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The scales of classes of stochastic processes are introduced. New interpolation theorems and boundedness of some transforms of
stochastic processes are proved. Interpolation method for generously monotonous processes is entered. Conditions and statements
of interpolation theorems concern the fixed stochastic process, which differs from the classical results.

1. Introduction

Interpolation methods of functional spaces are one of the
basic tools to get inequalities in parametrical spaces. These
methods are widely applied in the theory of stochastic
processes (see [1-5] and other).

In this paper classes of stochastic processes are consid-
ered, which, in some sense, are analogues of the net spaces
which were investigated in [6-8].

Assume that (Q, ®, P) is a complete probability space. A
family G = {®,},, of o-algebras @, such that &, < --- ¢
®, € - € G is called a filtration.

Let G be a filtration, a sequence {X,},.; of random
variables X, measurable function with respect to the o-
algebra ®,,. Then we say that the set X = (X,,8,),., is a
stochastic process.

Let F = {$,},»1 be a system of sets satisfying the
condition §, € --- € §F, € --- € G. We say that a stochastic
process X = (X,,,®,),, isdefined onasystem F = {{},5, if
&, € 6,, n e N.For a stochastic process X, which is defined
on a system F = {,},~;, we define the sequence of numbers

X(F) = {X,,(F)},, where

X, (F) = | xpwal. o

1
sup  —— l
Aeg,P(A)>0 P (A)

We call this sequence a majorant of a process X on a system
of sets F.

Let us give some examples of a choice of a system of sets
F = {§.)s1: 8, = Q, in this case the sequence X(F) =
{X,(F)}, is a sequence of averages of a process X = {X,};
for §, = ©,_, it is a majorant of sequence of conditional
averages M (X, | G,_,); and for &, = ©,, it is a majorant of
a process X = {X,}. The following cases are interesting: (1)
Sn = O, where 7 = 7(w) is the fixed stopping time, and
G ={AeBG:An{r=n} € G,}Q2)F, =6,,, , where
T, = T,(w), and n € N is the sequence of the stopping times.

We consider the classes of stochastic processes defined on
F, which characterize the speed of convergence of sequence
{X,,(F)/n},, to zero.

By N, ,(F),0 < p < 00,0 < g < 0o we denote the set of
all stochastic processes X, defined on F for which

. 1/q
_ 1-Galp) 5 5
XN, &) (I;k Xk) <0 @)

if0 < g < ooand

71 —
"X"NP‘OO(F) = Sl;pk /pXk <00 (3)

ifg = oo.



Let us denote

x6q
N4 (F)

0o 1/q
-G (e <o

for 0 < g < 0o, and
NZ’OO (F) = {X = (X,, %n)n>1 : sup Z“kAXk < oo]> , (5
k

for g = 0o, where
AX,
1

(6)
- ap ——— || x-xm P(dw)‘.
AE(S),PE“&)>0(P (A))l—(l/p) ’jA( 2k 2k )

We consider that

X[tx] ((,0) lf o= 1

7
0 if x <1, @

Xa (w)={

where [«] is the integer part of the number «. In particular
Xp(w) =0.

A random variable 7, which takes values in the set
(1,2,...,00), is called the Markov time of the filtration G =
{6,},51, if {w : T(w) = n} € G, for any n € N. The Markov
time 7, for which 7(w) < oo (a.p.) [9], is called the stopping
time.

Let X = (X,,,®,),5, be a stochastic process and 7 be the
Markov time. By X* we denote the stopped process X* =
(Xn/\r’ ®n)’ Where XnAT(w) = Z:’l_:ll XmXT:m(w) + XVIXT?Vl(w)
and y,(w) is the characteristic function of the set A.

We assume also that

o - 1)([“] ifa>1

ifx <1,

0=(0,6,) ®)

n<l1
Zfza by = Z;[fi][a] b

The Ng’q(F) spaces are spaces of converging stochastic
processes, where parameters «,q, and p characterize the
speed and the metrics, in which a given process converges.

In this paper we prove a Marcinkiewicz-type interpo-
lation theorem for the introduced space. An interpolation
method, essentially related to the properties of the Markov
stopping times, is introduced. In the last paragraph the given
interpolation method is applied to Besov type space with
variable approximation properties. Part of the results were
announced in [10].

We write A < B(or A = B)if A < ¢B (orcA =
B) for some positive constant ¢ independent of appropriate
quantities involved in the expressions A and B. Notation A =
Bmeans that A < Band A > B.

