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Copyright © 2013 Y. Lu and R. Ma. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present sufficient conditions ensuring the lower and upper functions on the reversed-order for the periodic difference equations.
This enables us to obtain the existence of positive periodic solutions of the second-order difference equationΔ2𝑢(𝑡−1) = 𝑔(𝑡)/𝑢𝜇(𝑡)−
ℎ(𝑡)/𝑢

𝜆
(𝑡) + 𝑓(𝑡), 𝑡 ∈ Z, where 𝑔, ℎ : Z → [0,∞), and 𝑓 : Z → R are 𝑇-periodic functions, 𝜆, 𝜇 > 0.

1. Introduction

The theory of nonlinear difference equations has been widely
used to study discrete models appearing in many fields such
as computer science, economics, neural network, ecology,
and cybernetics, see for example, [1]. Recently, there aremany
papers to study the existence of positive periodic solutions
for second-order difference equations, see [2–7] and their
references therein. However, there are few techniques for
studying the existence of positive solutions of difference
equations with singularity, and thus the results in the field
are very rare, see [8–13]. The existence of positive periodic
solutions for continuous case has been studied by Torres, see
[14, 15].

Let Z denote the integer set, for 𝑎, 𝑏 ∈ Z with 𝑎 < 𝑏,
[𝑎, 𝑏]Z := {𝑎, 𝑎 + 1, . . . , 𝑏}.

In 2012, Lu and Ma are concerned with the existence
of positive periodic solutions of the second-order difference
equation as follows:

Δ
2
𝑢 (𝑡 − 1) =

𝑔 (𝑡)

𝑢𝜇 (𝑡)
−
ℎ (𝑡)

𝑢𝜆 (𝑡)
+ 𝑓 (𝑡) , 𝑡 ∈ Z, (1)

where 𝑔, ℎ : Z → [0,∞), and 𝑓 : Z → R are 𝑇-periodic
functions, 𝜆, 𝜇 > 0. Special cases of (1) are

Δ
2
𝑢 (𝑡 − 1) =

𝑔 (𝑡)

𝑢𝜇 (𝑡)
−
ℎ (𝑡)

𝑢𝜆 (𝑡)
, 𝑡 ∈ Z, (2)

Δ
2
𝑢 (𝑡 − 1) = −

ℎ (𝑡)

𝑢𝜆 (𝑡)
+ 𝑓 (𝑡) , 𝑡 ∈ Z, (3)

Δ
2
𝑢 (𝑡 − 1) =

𝑔 (𝑡)

𝑢𝜇 (𝑡)
+ 𝑓 (𝑡) , 𝑡 ∈ Z. (4)

In the related literature, it is said that (3) has an attractive
singularity, whereas (4) has a repulsive singularity. They use
the well-order lower and upper functions of (1) to show the
existence of positive 𝑇-periodic solution of (1), (2), and (3),
respectively, see [13].

However, the well-order lower and upper solutions lose
their effects to deal with case (4). In this paper, we are devoted
to constructing lower and upper functions on the reversed-
order for (1) and dealing with the problems (1), (2), and (4),
respectively.

The structure of the paper is as follows. Section 2 contains
the tools needed in the proofs. In Section 3 we state and
prove the main results and develop some corollaries for the
equation with a singularity of mixed type. To illustrate the
results, some examples are given.

2. Auxiliary Results

Let
𝐸 := {𝑢 : Z 󳨀→ R | 𝑢 (𝑡) = 𝑢 (𝑡 + 𝑇)} (5)

under the norm ‖𝑢‖ = max
𝑡∈[1,𝑇]Z

|𝑢(𝑡)|. Then (𝐸, ‖ ⋅ ‖) is a
Banach space.
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The proofs of our results rely on the method of upper and
lower functions. The following lemmas are classical and can
be found, for example, in [3]. We introduce them in a form
suitable for us.

