiply these equalities by 𝜑(𝑥, 𝜆) and 𝜑(𝑥, 𝜆),
respectively, and subtract, then we obtain

𝑑

𝑑𝑥
{𝜑
1
(𝑥, 𝜆) 𝜑

2
(𝑥, 𝜆) − 𝜑

1
(𝑥, 𝜆) 𝜑

2
(𝑥, 𝜆)}

= [Ω (𝑥) − Ω̃ (𝑥)] 𝜑 (𝑥, 𝜆) 𝜑 (𝑥, 𝜆) .

(17)

Integrating the last equality from 0 to 𝜋 with respect to 𝑥,
the equality

{𝜑
1
(𝑥, 𝜆) 𝜑

2
(𝑥, 𝜆) − 𝜑

1
(𝑥, 𝜆) 𝜑

2
(𝑥, 𝜆)}

󵄨󵄨󵄨󵄨
𝜋

0

= ∫

𝜋

0

[Ω (𝑥) − Ω̃ (𝑥)] 𝜑 (𝑥, 𝜆) 𝜑 (𝑥, 𝜆) 𝑑𝑥

= ∫

𝜋

0

[𝑝 (𝑥) − 𝑝 (𝑥)] 𝐽𝜑 (𝑥, 𝜆) 𝜑 (𝑥, 𝜆) 𝑑𝑥

(18)

is obtained where 𝐽 := ( 1 0
0 −1

). Applying the initial condition
(6) and the assumption 𝑝(𝑥) = 𝑝(𝑥), 𝑥 ∈ (𝜋/2, 𝜋) in hypo-
thesis, we get

{𝜑
1
(𝑥, 𝜆) 𝜑

2
(𝑥, 𝜆) − 𝜑

1
(𝑥, 𝜆) 𝜑

2
(𝑥, 𝜆)}

󵄨󵄨󵄨󵄨
𝜋

0

= ∫

𝜋/2

0

[Ω (𝑥) − Ω̃ (𝑥)] 𝜑 (𝑥, 𝜆) 𝜑 (𝑥, 𝜆) 𝑑𝑥

= ∫

𝜋/2

0

[𝑝 (𝑥) − 𝑝 (𝑥)] 𝐽𝜑 (𝑥, 𝜆) 𝜑 (𝑥, 𝜆) 𝑑𝑥.

(19)

Define

𝐹 (𝜆) := ∫

𝜋/2

0

[𝑝 (𝑥) − 𝑝 (𝑥)] 𝐽𝜑 (𝑥, 𝜆) 𝜑 (𝑥, 𝜆) 𝑑𝑥, (20)

where

𝐽𝜑 (𝑥, 𝜆) 𝜑 (𝑥, 𝜆) = − cos 2𝜆𝑥 + ∫
𝑥

0

𝐾
1
(𝑥, 𝑡) cos 2𝜆𝑡𝑑𝑡

+ ∫

𝑥

0

𝐾
2
(𝑥, 𝑡) sin 2𝜆𝑡𝑑𝑡

(21)

and𝐾
𝑖
(𝑥, 𝑡), 𝑖 = 1, 2 depend only on 𝑥, 𝑡.

Then we get from the boundary condition (4) that

𝐹 (𝜆
𝑛
) = 0 (22)

for all 𝑛.
Now, define

𝜒 (𝜆) :=
𝐹 (𝜆)

Δ (𝜆)
. (23)

𝜒(𝜆) is an entire function. Since 𝐹(𝜆) = 𝑂(exp 𝜏𝜋) and
|Δ(𝜆)| ≥ 𝐶

𝛿
exp 𝜏𝜇(𝜋) for 𝜆 ∈ 𝐺

𝛿
:= {𝜆 : |𝜆 − 𝜆

𝑛
| > 𝛿}

where 𝜇(𝜋) = (𝜋/2)(𝛼 + 1), then 𝜒(𝜆) is constant from the
Liouville’s theorem. Furthermore,

lim
𝜆→∞
𝜆∈R

𝜒 (𝜆) = 0 (24)

from the equalities (7), (9), and (21) and the Riemann-
Lebesgue lemma. Thus, 𝜒(𝜆) = 0 on the whole 𝜆-plane.

It follows from (20) and (21) that

∫

𝜋/2

0

𝑄 (𝑥) {cos 2𝜆𝑥 − ∫
𝑥

0

𝐾
1
(𝑥, 𝑡) cos 2𝜆𝑡𝑑𝑡

−∫

𝑥

0

𝐾
2
(𝑥, 𝑡) sin 2𝜆𝑡𝑑𝑡} 𝑑𝑥 = 0

(25)

for all 𝜆 where 𝑄(𝑥) := [𝑝(𝑥) − 𝑝(𝑥)]. This can be rewritten
as

∫

𝜋/2

0

cos 2𝜆𝜏 [𝑄 (𝜏) + ∫

𝜋/2

𝜏

𝑄 (𝑥)𝐾
1
(𝑥, 𝑡) 𝑑𝑥] 𝑑𝑡

+ ∫

𝜋/2

0

sin 2𝜆𝑡 ∫
𝜋/2

𝜏

𝑄 (𝑥)𝐾
2
(𝑥, 𝑡) 𝑑𝑥 𝑑𝑡 = 0.

(26)

From the completeness of the functions (cos 2𝜆𝜏,
sin 2𝜆𝑡)𝑇 in 𝐿

2
(0, 𝜋) ⊕ 𝐿

2
(0, 𝜋), we have

𝑄 (𝜏) + ∫

𝜋/2

𝜏

𝑄 (𝑥)𝐾
1
(𝑥, 𝑡) 𝑑𝑥 = 0, for 0 < 𝜏 < 𝜋

2
. (27)

It follows that 𝑄(𝑥) = 0; that is, 𝑝(𝑥) = 𝑝(𝑥) almost every-
where for 𝑥 ∈ (0, 𝜋).
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