
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 134265, 15 pages
http://dx.doi.org/10.1155/2013/134265

Research Article
Achieving Synchronization in Arrays of
Coupled Differential Systems with Time-Varying Couplings

Xinlei Yi,1 Wenlian Lu,1,2,3 and Tianping Chen1,4

1 School of Mathematical Sciences, Fudan University, Shanghai 200433, China
2 Centre for Computational Systems Biology, Fudan University, Shanghai 200433, China
3 Centre for Scientific Computing, The University of Warwick, Coventry CV4 7AL, UK
4 School of Computer Science, Fudan University, Shanghai 200433, China

Correspondence should be addressed to Wenlian Lu; wenlian@fudan.edu.cn

Received 10 April 2013; Accepted 5 June 2013

Academic Editor: Zidong Wang

Copyright © 2013 Xinlei Yi et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study complete synchronization of the complex dynamical networks described by linearly coupled ordinary differential equation
systems (LCODEs). Here, the coupling is timevarying in both network structure and reaction dynamics. Inspired by our previous
paper (Lu et al. (2007-2008)), the extended Hajnal diameter is introduced and used to measure the synchronization in a general
differential system. Then we find that the Hajnal diameter of the linear system induced by the time-varying coupling matrix and
the largest Lyapunov exponent of the synchronized system play the key roles in synchronization analysis of LCODEs with identity
inner couplingmatrix. As an application, we obtain a general sufficient condition guaranteeing directed time-varying graph to reach
consensus. Example with numerical simulation is provided to show the effectiveness of the theoretical results.

1. Introduction

Complex networks have widely been used in theoretical anal-
ysis of complex systems, such as Internet, World Wide Web,
communication networks, and social networks. A complex
dynamical network is a large set of interconnected nodes,
where each node possesses a (nonlinear) dynamical system
and the interaction between nodes is described as diffusion.
Among them, linearly coupled ordinary differential equation
systems (LCODEs) are a large class of dynamical systemswith
continuous time and state.

The LCODEs are usually formulated as follows:

𝑥̇

𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) + 𝜎

𝑚

∑

𝑗=1

𝑙

𝑖𝑗
𝐵𝑥

𝑗
(𝑡) , 𝑖 = 1, 2, . . . , 𝑚,

(1)

where 𝑡 ∈ R+ = [0, +∞) stands for the continuous time and
𝑥

𝑖
(𝑡) ∈ R𝑛 denotes the variable state vector of the 𝑖th node,

𝑓 : R𝑛 → R𝑛 represents the node dynamic of the uncoupled
system, 𝜎 ∈ R+ = (0, +∞) denotes coupling strength, 𝑙

𝑖𝑗
≥ 0

with 𝑖 ̸= 𝑗 denotes the interaction between the two nodes, and

𝑙

𝑖𝑖
= −∑

𝑚

𝑗 ̸= 𝑖
𝑙

𝑖𝑗
, 𝐵 ∈ R𝑛,𝑛 denotes the inner coupling matrix.

The LCODEs model is widely used to describe the model in
nature and engineering. For example, the authors study spike-
burst neural activity and the transitions to a synchronized
state using a model of linearly coupled bursting neurons in
[1]; the dynamics of linearly coupled Chua circuits are studied
with application to image processing andmany other cases in
[2].

For decades, a large number of papers have focused on
the dynamical behaviors of coupled systems [3–5], especially
the synchronizing characteristics. The word “synchroniza-
tion” comes from Greek; in this paper the concept of local
complete synchronization (synchronization for simplicity) is
considered (see Definition 3). For more details, we refer the
readers to [6] and the references therein.

Synchronization of coupled systems have attracted a great
deal of attention [7–9]. For instances, in [7], the authors
considered the synchronization of a network of linearly
coupled and not necessarily identical oscillators; in [8], the
authors studied globally exponential synchronization for
linearly coupled neural networkswith time-varying delay and
impulsive disturbances. Synchronization of networks with
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time-varying topologies was studied in [10–16]. For example,
in [10], the authors proposed the global stability of total syn-
chronization in networks with different topologies; in [16],
the authors gave a result that the networkwill synchronizewith
the time-varying topology if the time-average is achieved
sufficiently fast.

Synchronization of LCODEs has also been addressed
in [17–19]. In [17], mathematical analysis was presented on
the synchronization phenomena of LCODEs with a single
coupling delay; in [18], based on geometrical analysis of
the synchronization manifold, the authors proposed a novel
approach to investigate the stability of the synchronization
manifold of coupled oscillators; in [19], the authors pro-
posed new conditions on synchronization of networks of
linearly coupled dynamical systemswith non-Lipschitz right-
handsides. The great majority of research activities men-
tioned above all focused on static networks whose connectiv-
ity and coupling strengths are static. Inmany applications, the
interaction between individualsmay change dynamically. For
example, communication links between agents may be unre-
liable due to disturbances and/or subject to communication
range limitations.