2. Properties of the Spaces N, (F) and N;"q(F )

We say [9] that stochastic process (X,,,®,),>; is a mar-
tingale if for every n € N the following conditions hold:
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(1) EIX,| < 00; (2) E(X,,,; | 6,) = X,, (a.p.). If instead of
property (2) it is assumed that E(X,,,, | ©,) > X, (E(X,,,, |
©,) < X,,), then we say that a process X = (X,,®,)2, isa
submartingale (supermartingale).

Definition 1. Let F = {,}, be a fixed system of sets, X =
(X,,®,), be a stochastic process defined on F. We say that a
process X belongs to the class W(F) if there exists a constant
c such that for every k < m and for every A € g

JA X, P (dw)‘ . )

j X, P (dw)‘ <C
A

This inequality implies that X (F) < cYm(F) for every
k < m. The class W(F) contains martingales, nonnega-
tive submartingales, and nonpositive supermartingales. The
stochastic process from W (F) we call generalized monotone.

Lemma?2. Letax > 0,0 < g<o00,andl < p<ocolIfX =
(X, 8,),51 € Ng’q(G) N W(G), then there exists a random
variable X ., such that X, T Koo (@p.).

Proof. Let L p,oo(Q) be the Marcinkiewicz-Lorentz space and

2"! < n < 2", Using the equivalent norm of L poo((2) spaces
(see [6]) and measurability of function X,, with respect to o-
algebra ®,,, we get the following:

1%l 00

= sup ;,U XnP(dw)l
Ae®,p(A)>0 (P (A)VP 1)a

]
= su —— X P(dw)l
Ae(ﬁn,PI()A)>0(P (apr la”
1

<C sup ——
Ac®,,P(4)>0 (P (A)) /P

IL X P (dw)‘ (10)
" 1

<C sup —
k=0 Ae(ﬁzk ,P(A)>0 (P (A))l/p

X lj (sz - sz—l) p (dw)|
A
< ClXlyes -

Taking into account that Ng’q(G) — Ng’l(G), fora > 0,
we have ”Xn"LPm[o,l] < cIIXIINg,q(G).

But M|X,| < C"Xn”LPm[o,u’ therefore by the Doob
theorem ([11]), the process X,, converges almost surely. [

Lemma 3. Letax > 0,0 < g < 00,1 < p <00, and X =
(X, 68,),51 € W(G). Then

o 1/q
”X”Ngq(G) = <Z(2aka)q> 5 (11)
k=0
where
— 1
X, = su —,U Koo — Xyt P(dw)|. 12
¢ Ae@,PE«»o (P (A)Y/P A( #) (12)
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Proof. The existence of X, follows from Lemma 2. Further,

we have
X, = Xom = Xpm1) P(d
‘ mmwmwmj.z(z Hgmr) P d0)
< 1
S H;Ailéfjmm ”A (sz - Xz"H) p (dw)’ (13)
- Yix,,
m=k

Therefore, using Lemma 8, we obtain

(Semr) «(§(5) )

© /g (14)
moq
< ( Z_Oz AX! )

= 1 Xllnea)

The reverse inequality follows from the expression:

— 1
AXk = SX»OW |J14 (sz - sz—l) p (da))|
1
< — | (xy-x,)P@
S papo(P (A) 77 HA( # = Xeo) P “’)| (15)

”A (X, - Xye1) P (dw)l .

1
' PO (P (A
The lemma is proved. O
Lemma 4. Let X € W(F). Then
(1) for0 < g < gq; < 00,

” "N ) p,q,q1 ”X"prq(F)’ (16)

||X||N‘;‘H1 @ S Cupagaq, ||X||1\7;"q(p)7 17)

(2) fore >0,0<g,q, <00

1Xlx,, 5 < Gpaa | X, (18)

”)("1\7;”11 (F) < C‘X’P’q’ql ”X"N‘;”‘Z(F): (19)
where Cpqos Copaq > 0 depend only on the indicated
parameters.