Lemma 1. Let there exist positive functions 𝛼, 𝛽 ∈ 𝐸, such that

Δ
2
𝛼 (𝑡 − 1) ≥

𝑔 (𝑡)

𝛼𝜇 (𝑡)
−
ℎ (𝑡)

𝛼𝜆 (𝑡)
+ 𝑓 (𝑡) , 𝑡 ∈ Z, (6)

Δ
2
𝛽 (𝑡 − 1) ≤

𝑔 (𝑡)

𝛽𝜇 (𝑡)
−
ℎ (𝑡)

𝛽𝜆 (𝑡)
+ 𝑓 (𝑡) , 𝑡 ∈ Z, (7)

and 𝛼(𝑡) ≤ 𝛽(𝑡) for 𝑡 ∈ [1, 𝑇]Z. Then there exists at least one
positive 𝑇-periodic solution to (1).

A function 𝛼 ∈ 𝐸 (resp., 𝛽 ∈ 𝐸) verifying (6) (resp, (7)) is
called lower (resp, upper) function (solution) of (1). When the
order between the lower and the upper functions is the inverse,
an additional hypothesis is needed.

Definition 2. A function 𝜑 ∈ 𝐸 and 𝜑 ≥ 0 is said to verify the
property (𝑃) if the implication

𝑢 ∈ 𝐸 Δ
2
𝑢 (𝑡 − 1) + 𝜑 (𝑡) 𝑢 (𝑡) ≥ 0, 𝑡 ∈ [1, 𝑇]Z

󳨐⇒ 𝑢 (𝑡) ≥ 0, for 𝑡 ∈ [1, 𝑇]Z
(8)

holds.

Lemma 3. Let there exist positive functions 𝛼, 𝛽 ∈ 𝐸 satisfying
(6), (7), and 𝛽(𝑡) ≤ 𝛼(𝑡), 𝑡 ∈ [1, 𝑇]Z. Moreover, there exists
𝜑 ∈ 𝐸 with the property (𝑃), such that

𝑔 (𝑡)

𝑢𝜇 (𝑡)
−
ℎ (𝑡)

𝑢𝜆 (𝑡)
− (
𝑔 (𝑡)

V𝜇 (𝑡)
−
ℎ (𝑡)

V𝜆 (𝑡)
) ≤ 𝜑 (𝑡) [V (𝑡) − 𝑢 (𝑡)] ,

𝑓𝑜𝑟 𝑡 ∈ [1, 𝑇]Z,

(9)

where 𝛽(𝑡) ≤ 𝑢(𝑡) ≤ V(𝑡) ≤ 𝛼(𝑡) for 𝑡 ∈ [0, 𝑇 + 1]Z. Then there
exists at least one positive 𝑇-periodic solution to (1).

Proof. From the condition (9), it follows that

𝑔 (𝑡)

𝑢𝜇 (𝑡)
−
ℎ (𝑡)

𝑢𝜆 (𝑡)
+ 𝜑 (𝑡) 𝑢 (𝑡) ≤

𝑔 (𝑡)

V𝜇 (𝑡)
−
ℎ (𝑡)

V𝜆 (𝑡)
+ 𝜑 (𝑡) V (𝑡) .

(10)

That is, the nonlinearity is increasing.
Define the operator 𝑇 : 𝐸 → 𝐸 as the unique solution of

problem (1) as follows:

𝑇𝑢 (𝑡) =

𝑡+𝑇

∑

𝑠=𝑡+1

𝐺 (𝑡, 𝑠) [
𝑔 (𝑠)

𝑢𝜇 (𝑠)
−
ℎ (𝑠)

𝑢𝜆 (𝑠)
+ 𝜑 (𝑡) 𝑢 (𝑡) + 𝑓 (𝑠)] ,

(11)

where 𝐺(𝑡, 𝑠) is the Green’s function of

Δ
2
𝑢 (𝑡 − 1) + 𝜑 (𝑡) 𝑢 (𝑡) = 0, 𝑡 ∈ Z, 𝑢 (𝑡) = 𝑢 (𝑡 + 𝑇) .

(12)

As 𝜑 satisfies the property (𝑃), it follows that 𝐺(𝑡, 𝑠) > 0.
Now we divide the proof into three steps.

Step 1. We show

𝑇 (𝐾) ⊂ 𝐾, (13)

where 𝐾 = {𝑢 ∈ 𝐸 | 𝛽 ≤ 𝑢 ≤ 𝛼} is a nonempty bounded
closed subset in 𝐸.