In this paper, we consider synchronization of LCODEs
with time-varying coupling. Similar to [17–19], time-varying
coupling will be used to represent the interaction between
individuals. In [6, 13], they showed that the Lyapunov expo-
nents of the synchronized system and the Hajnal diameter
of the variational equation play key roles in the analysis of
the synchronization in the discrete-time dynamical networks.
In this paper, we extend these results to the continuous-time
dynamical network systems. Different from [11, 16], where
synchronization of fast-switching systems was discussed, we
focus on the framework of synchronization analysis with
general temporal variation of network topologies. Additional
contributions of this paper are that we explicitly show that
(a) the largest projection Lyapunov exponent of a system is
equal to the logarithm of the Hajnal diameter, and (b) the
largest Lyapunov exponent of the transverse space is equal to
the largest projection Lyapunov exponent under some proper
conditions.

The paper is organized as follows: in Section 2, some
necessary definitions, lemmas, and hypotheses are given; in
Section 3, synchronization of generalized coupled differential
systems is discussed; in Section 4, criteria for the synchro-
nization of LCODEs are obtained; in Section 5, we obtain
a sufficient condition ensuring directed time-varying graph
reaching consensus; in Section 6, example with numerical
simulation is provided to show the effectiveness of the
theoretical results; the paper is concluded in Section 7.

Notions. 𝑒𝑛
𝑘
= [0, 0, . . . , 0, 1, 0, . . . , 0]

T
∈ R𝑛 denotes the 𝑛-

dimensional vector with all components zero except the 𝑘th
component 1, 1

𝑛
denotes the 𝑛-dimensional column vector

with each component 1; for a set in someEuclidean space𝑈,𝑈
denotes the closure of𝑈,𝑈𝑐 denotes the complementary set of
𝑈, and𝐴\𝐵 = 𝐴∩𝐵

𝑐; for 𝑢 = [𝑢
1
, . . . , 𝑢

𝑛
]

T
∈ R𝑛, ‖𝑢‖ denotes

some vector norm, and for any matrix 𝐴 = (𝑎

𝑖𝑗
) ∈ R𝑛,𝑚,

‖𝐴‖ denotes some matrix norm induced by vector norm,

for example, ‖𝑢‖
1
= ∑

𝑛

𝑖=1
|𝑢

𝑖
| and ‖𝐴‖

1
= max

𝑗
∑

𝑛

𝑖=1
|𝑎

𝑖𝑗
|;

for a matrix 𝐴 = (𝑎

𝑖𝑗
) ∈ R𝑛,𝑚, |𝐴| denotes a matrix with

|𝐴| = (|𝑎

𝑖𝑗
|); for a real matrix𝐴,𝐴T denotes its transpose and

for a complex matrix 𝐵, 𝐵∗ denotes its conjugate transpose;
for a set in some Euclidean space 𝑊, O(𝑊, 𝛿) = {𝑥 : dist(𝑥,
𝑊) < 𝛿}, where dist(𝑥,𝑊) = inf

𝑦∈𝑊
‖𝑥 − 𝑦‖; #𝐽 denotes the

cardinality of set 𝐽; ⌊𝑧⌋ denotes the floor function, that is, the
largest integer not more than the real number 𝑧; ⊗ denotes
the Kronecker product; for a set in some Euclidean space𝑊,
𝑊

𝑚 denote the Cartesian product𝑊× ⋅ ⋅ ⋅ × 𝑊 (𝑚 times).

2. Preliminaries

In this section we will give some necessary definitions, lem-
mas, and hypotheses. Consider the following general coupled
differential system:

𝑥̇

𝑖
(𝑡) = 𝑓

𝑖
(𝑥

1
(𝑡) , 𝑥

2
(𝑡) , . . . , 𝑥

𝑚
(𝑡) , 𝑡) , 𝑖 = 1, 2, . . . , 𝑚,

(2)

with initial state 𝑥(𝑡
0
) = [𝑥

1
(𝑡

0
)

T
, . . . , 𝑥

𝑚
(𝑡

0
)

T
]

T
∈ R𝑛𝑚,

where 𝑡
0
∈ R+ denotes the initial time, 𝑡 ∈ R+ denotes the

continuous time, and 𝑥𝑖(𝑡) = [𝑥

𝑖

1
(𝑡), . . . , 𝑥

𝑖

𝑛
(𝑡)] ∈ R𝑛 denotes

the variable state of the 𝑖th node, 𝑖 = 1, 2, . . . , 𝑚.
For the functions 𝑓𝑖 : R𝑛𝑚 × R+ → R𝑛, 𝑖 = 1, 2, . . . , 𝑚,

we make the following assumption.