Proof. Let us prove inequalities (16), (18). The proof of
inequalities (17), (19) is similar. Let ¢ > 0. By Minkowski’s

inequality and by the generalized monotonicity of a process
X =(X,,6,),s, we get the following:

00 1/q,
_ eq,—17 —eq,—~(q,/p) 5
"X”NPm(F) = <Zk 1 k 1 1 Xk )
k=1
(oo a/q\
< stql <Z —q(e+(1/p))- 1 > >

(20)

N
N
M8

<
Il
—

ala \ 1/
" —q(e+(1/p))-1 (stql ) >
k=1

00 1/q
- -134
< (Zr @ Xr) = IXln,, &)
r=1

To prove the second statement it is enough to show that

11l Ny (F) S c|IX|| Npoo (F) and apply the first statement. Since
1,41 ,00

p1 < p, we have the following:

00 1/q
_ —(q,/p1)-15D
nmmm@—(Zk &)

k=1

1/q, (21)
< supk l/pX <Zk(41 p)—(a/p1)- 1)
k=1

= C||X||Npm(p)
O

Remark 5. Properties of the N, , (F) spaces given in Lemma 4
show that the second parameter g is weak with respect to the
first p. These properties of the spaces are important in the
interpolation.

Lemma 6. Let 0 < p < 0o, a > 1. If X € W(F), then for
0<g<oo

o 1/q
- -k/py )1
"X”NM(F) = (I;)(a ank) ) , (22)
and for g = 0o

_klp<
”X”NPW(F) =supa /pXuk- (23)
’ keN

Proof. Using the generalized monotonicity of a process X, we
have the following:
( K

k-v-l_1 l/q
<Z Z I (a/p)- 1_‘1
k=0 ]=gk

M3

1Xlly,, 0

1/q
k—(q/P)—IXZ>

1



4
s k+1_1 1/q
Z kQ/PX Z >
(k 0
. 1/q
- (z(a-k/z’yak)q> |
k=0
(24)
One can prove the reverse estimate in a similar way. O

Lemma 7 (Holder inequality). Let 0 < p;, p,,q < 00, 0 <
t,s1,8, < 0coand(1/q) = (1/py) + (1/p,), (1/t) = (1/s)) +
(1/s,). If stochastic processes X = (X,,,®,) € N, (F) and

=(Y,,68,) € N, , (G), then XY = (X,Y,, 6, ) e N,.(F)
and

<
||XY||NW(F) < ||X||Nm,s1 (F)||Y||NP252(G)- (25)

Proof. Since Y,, is measurable with respect to an algebra &,
we have X, Y, (F) < X;(F) Y.(G) and hence

1/t
IXYll,, ) = (Z( KVPX Y, Y) >

d
k
o 1/s,
y < Z(k—ﬂpz?k (G))Sz % )
k=1

= IXly,

M8

1=

1/s,
KR () )
1( L (F)) o6

Gy, o)

We will need the following Hardy-type inequalities.
Lemma 8. Lets > 1,v > 0,a > 0, > 0, andy > 0; then

for a nonnegative sequence a = {a,}, the following inequalities
hold:

o (k) S\ e o Us
—as—1 p-1 (B-a)s—1 s
(S(5ra) ) <cuma Sra)

k=1 I=1 k=1

- s\ 1/s . 1/s
k"“‘1< Y zﬁ‘la,>> sca,ﬁ,s,y(zw*“”‘la; ,

I=(yk)
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3. Interpolation Method for
Stochastic Processes

Let T = {T,}>?, be a transform that transforms a stochastic
process X, Wthh is defined on the system F = {}2 , to the
stochastic process T(X) = {T,(X), ®,} 2, which is defined
on the system R = {R}2,. We say that the transform T is
quasilinear if there exists a constant C > 0 such that for any
n € N the following inequality holds almost surely:

|T, (X) - T, (V)| < C|T, (X - Y)|. (28)

It is known ([9]) that if a process X = (X,,®,),s, is a
martingale (submartingale), then the process X' =
(X, aer ©,,),1 is also a martingale (submartingale).

Denote X (w) = max;qq,|Xi(w) and X* =
(X: > ®n)n21 .

The transforms X* and X™ of the stochastic process X are
examples of quasilinear transforms.

Let A = (Ay(F),A,(F)) be a pair of quasinormed own
subspaces of linear Hausdorftf stochastic processes spaces
P (F), which is defined on a probability space (Q, &, P) with a
filtration F = {,},;;. Obviously, this pair is compatible pair
and hence the scale of interpolation spaces is defined with
respect to the real method ([12]).

Moreover, letfor0 < 0 < 1, 0 < g < 0o

(Ao A1)y, {X eNE): XN, 4,
N (29)
- j (r°x (t,X))qﬂ < oo}
0 t
and for g = co
(A0>A1)9,oo = {X € N(F) : 1XNa,a,)..
(30)

= sup 9K t,X) < oo} ,

0<t<oo

where

K(6XApA) = ot (Xl +1%0,) @

is the Peetre functional.