In fact, for 𝑢 ∈ 𝐾, set 𝑤 = 𝑇𝑢(𝑡). From the definitions of
𝛼, 𝛽, and𝐾, combining with (9), we have

Δ
2
(𝑤 − 𝛽) (𝑡 − 1) + 𝜑 (𝑡) (𝑤 − 𝛽) (𝑡) ≥ 0,

(𝑤 − 𝛽) (𝑡) = (𝑤 − 𝛽) (𝑡 + 𝑇) .

(14)

Using property (𝑃), we get 𝛽 ≤ 𝑤.
Analogously, we can prove that 𝑤 ≤ 𝛼. Thus, (13) holds.

Step 2. Let 𝑢
1
= 𝑇𝜂
1
, 𝑢
2
= 𝑇𝜂
2
, where 𝜂

1
, 𝜂
2
∈ 𝐾 satisfy

𝛽 ≤ 𝜂
1
≤ 𝜂
2
≤ 𝛼. Then we claim that

𝑢
1
≤ 𝑢
2
. (15)

In fact, let 𝜔 = 𝑢
2
− 𝑢
1
, it follows from (10) and (11) that

𝜔 (𝑡) = 𝑇𝜂
2
− 𝑇𝜂
1

=

𝑡+𝑇

∑

𝑠=𝑡+1

𝐺 (𝑡, 𝑠) [
𝑔 (𝑠)

𝜂
𝜇

2
(𝑠)
−
ℎ (𝑠)

𝜂
𝜆

2
(𝑠)
+ 𝜑 (𝑡) 𝜂

2
(𝑡)

−(
𝑔 (𝑠)

𝜂
𝜇

1
(𝑠)
−
ℎ (𝑠)

𝜂
𝜆

1
(𝑠)
+ 𝜑 (𝑡) 𝜂

1
(𝑡))] ≥ 0.

(16)

Step 3. The sequences {𝛼
𝑛
} and {𝛽

𝑛
} are obtained by recur-

rence:
𝛼
0
= 𝛼, 𝛽

0
= 𝛽,

𝛼
𝑛
= 𝑇𝛼
𝑛−1
, 𝛽
𝑛
= 𝑇𝛽
𝑛−1
, 𝑛 = 1, 2, . . . .

(17)

From the results of Steps 1 and 2, it follows that

𝛽 = 𝛽
0
≤ 𝛽
1
≤ ⋅ ⋅ ⋅ ≤ 𝛽

𝑛
≤ ⋅ ⋅ ⋅ ≤ 𝛼

𝑛
≤ ⋅ ⋅ ⋅ ≤ 𝛼

0
= 𝛼. (18)

Moreover, from the definition of 𝑇, we get

Δ
2
𝛼
𝑛
(𝑡 − 1) + 𝜑 (𝑡) 𝛼

𝑛
(𝑡)

=
𝑔 (𝑡)

𝛼
𝜇

𝑛−1
(𝑡)
−
ℎ (𝑡)

𝛼
𝜆

𝑛−1
(𝑡)

+ 𝜑 (𝑡) 𝛼
𝑛−1
(𝑡) + 𝑓 (𝑡) , 𝑡 ∈ Z,

𝛼
𝑛
(𝑡) = 𝛼

𝑛
(𝑡 + 𝑇) ,

Δ
2
𝛽
𝑛
(𝑡 − 1) + 𝜑 (𝑡) 𝛽

𝑛
(𝑡)

=
𝑔 (𝑡)

𝛽
𝜇

𝑛−1
(𝑡)
−
ℎ (𝑡)

𝛽
𝜆

𝑛−1
(𝑡)

+ 𝜑 (𝑡) 𝛽
𝑛−1
(𝑡) + 𝑓 (𝑡) , 𝑡 ∈ Z,

𝛽
𝑛
(𝑡) = 𝛽

𝑛
(𝑡 + 𝑇) .

(19)
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This together with (18), we can easily get that there exists
𝐶
𝛼
depending only on 𝛼 but not on 𝑡 and 𝑛, such that |𝛼

𝑛
| ≤

𝐶
𝛼
, so {𝛼

𝑛
} is bounded in 𝐸. Similarly, {𝛽

𝑛
} is bounded in

𝐸. Therefore, we can conclude that {𝛼
𝑛
} and {𝛽

𝑛
} converge

uniformly to the extremal solutions 𝑢 of the problem (1).
Subsequently, there exists at least one positive 𝑇-periodic
solutions of (1).