Assumption 1. (a) There exists a function 𝑓 : R𝑛 → R𝑛 such
that 𝑓𝑖(𝑠, 𝑠, . . . , 𝑠, 𝑡) = 𝑓(𝑠) for all 𝑖 = 1, 2, . . . , 𝑚, 𝑠 ∈ R𝑛,
and 𝑡 ≥ 0; (b) for any 𝑡 ≥ 0, 𝑓𝑖(⋅, 𝑡) is 𝐶1-smooth for all
𝑥 = [𝑥

1T
, . . . , 𝑥

𝑚T
]

T
∈ R𝑛𝑚, and by 𝐷𝐹𝑡(𝑥) = ((𝜕𝑓

𝑖
/𝜕𝑥

𝑗
)(𝑥,

𝑡))

𝑚

𝑖,𝑗=1
∈ R𝑛𝑚,𝑛𝑚 denotes the Jacobian matrix of 𝐹(𝑥, 𝑡) =

[𝑓

𝑖
(𝑥, 𝑡)

T
, . . . , 𝑓

𝑚
(𝑥, 𝑡)

T
]

T with respect to 𝑥 ∈ R𝑛𝑚; (c) there
exists a locally bounded function 𝜙(𝑥) such that ‖𝐷𝐹𝑡(𝑥)‖ ≤
𝜙(𝑥) for all (𝑥, 𝑡) ∈ R𝑛𝑚 ×R+; (d)𝐷𝐹𝑡(𝑥) is uniformly locally
Lipschitz continuous: there exists a locally bounded function
𝐾(𝑥, 𝑦) such that

󵄩

󵄩

󵄩

󵄩

󵄩

𝐷𝐹

𝑡
(𝑥) − 𝐷𝐹

𝑡
(𝑦)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝐾 (𝑥, 𝑦)

󵄩

󵄩

󵄩

󵄩

𝑥 − 𝑦

󵄩

󵄩

󵄩

󵄩

(3)

for all 𝑡 ≥ 0 and 𝑥, 𝑦 ∈ R𝑛𝑚; (e) 𝑓𝑖(𝑥, 𝑡) and 𝐷𝐹𝑡(𝑥) are both
measurable for 𝑡 ≥ 0.

We say a function 𝑔(𝑦) : R𝑞 → R𝑝 is locally bounded
if for any compact set 𝐾 ⊂ R𝑞, there exists𝑀 > 0 such that
‖𝑔(𝑦)‖ ≤ 𝑀 holds for all 𝑦 ∈ 𝐾.

The first item of Assumption 1 ensures that the diagonal
synchronization manifold

S = {[𝑥

1T
, 𝑥

2T
, . . . , 𝑥

𝑚T
]

T
∈ R

𝑛𝑚
: 𝑥

𝑖T
= 𝑥

𝑗T
,

𝑖, 𝑗 = 1, 2, . . . , 𝑚}

(4)

is an invariant manifold for (2).
If 𝑥1(𝑡) = 𝑥

2
(𝑡) = ⋅ ⋅ ⋅ = 𝑥

𝑚
(𝑡) = 𝑠(𝑡) ∈ R𝑛 is the

synchronized state, then the synchronized state 𝑠(𝑡) satisfies

̇𝑠 (𝑡) = 𝑓 (𝑠 (𝑡)) . (5)
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Since 𝑓(⋅) is 𝐶1-smooth, then 𝑠(𝑡) can be denoted by the
corresponding continuous semiflow 𝑠(𝑡) = 𝜗

(𝑡)
𝑠

0
of the in-

trinsic system (5). For 𝜗(𝑡), we make following assumption.

Assumption 2. The system (5) has an asymptotically stable
attractor: there exists a compact set 𝐴 ⊂ 𝑅

𝑛 such that (a) 𝐴
is invariant through the system (5), that is, 𝜗(𝑡)𝐴 ⊂ 𝐴 for all
𝑡 ≥ 0; (b) there exists an open bounded neighborhood 𝑈 of
𝐴 such that ⋂

𝑡≥0
𝜗

(𝑡)
𝑈 = 𝐴; (c) 𝐴 is topologically transitive;

that is, there exists 𝑠
0
∈ 𝐴 such that 𝜔(𝑠

0
), the 𝜔 limit set of

the trajectory 𝜗(𝑡)𝑠
0
, is equal to 𝐴 [3].

Definition 3. Local complete synchronization (synchroniza-
tion for simplicity) is defined in the sense that the set

S⋂𝐴

𝑚
= {[𝑥

T
, 𝑥

T
, . . . , 𝑥

T
]

T
∈ R

𝑛𝑚
: 𝑥

T
∈ 𝐴} (6)

is an asymptotically stable attractor in R𝑛𝑚. That is, for the
coupled dynamical system (2), differences between com-
ponents converge to zero if the initial states are picked
sufficiently near S⋂𝐴

𝑚, that is, if the components are all
close to the attractor𝐴 and if their differences are sufficiently
small.