Let R = {1;(w)};2, be a sequence of stopping times with
respect to a filtration F and A(F) = (A((F), A,(F)) be a pair
of quasinormed own subspaces 9t(F). Let X € N(F) and t €
(0, 00). We define the following:

Kg(t,X) =K (t,X; Ap, A}, R)
(32)

— 3 _ T T
= dnf (X=X, +4X7,,)-

Here the infimum is taken over all stopping times from R.
Moreover for 0 < g < co

(A0 A1)y, {Xem(m X024, 4.,
(33)

=J000(t Ky (t, X)) - <oo},
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and for g = oo

(Ao A s = X R WX,
(34)
= sup tieKR (t,X) < OO} .

0<t<oo

Theorem 9. Let (A,(F), A,(F)), (By(®), B, (D)) be two com-
patible pairs of stochastic processes and let R = {t(w)} be some
fixed family of Markov times with respect to a filtration F. If T
is a quasilinear map for stochastic processes X = (X,,, §p)us1
and

|7 (X = X, < Mo X = X7,

T T (35)
I7&Os, < Ml X7,
for all stopping times T € R, then
-0 0
ITCOllg,, < CMy™'M, 1X1az (36)

where the constant C is from the definition of quasilinearity of
the operator T.

Proof. Consider the following:

ITCOl,,

(o) 0 ) th l/q
([ (g, () ) )

([ (g (oo - oot

th>1/q
t

T OO, ) )

o

[ o
. 14 1/q
AT, ) ) )

t
* -0 . T
< CM, (L <t TeanUf{O} <||X = X4,

M, a4\
astlxl,)) )

1-0 4 10
= CMO Ml ”X"qu(F)

The theorem is proved. O

Lemma 10. Leta > 1 and R = {k},y be stopping times. Then
for0 < g< oo

o) 0 q 1/q
1XM Ay a0, :( Y (a7 "Kg(a", X)) ) ,

n=-00

0 0 q 1/q
Mmmm=(2@”wa»),

e (38)

-6
"X"(AO,AI)S,OO = suga "Kg (a", X),
ne

-6
IXls, 1., = supa 'K (a",X).
nez
The proof is similar to the proof of the Lemma 4.

4. Interpolation Properties of
the Spaces Np,q(F)

Theorem 11. Let 1 < p, < p; < 00,1 < ¢y,4;,9 < 00,0 <
6 < 1 (A/p) = (0 - 0)/py) + (O/p)), and R = {k}en
be the stopping times. Then for any stochastic process X =
(Xn’ %n)nzl’

"X"NM(F) <Xy, N (39)

Po-40 P11 (F))qu ’

where the constant ¢ depends only on parameters p;, q;, 0,1 =
0, 1.
If X = (X, §w)ps1 € W(F), then

1X1 oy

Po-90

BNy gy E0E, S I, )0 (40)

where the constant ¢ also depends only on parametres p;, g;, 0,
i=0,1.

Proof. Let X = Y + Z be any representation of a process
X, where Y € NPO,%(F), Z €N, 1(F). To prove the first

1>

statement of the theorem, we use the following inequality:
X, <Y, +2,.
For any a > 1 we have the following:

a "X,
< a—(n/p)+(n/po) (a_”/PO?an 4 a_("/p°)+("/P1)a_”/P‘zan)

< a—(n/p)+(n/po)

X (sup a_"/P"Yun + a_("/p°)+("/‘7‘)sup a_"/p‘zan>
n n

= g%/p)-(7p)n

=((1/po)=(1/pi)n )
x (I lly,, ey + 121, )
(41)



By putting a = 2P0P1/(P1*Po), we get a—n/pyn
Therefore, using (22) and Lemma 8, we have the following:

00 g 1/q
i, = ( 3 (@%,)')

n=—00

o 1/q
s( Y (Z"GK(Z”,X))q)

(42)

_ N -nf n 1 v
= Z (2 K(Z,X))

n=-00
= 1 Xl

Let us prove the second statement of the theorem. Let X =

(X, 81 € W(F). By using Lemmas 8 and 3 we have the
following:

XN,

Npgro0F1Npp oo (Fag”

a0 FWNp, 0 ()

(ni (2K (2",X))q)1/q

=—00

(5 (s (-4,

)

PO »40

k a\'
2, )
< 0, k
(5 (2™t (-4,

l,,,)))

Let k = [2"], then taking into account that X" z0,n<-1,
we obtain the following:

/a (43)

N

+2

10 (N P2, P,

[oe)
On 2 -n
< 2 <||X - X +2
(n—zoo( Npg.1

2™

W)

+00 oy ny q 1/q
=<Z<29”<||X—X2 + 27 x? )) )

n=0 Npo1 Npp.a

-1 1/q
On 1
- ( > (2"xiy, ) )
n=—00

& ny ny 1
=<Z<26”("X—X2 + 27 x2 ))

n=0 NPOvl NP1-1

+00 o 1/q
+||X||‘;,p122 ”‘7> :
o n=1

(44)

< 2K, X).
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Thus, we obtain the following:

X,

Po-90

[ee) 9 -
< 2”(”}(—){2
(2( .