Property (𝑃) is just an anti-maximum principle for the
linear operator 𝐿𝑢 := Δ2𝑢(𝑡 − 1) + 𝜑(𝑡)𝑢(𝑡) with periodic
boundary conditions, and it is equivalent to have a non-
negative Green function. Reference [7] provides sufficient
conditions for 𝜑 to verify property (𝑃). In particular, we have
the following lemma.

Lemma 4 (see [7]). Let us assume 𝜑 ∈ 𝐸, 𝜑 ̸≡ 0 and the
following conditions holds:

0 ≤ 𝜑 (𝑡) < 4sin2 𝜋
2𝑇
, 𝑓𝑜𝑟 𝑡 ∈ [1, 𝑇]Z. (20)

Then 𝜑 verifies the property (𝑃).

To finish this section, we give a technical bound on the
amplitude of oscillation of a periodic function.

Lemma 5 ([13, Lemma 2.2]). Given V ∈ 𝐸, then

𝑀V − 𝑚V ≤
𝑇

4

𝑇

∑

𝑠=1

[Δ
2V (𝑠 − 1)]

+
, (21)

where

𝑀V = max {V (𝑡) : 𝑡 ∈ [1, 𝑇]Z} ,

𝑚V = min {V (𝑡) : 𝑡 ∈ [1, 𝑇]Z} .
(22)

Moreover, (21) is fulfilled as an equality if and only if V is a
constant function.

3. The Main Results

For the sake of brevity we will use the following notation
throughout the paper:

𝐺 =

𝑇

∑

𝑠=1

𝑔 (𝑠) , 𝐻 =

𝑇

∑

𝑠=1

ℎ (𝑠) , 𝐹 =

𝑇

∑

𝑠=1

𝑓 (𝑠) ,

𝐹
+
=

𝑇

∑

𝑠=1

[𝑓 (𝑠)]
+
, 𝐹

−
=

𝑇

∑

𝑠=1

[𝑓 (𝑠)]
−
.

(23)

The following theorems are the main results of the paper.

Theorem 6. Let 𝐺 > 0, 𝐹 < 0, let functions 𝑤, 𝜎 ∈ 𝐸 be such
that the equalities

Δ
2
𝑤 (𝑡 − 1) = 𝐻𝑔 (𝑡) − 𝐺ℎ (𝑡) , 𝑓𝑜𝑟 𝑡 ∈ Z, (24)

Δ
2
𝜎 (𝑡 − 1) =

|𝐹|

𝐺
𝑔 (𝑡) + 𝑓 (𝑡) , 𝑓𝑜𝑟 𝑡 ∈ Z (25)

are fulfilled and let there exist 𝑥
0
∈ (0, +∞) such that

𝑥
0
(𝑤 (𝑡) − 𝑚

𝑤
) + 𝜎 (𝑡) − 𝑚

𝜎

≤ (
𝐺

𝑥
0
𝐺𝐻 + |𝐹|

)

1/𝜇

− (
1

𝑥
0
𝐺
)

1/𝜆

, 𝑡 ∈ [1, 𝑇]Z,

(26)

where

𝑚
𝑤
= min {𝑤 (𝑡) : 𝑡 ∈ [1, 𝑇]Z} ,

𝑚
𝜎
= min {𝜎 (𝑡) : 𝑡 ∈ [1, 𝑇]Z} .

(27)

Moreover, define

𝛽 (𝑡) = (
1

𝑥
0
𝐺
)

1/𝜆

+ 𝑥
0
(𝑤 (𝑡) − 𝑚

𝑤
)

+ 𝜎 (𝑡) − 𝑚
𝜎
, 𝑓𝑜𝑟 𝑡 ∈ Z

(28)

and assume that 𝜑(𝑡) = 𝜇𝑔(𝑡)/𝛽1+𝜇(𝑡) verifies the property (𝑃).
Then problem (1) has at least one positive 𝑇-periodic solution.