PosL
1/q
+"X”?vpo,1) :

(F).Np, g, (g

— M
+2™"

o))

Further, we have the following:

uX—XW

po»1
00

:z Un(X - X7, =

Zz_k/PO

iny) (46)

00
Z 2HP(X - X2) L < (1+C) Y 27X,
k=ny k=ny

<
N,

P11

_ -1(1/p MY —k/p ony
= YK < N X
k=1 k=0

ny _ _ o0
< Y2 PR+ X Y 27HP
k=0 k=ny

ny 00
C (sz/f’l Xy + 2P p) % 2"/P°X2k> :

k=0 k=ny
(47)

By using Lemma 8 for (1/y) = (1/p,) —(1/p;), (46), and (47),
we have the following:

00 q 1/q
(20 ))
n=0 Npo.1
g\ /g
0 0 o
< Y[ 2 27X,
n=0 k=ny

s 1/q
-k/vp~7
s<z<z “’sz)q> = 11Xl >
k=0

x-x"
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ny |19
X2

) 1/q
( Z 2*(1*6)”‘1 )
n=0 Nppa
00 ny _
<[ Ym0 Yo,
n=0 k=0

00 a\ 1/a
+2”Y((1/Po)*(1/1’1)) Z Z*k/PoXZk
k=ny

o 1/q
< <Z(zk/PY2k)Q> = IXll,, ().
k=0
(48)

By applying Minkowski’s inequality to (45) and using
Lemma 4, estimates (48), we obtain
1Xl

Po-90”>

< clXlw,, - (49)
O

R
Npml )G,q

Corollary 12. Let 0 < p, < p; < 00,0< gy < gq; <00,0<
0<1,1<s<00,(1/q9) =((1-0)/qy)+0/q,), (1/p) = (1 -
0)/po) + (0/p,), X € W(F), and T = {T,,},2, be a quasilinear
transform. If for any k € N U {0} the following conditions hold:

“T(Xk)"qum(R) M, "Xk“NPl,l(F)’
. . (50)
[rex =5 <Mo[X =X ey
then
ITX) @ < CMy "M IX L, ) (51)

where C > 0 depends only on py, py, 4o q1> and 0.

Taking into account that the measurable function may
be considered as a martingale, by corollary we may receive
Marcinkiewicz-Calderon interpolation theorem (see [13]).

Corollary 13 (Marcinkiewicz-Calderon theorem). Let 0 <
Py < pp <00,0< gy < g <0006 € (0,1),1/p =

(1-0)/p, +0/py,and 1/q = (1 —0)/qy + 0/q,. If T is a
quasilinear map and

T:L,,(D,v) — Ly o (Qp)
(52)
with the norm M;,i =0, 1,
then

-6, 0
T:L, (D,v) — L (Qu), ITI<M M. (53)

Corollary14. Let T = (T}, be a quasilinear transform such
that for any p € (a,b) and for any X € N, ,(F) N W(F) the
following weak inequality holds:

ITX) I, ) < Cpll Xy, o (54)

Then
"T(X)"NP,S(R) < Cp)s||X||NP,S(F), X €N, (F)NW (F)

(55)
for any p and s such that p € (a,b), 1 < s < 0.

5. Boundedness of Some Operators in
Class NM(F)

Let Y = (Y,,8,),., be a stochastic sequence and V' =
(V,»®,_,) be a predicted sequence (&_;, = ©). A stochastic
sequence V-Y = ((V-Y),,®,) such that

(V1) = VoY + ) ViAY,, (56)
i=1

where AY; = Y;-Y,_, is called the transform of Y with respect
to V. IfY is a martingale then we say that VY is the martingale
transform.

Theorem 15. Let0 < g < p < 00,1 < T < ocoandl/r =
1/q—1/p. Let V -Y be a martingale transform of a martingale
Y by predicted sequence V = (V,,, &,,_). If

Vin, .+ 1(0AV)y, ) < B (57)
then
IV-Yln, . < BlYlx, () (58)

where a constant ¢ depends only on parametres p,q, and .