Proof. Let 𝛽 be defined by (28). Then 𝛽 ∈ 𝐸 and in view of
(24) and (25), we have

Δ
2
𝛽 (𝑡 − 1)

= (𝑥
0
𝐻 +
|𝐹|

𝐺
)𝑔 (𝑡) − 𝑥

0
𝐺ℎ (𝑡) + 𝑓 (𝑡) , for 𝑡 ∈ Z.

(29)

Moreover, according to (26) and (27)

(
1

𝑥
0
𝐺
)

1/𝜆

≤ 𝛽 (𝑡) ≤ (
𝐺

𝑥
0
𝐺𝐻 + |𝐹|

)

1/𝜇

, for 𝑡 ∈ Z.

(30)

Now (29) and (30) imply

Δ
2
𝛽 (𝑡 − 1) ≤

𝑔 (𝑡)

𝛽𝜇 (𝑡)
−
ℎ (𝑡)

𝛽𝜆 (𝑡)
+ 𝑓 (𝑡) , for 𝑡 ∈ Z. (31)

Consequently, 𝛽 is an upper function to (1).
Further, we can choose 𝑥

1
∈ (0, 𝑥

0
) such that

𝑥
1
(𝑤 (𝑡) − 𝑚

𝑤
) + 𝜎 (𝑡) − 𝑚

𝜎

≤ (
1

𝑥
1
𝐺
)

1/𝜆

− (
𝐺

𝑥
1
𝐺𝐻 + |𝐹|

)

1/𝜇

, for 𝑡 ∈ [1, 𝑇]Z
(32)

and put

𝛼 (𝑡) = (
𝐺

𝑥
1
𝐺𝐻 + |𝐹|

)

1/𝜇

+ 𝑥
1
(𝑤 (𝑡) − 𝑚

𝑤
)

+ 𝜎 (𝑡) − 𝑚
𝜎
, for 𝑡 ∈ Z.

(33)

Then 𝛼 ∈ 𝐸, and in view of (24) and (25) we have

Δ
2
𝛼 (𝑡 − 1) = (𝑥

1
𝐻 +
|𝐹|

𝐺
)𝑔 (𝑡) − 𝑥

1
𝐺ℎ (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ Z.

(34)
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Moreover, according to (27) and (32)

(
𝐺

𝑥
0
𝐺𝐻 + |𝐹|

)

1/𝜇

≤ 𝛼 (𝑡) ≤ (
1

𝑥
1
𝐺
)

1/𝜆

, for 𝑡 ∈ Z.

(35)

Now (34) and (35) imply

Δ
2
𝛼 (𝑡 − 1) ≥

𝑔 (𝑡)

𝛼𝜇 (𝑡)
−
ℎ (𝑡)

𝛼𝜆 (𝑡)
+ 𝑓 (𝑡) , 𝑡 ∈ Z. (36)

Consequently, 𝛼 is a lower function to (1) and according to
(30) and (35) we have

𝛽 (𝑡) ≤ 𝛼 (𝑡) , for 𝑡 ∈ [1, 𝑇]Z. (37)

Furthermore, note that the function

𝜓 (𝑦) =
𝜇

𝛽1+𝜇
𝑦 +
1

𝑦𝜇
(38)

is nondecreasing for 𝑦 ≥ 𝛽. Therefore we have

𝑔 (𝑡) (
𝜇

𝛽1+𝜇 (𝑡)
𝑢 (𝑡) +

1

𝑢𝜇 (𝑡)
) −
ℎ (𝑡)

𝑢𝜆 (𝑡)

≤ 𝑔 (𝑡) (
𝜇

𝛽1+𝜇 (𝑡)
V (𝑡) +

1

V𝜇 (𝑡)
) −
ℎ (𝑡)

V𝜆 (𝑡)
, 𝑡 ∈ [1, 𝑇]Z,

(39)

whenever 𝛽(𝑡) ≤ 𝑢(𝑡) ≤ V(𝑡) for 𝑡 ∈ [1, 𝑇]Z, hence, we get

𝑔 (𝑡)

𝑢𝜇 (𝑡)
−
ℎ (𝑡)

𝑢𝜆 (𝑡)
− (
𝑔 (𝑡)

V𝜇 (𝑡)
−
ℎ (𝑡)

V𝜆 (𝑡)
)

≤
𝜇𝑔 (𝑡)

𝛽1+𝜇 (𝑡)
(V (𝑡) − 𝑢 (𝑡)) , for 𝑡 ∈ [1, 𝑇]Z.