Proof. Let V - Y be a martingale transform of a martingale Y’
by predicted sequence V = (V,, &,_,); that is,

(V-Y), = ) ViAY,, (59)
k=1
whereY,, = 0, AY; =Y, -Y,_,.ByAbel’stransform (V - Y), =
"L AVY, + V,Y,, we get the following:
IV-Yly, @ = supn "1(V-Y),
’ neN
" (60)
<supn VI YAV + VY, ).
neN k=1

Taking into account that AV,,Y, are measurable func-
tions with respect to the algebra ®,, we have AV,Y, <
AV, Y., VY, <V,Y, and

sup nfl/q(ﬂ)n < sup i (kfl/qkA_Vk) (kf(l/p)—lyk)
neN neN =1

+ n_l/rVnn_l/pY_n

< sup kAT - [¥ly, (61
s |

+ "Vn”N,,OO(G)”Y”NP,OO(G)

<BIYly, o



Hence the weak inequality is proved as follows:

VY, . < BlYly,, (62)

forl1 <g< p<oo.

Let0<g<p<oo, (1/r)=(1/q) —(1/p),0<qy<g<
g <o00and 0 < py < p < p; < oo. Let a pair of numbers
(po> p1) and (g, q;) satisty the following condition:

1 1 1 1 1 1
———=— - —=—-=-— (63)
9 Po 41 P 9 P
Then from that is proved above it follows that
VY, ..o < BlYl,
(64)
[V - Y"qum(c) < B”Y”NFI,I(G)

for0 < p < q<oo.

Taking into account that for any stopping time k € N
processes Y* and Y — Y* are martingales, it is possible to apply
Theorem 9. Then

[V - Y"quﬂ < CB”Y”NPG,T’ (65)
where
1 1-6 6 1 1-6 6
_—= + -, —_— = + —. (66)
9o 9o q Po Do 1

Note that there exists 0 € (0, 1) such that (1/py) = (1/p).
Then it follows from (63) that (1/g4) = (1/9). O

Theorem 16. Let 0 < p < 00,1 < g < coand X =
(X, 68,),51 € W(G) and 1(w) be the Markov time and let
X" = (X, 00 ©,),5, be a stopped process. Then

|x* ||N LG S < cdXlw,, @) (67)
Proof. Denote

W, ={w:1(w)=r}e6®,, r=1n-1,

(68)
={w:7(w) 2n} €6,

Let us show that IIXTIINP)M(G) < c||X||NP)l(G)

Abstract and Applied Analysis

If2° < n < 2°Y, then

- 1
P sup —— ” X'p (dw)‘
Acs,,p(a)>0 P (A) 1)a

n
_ 7 lp J
=n sup X, P (dw)
Ae®,,P(A) oP(A) rz; anw,
/ s 2t+171
<27 J P (dw)
Ae@zﬁl P (A)tz(:) TZZ:t AW,
/ 2t+l_1
<27F sup P(AnW,)
Ac6, P (A)tz(:) rzzt
(69)
/ 1 s 2t+1 1
<27 sup —— Y Xy, ¥ P(ANW,)
A€Gﬁ25+1 IP(A)t 0 rzzt
2t+l
=277 sup ZXW_I Y P(W, | A)
A€B 511 _1t=0 r=2t

N S
< Y2 Xy, <2y 27 EIIPY L
t=0 t=0

s+1

1 -k/p~7

21PN 2P < Xl
k=0

Now, using Corollary12 we get the statement of the
Theorem 16. O

Corollary 17. Let 0 < p < 00, 1 < g < 00 and a process
X = (X,,0,),5, be a nonnegative submartingale. Then the
process X* = (X, ®,),, is also submartingale and

Ix* "NM(G) ~ IXln, - (70)

Proof. It follows from Theorem 16 that
Ix ”NM(G) < Xl - (71)

The reverse inequality is trivial. O

6. Interpolation Properties of the Space
Ng’q(G), the Embedding Theorems

Theorem 18. Let 1 < p,q,qp,q; < 00, &y < &, 0 < 0 <
L, a=(1-0)a,+0a, and R = {r},.y. Then

(NZO’% @G, Ngl»‘h (G))Zq = N;"q (G). (72)
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Proof. Using Lemmas 10 and 4 we have the following:

"X”(Ngoﬂo ’Ngbql )gq

:( i (2K (2",X))q>l/q

n=-—00

N g\ 4
n. r n .
- (n_zoo<2 lélg("X—X ||Ngo,q0 +27"|x ||Ngl,ql)) )

N _ g\ 4
(5 (mmle-xtgoe o))

(73)
Putting r = [2], y = o — oty we get the following:

"X" (Nzoﬂo ’N;‘IHI )g,q

[oe)
On 2 -n
s(Z(z <”X—X uwﬁz
=0 »

2"

X

Ny >)q (74)

1/q
q
+||X||N;[,,1) .

It follows from the definition that (AX?), = AX, for k =

0,1...,r = 1; (AX?), = 0fork > r, ALX - X?), = 0 for
k=0,1...,r—1; A(X - X*), = AX, for k > r; therefore,

r—1
"XZV _ Zztxk_AXk)
NG S
(75)
[x-x* Y 243X
X-X =)>2 .
NEYG) ];, k

P

Substituting these equalities in (74) and applying Lemmas 4
and 8, we get the following:

"X” (N;toqo ’N;IQI )Iel’q

%) 0 o ny-1 o q
< <Zz"”q ( Y 2 AX +27 ) 2“1"Axk>

n=0 k=ny k=0

1/q9
q
+||X||N;U,1>

(o) 1/q
< (Sasy)

n=0

(76)

0 s 1/q
+ (Z(z(“l‘“‘m””Axk)q) 11Xy

n=0

= 3[|Xlyea-

For the proof of reverse estimate we use the fact that for any
r and k the following equality holds:

AX; = A(X - XY), + (AXY),. (77)
Then we have the following:
X e

-(Sewaxy)”

k=0

(o) —
< <Z (2"‘"“"0" <sup 2%"A (X - X7),

k=0 n=0

a\ /4
agk—ak ogn r
420k K gup 2t (A X2 )n)) >

n=0

z: k—ook 2"

_ ak—a X_ X

- < (2 ’ (|| a || VPOEOO
=0

k
1
agk—o k|| 52" 1 a
ieei|x |
' N:1'°°>>
(78)
Substituting 2" = g and using Lemma 4, we have the

following:

00 1/q
Xl ea < (Z(a"" K(a ™", X, N;°'°°,N;v°°))'f)
k=0 79)

<l Xll(N‘;O‘“’,le""’)gq>

: %9590 1,41 \R 0,00 a,,00\R .
since (N,”", N, )9,q — (Np N, )B,q’ the proof is
complete. O

Theorem 19. Let 1 < r < p < 00,1 < g < coanda =
(1/r) = (1/p) and let the filtration G = {®,,},., be such that for
everyk = 1,2... and for all A € ©, the following condition
holds:

PA)Z S, (80)
k
where the constant C > 0 does not depend on k. Then
N (G) — N,,(G). (81)
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Proof. Let us show that

NFH(G) = N, (G). (82)

,k —
1Xll, () = sup2 X
k

- 1
= sup2 kp sup
k

Ae(ﬁzk P (A)

”A X, P (dw)|

- —k/p
= sup2 su
kp AE@I; P(A)

(83)

k
il 1 1
<sup ) 2 sup ;
2 A6 (P (AN (P (A"

X

L (Xym — Xpm1) P (dw)| )

According to the condition (80), for A € $,» we have that
P(A) > (C/2™). Therefore for « = (1/r) — (1/p) we get the
following:

k-1
z 2—(m/p)+(m/r)

m=0

"X”NPOQ(G) < Csup
" k

X sup ——
AcGn (P (A)"

L (Xym — Xpm1) P (dw)|

= 1 X e
(84)

Thus, (82) is proved.
Now, let gy < g, 1 < py < p; < 00, and 0 € (0, 1) such
that

Lo =Lia =t

Po 0 P A

a=(1-0)a,+ 0, (85)
1100

p Po P

Then using interpolation Theorems 18 and 11 we obtain the
following:

r r

(Noto,l (G) ’N“pl (G))G’q — N;x’q (G) R
(86)
(Npoo (G), N, o (G)) 00 = Npa (G-

It follows from (82) that (N/*'(G),N/"'(G))y, —
(Np,00(G) Ny 06(G))g,- Hence, NX(G) — N,,(G),
where o = (1/7) — (1/p). The proof is complete. O
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7. Spaces with Variable Approximation
Properties by Haar System

In this paragraph we consider some applications of the
introduced interpolation method to Besov type spaces with
variable approximation properties.