(40)

Thus, the assertion follows from Lemma 3.

Remark 7. Note that for every 𝑞 ∈ 𝐸 such that ∑𝑇
𝑠=1
𝑞(𝑠) = 0,

the periodic solution V of the equation

Δ
2V (𝑡 − 1) = 𝑞 (𝑡) , for 𝑡 ∈ [1, 𝑇]Z,

V (0) = V (𝑇) , ΔV (0) = ΔV (𝑇)
(41)

is given by the Green formula:

V (𝑡) = 𝑐 −
1

𝑇
[

𝑡−1

∑

𝑠=1

(𝑇 − 𝑡) 𝑠𝑞 (𝑠) +

𝑇

∑

𝑠=𝑡

𝑡 (𝑇 − 𝑠) 𝑞 (𝑠)] , (42)

where 𝑐 ∈ R. Therefore, the periodic functions 𝑤 and 𝜎 with
properties (24) and (25) exist and, moreover, are unique up
to a constant term, the value of which has no influence on the
validity of the condition (26). A similar observation can be
made in relation to the formulations of the theorems given
below.

Theorem 8. Let 𝜇 > 𝜆,𝐻 > 0, 𝐺 > 0, 𝐹 = 0, let functions 𝑤,
𝜎 ∈ 𝐸 be such that (24) and (25) are fulfilled and let there exist
𝑥
0
∈ (0, +∞) such that

𝑥
0
(𝑤 (𝑡) − 𝑚

𝑤
) + 𝜎 (𝑡) − 𝑚

𝜎

≤ (
1

𝑥
0
𝐻
)

1/𝜇

− (
1

𝑥
0
𝐺
)

1/𝜆

, 𝑡 ∈ [1, 𝑇]Z,

(43)

where 𝑚
𝑤
and 𝑚

𝜎
are defined by (27). Moreover, assume that

𝜑(𝑡) = 𝜇𝑔(𝑡)/𝛽
1+𝜇
(𝑡) verifies the property (𝑃), where 𝛽 is given

by (28). Then problem (1) has at least one positive 𝑇-periodic
solution.

Proof. Note that the inequality 𝜇 > 𝜆 implies

lim
𝑥→0

+

(
1

𝑥𝐺
)

1/𝜆

− (
1

𝑥𝐻
)

1/𝜇

= +∞. (44)

Therefore, analogously to the proof of Theorem 6, one can
show that there exist lower andupper functions𝛼,𝛽 satisfying
(37). Consequently, the assertion follows from Lemma 3 with
𝜑(𝑡) = 𝜇𝑔(𝑡)/𝛽

1+𝜇
(𝑡).

Corollary 9. Let 𝜇 > 𝜆,𝐻 > 0, 𝐺 > 0, and let 𝑤 ∈ 𝐸 be such
that (24) is fulfilled. Let

𝑀
𝑤
− 𝑚
𝑤
≤
𝐺
(1+𝜇)/(𝜇−𝜆)

𝐻(1+𝜆)/(𝜇−𝜆)
(
(1 + 𝜇) 𝜆

(1 + 𝜆) 𝜇
)

((1+𝜇)𝜆)/(𝜇−𝜆)

𝜇 − 𝜆

(1 + 𝜆) 𝜇
,

(45)

where𝑚
𝑤
is given by (27) and

𝑀
𝑤
= max {𝑤 (𝑡) : 𝑡 ∈ [1, 𝑇]Z} . (46)

Moreover, let us define

𝛽 (𝑡)=(
(1 + 𝜇) 𝜆

(1 + 𝜆) 𝜇
)

𝜇/(𝜇−𝜆)

(
𝐺

𝐻
)

1/(𝜇−𝜆)

+(
(1 + 𝜆) 𝜇

(1 + 𝜇) 𝜆
)

𝜆𝜇/(𝜇−𝜆)

×
𝐻
𝜆/(𝜇−𝜆)

𝐺𝜇/(𝜇−𝜆)
(𝑤 (𝑡) − 𝑚

𝑤
) , 𝑓𝑜𝑟 𝑡 ∈ Z,

(47)

and assume that 𝜑(𝑡) = 𝜇𝑔(𝑡)/𝛽1+𝜇(𝑡) verifies the property (𝑃).
Then problem (2) has at least one positive solution.

Proof. Put 𝑓 ≡ 0 and

𝑥
0
=
𝐻
𝜆/(𝜇−𝜆)

𝐺𝜇/(𝜇−𝜆)
(
(1 + 𝜆) 𝜇

(1 + 𝜇) 𝜆
)

𝜆𝜇/(𝜇−𝜆)

. (48)

Then the assertion follows fromTheorem 8.

Corollary 10. Let 𝐺 > 0, 𝐹 < 0, let 𝜎 ∈ 𝐸 be such that (25) is
fulfilled, and let

(𝑀
𝜎
− 𝑚
𝜎
)
𝜇

|𝐹| < 𝐺, (49)
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where𝑚
𝜎
is defined by (27) and

𝑀
𝜎
= max {𝜎 (𝑡) : 𝑡 ∈ [1, 𝑇]Z} . (50)

Moreover, if

𝜇|𝐹|
(1+𝜇)/𝜇

𝑔 (𝑡)

[𝐺1/𝜇 − |𝐹|
1/𝜇
(𝑀
𝜎
− 𝜎 (𝑡))]

1+𝜇
< 4sin2 𝜋

2𝑇
, 𝑡 ∈ [1, 𝑇]Z

(51)

holds. Then problem (4) has at least one positive 𝑇-periodic
solution.

Proof. Put𝐻 = 0,

𝑥
0
=

|𝐹|
𝜆/𝜇

𝐺(𝐺1/𝜇 − |𝐹|
1/𝜇
(𝑀
𝜎
− 𝑚
𝜎
))
𝜆 (52)

and define a function 𝛽 by (28). Let 𝛽(𝑡) = (𝐺/|𝐹|)1/𝜇 −
𝑀
𝜎
+ 𝜎(𝑡) for 𝑡 ∈ [1, 𝑇]Z. Then (51) guaranties that 𝜑(𝑡) =

𝜇𝑔(𝑡)/𝛽
1+𝜇
(𝑡) satisfies the property (𝑃). Moreover, (51) yields

(25). Therefore, the assertion follows fromTheorem 6.

Corollary 11. Let 𝐺 > 0, 𝐹 < 0 and

(
𝑇

4
𝜇𝐺)

1/(1+𝜇)

|𝐹|
1/𝜇
+
𝑇

4
𝐹
−|𝐹|
1/𝜇
≤ 𝐺
1/𝜇
. (53)

Then problem (4) has at least one positive 𝑇-periodic solution.

Proof. According to Lemma 5,

𝑀
𝜎
− 𝑚
𝜎
≤
𝑇

4
𝐹
−
. (54)

Then (53) implies (51). Consequently, the assertion follows
from Corollary 10.

Example 12. Let us consider the boundary value problem:

Δ
2
𝑢 (𝑡 − 1) =

1

𝑢
−
1

4𝑇
, 𝑡 ∈ [1, 𝑇]Z,

𝑢 (0) = 𝑢 (𝑡) , Δ𝑢 (0) = Δ𝑢 (𝑇) ,

(55)

where 𝑇 > 3 is an integer.
Obviously, (1/𝑢) − (1/4) → +∞ as 𝑢 → 0. Let 𝑔 ≡ 1,

𝑓 ≡ −1/4𝑇, 𝜇 = 1. Then 𝐺 = 𝑇, 𝐹 = −1/4 and

(
𝑇

4
𝜇𝐺)

1/(1+𝜇)

|𝐹|
1/𝜇
+
𝑇

4
𝐹
−|𝐹|
1/𝜇
=
9𝑇

64
< 𝑇 = 𝐺

1/𝜇
. (56)

Thus, fromCorollary 11, problem (55) has at least one positive
𝑇-periodic solution.
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