Let Q = [0, 1] and let ¥ be a o-algebra of Borel subsets
of set O, P a linear Lebesgue measure on &, F = {F,},5:
the Haar filtration, and R = {r;};2, a sequence of stopping
times such that for any k > 0 the following conditions hold:
7, =0,7 +1 < 13, (a.p.) and

klingofk (w) =00 (ap.). (87)

For a function f(x) € L[0,1] we denote by {c.(f)}is:
the Fourier coefficients by Haar functions system {H(x)}>;
([14]). For the given stopping time 7 (w) we denote

7 ()
S @ = | L (DHn@ ik=1
0 if k=0,

which we call the Fourier-Haar partial sum of a function f,
corresponding to the Markov time 7.

Let 1 < p < 00,0 < g < 00, € R. By B;'[R] we denote
the set of functions f € L[0, 1], for which

o 1/q
Wl = (521 -5, ) <o 9
k=0

for 0 < g < 0o,

If

peirg = w21 =Sl <co (90)

for q = co.

Conceptually, the introduced spaces are close to spaces
with variable smoothness. Here we mention works of Leopold
[15], Cobos and Fernandez [16], and Besov [17-20].

Lemma 20. Let1 < p < 00, f € LP[O, 1], and let S(f,7) be
the Fourier-Haar partial sum with respect to the Markov time
7. Then

IsCEDl, < el f1,- (91)
Proof. Denote
F.={AeF:An{r=n} G, forevery n>1}. (92)

Let L, ,[0,1] be the Marcinkiewicz-Lorentz space. Using
the equivalent norm of L, [0,1] spaces (see [6]) and
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martingale properties of Fourier-Haar partial sums we get
the following:

"S(f’ 7) “me [0,1]

1

= - S , P d
Ae%s,ggmo(P (A)YV? ”A (fi7) P( w)'

AE%TPI()A>O(P(A))1/1’7 lLS fT)P(dw)|

 Aeg., PI()A >0 (P (A))”P ILf («) P(dw)l

<

S A A))up |Lf (@) P (do)|

= “f”LPm[O,l]‘
(93)

Now, applying the interpolation theorem (see [12]), we obtain
the statement of the lemma. O

Lemma?2l. Let1 < p<00,0<g<00,a¢€R,and

Tt1

A(fir) = Z

r=7+1

¢ (f)H, (w). (94)

Then

0o 1/q
“f B;'q[R] = <Z2“kq"A(f> Tk)"ZP) . (95)
k=0

Proof is similar to the proof of Lemma 3.

Theorem 22. Let 1 < qy,q;,9 <00, 0< oy <y, 0 <0 <1,
and a = (1 - 0)ay + Ocxy. Then

R

(B%"Io [R] ,B‘Xl"h [R])e)q

A 5 = B;’q [R]. (96)

Proof. By using Lemma 21 we have the following:

171 (B3"™ [R],B;" " [R])g,,

</l

(B [RL,B3" [RI)g,,

= (Zzgq"ief (ZZ%"IIA(ﬂ 7,
n=1 k=r

1/q

r—1 1
S agml, ) )
k=0

11
(ZZW< > 2 afml,
k=ny
ny—1 q l/q
2 22“1 (INGEAI A ) )
0 a\ 14
< (Z( 23 2wl ) >
n=1 k=ny
0 ny—1 q l/q
+ <Z( o Z 2*|act ol ) ) -
n=1
(97)
By applying Lemma 8 we get the following:
I.f “(Bgﬂ’% (RLBS [RDE, S c|f “B;’q [R]" (98)

Let us prove the reverse embedding. Let f € (Bg"’q0 [R],
“"ql [R])g > J = Jo+ fi be an arbitrary representation of
a funct10n fo € Bo‘O “®[R] and f, € le’ql [R]. Then

2|actml,
<2*(Ia (ol + 18 (fom)l,)

(a—ay)k Kol
A (Srlelgz 0 "A(fO’Tr)”LP (99)
+2(o¢g—o¢1)ksupzoqr"A(fl, T,)"L )
reN !

= 2 (g + 2 fllgroge ).

Since the representation f = f, + f; is arbitrary, we have the
following:

2t ol

< 2(a—“o)kKR (f> 2(0‘0_0‘1)k; B

(100)
%% [R], By [R]).

Hence, putting a = 2*17% we get the following:

© 1/q
"f”B;’q[R] < <Z(2(otloco)0kKR (f, z(aoocl)k))Q>

k=0

oo 1/q
= <Z(a""KR (f. a_k))q> (101)
k=0

<[ gow my s g,

< C”f"(B;o,qo (R], B [R])gq.

The theorem is proved. O
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