Next we give some lemmas which will be used later, and
the proofs can be seen in the appendix.

Lemma 4. Under Assumption 1, one has

𝑚

∑

𝑗=1

𝜕𝑓

𝑖

𝜕𝑥

𝑗
(𝑠, 𝑡) =

𝜕𝑓

𝜕𝑠

(𝑠) , (7)

for all 𝑠 ∈ 𝑅𝑛 and 𝑡 ≥ 0, where 𝑠 = [𝑠T, 𝑠T, . . . , 𝑠T]T.

Lemma 5. Under Assumptions 1 and 2, there exists a compact
neighborhood𝑊 of 𝐴 such that 𝜗(𝑡)𝑊 ⊂ 𝜗

(𝑡
󸀠
)
𝑊 for all 𝑡 ≥ 𝑡󸀠 ≥

0 and⋂
𝑡≥0

𝜗

(𝑡)
𝑊 = 𝐴.

Let 𝛿𝑥(𝑡) = [𝛿𝑥1(𝑡)T, . . . , 𝛿𝑥𝑚(𝑡)T]T ∈R𝑛𝑚, where 𝛿𝑥𝑖(𝑡) =
𝑥

𝑖
(𝑡) − 𝑠(𝑡) ∈ R𝑛. We have the following variational equation

near the synchronized state 𝑠(𝑡):

𝛿𝑥̇

𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝜕𝑓

𝑖

𝜕𝑥

𝑗
(𝑠 (𝑡) , 𝑡) 𝛿𝑥

𝑗
(𝑡) , 𝑖 = 1, 2, . . . , 𝑚, (8)

or in matrix form:

𝛿𝑥̇ (𝑡) = 𝐷𝐹

𝑡
(𝑠 (𝑡)) 𝛿𝑥 (𝑡) , (9)

where 𝐷𝐹

𝑡
(𝑠(𝑡)) denotes the Jacobin matrix 𝐷𝐹

𝑡
(𝑠(𝑡)) for

simplicity.
From [20], we can give the results on the existence,

uniqueness, and continuous dependence of (2) and (9).

Lemma 6. Under Assumption 2, each of the differential equa-
tions (2) and (9) has a unique solution which is continuously
dependent on the initial condition.

Thus, the solution of the linear system (9) can be written
in matrix form.

Definition 7. Solution matrix 𝑈(𝑡, 𝑡
0
, 𝑠

0
) of the system (9) is

defined as follows. Let 𝑈(𝑡, 𝑡
0
, 𝑠

0
) = [𝑢

1
(𝑡, 𝑡

0
, 𝑠

0
), . . . , 𝑢

𝑛𝑚
(𝑡,

𝑡

0
, 𝑠

0
)], where 𝑢𝑘(𝑡, 𝑡

0
, 𝑠

0
) denotes the 𝑘th column and is the

solution of the following Cauchy problem:

𝛿𝑥̇ (𝑡) = 𝐷𝐹

𝑡
(𝑠 (𝑡)) 𝛿𝑥 (𝑡) ,

𝑠 (𝑡

0
) = 𝑠

0
,

𝛿𝑥 (𝑡

0
) = 𝑒

𝑛𝑚

𝑘
.

(10)

Immediately, according to Lemma 6, we can conclude
that the solution of the following Cauchy problem

𝛿𝑥̇ (𝑡) = 𝐷𝐹

𝑡
(𝑠 (𝑡)) 𝛿𝑥 (𝑡) ,

𝑠 (𝑡

0
) = 𝑠

0
,

𝛿𝑥 (𝑡

0
) = 𝛿𝑥

0

(11)

can be written as 𝛿𝑥(𝑡) = 𝑈(𝑡, 𝑡
0
, 𝑠

0
)𝛿𝑥

0
.

We define the time-varying Jacobin matrix 𝐷𝐹𝑡 by the
following way:

𝐷F : R
+
× 𝑅

𝑛
󳨀→ 2

R𝑛𝑚,𝑛𝑚
,

(𝑡

0
, 𝑠

0
) 󳨃󳨀→ {𝐷𝐹

𝑡
(𝑠 (𝑡))}

𝑡≥𝑡
0

(12)

with 𝑠(𝑡
0
) = 𝑠

0
, where 2R

𝑛𝑚,𝑛𝑚

is the collection of all the subsets
of R𝑛𝑚,𝑛𝑚.

Definition 8. For a time varying system denoted by 𝐷F, we
can define its Hajnal diameter of the variational system (9) as
follows:

diam (𝐷F, 𝑠

0
) = lim

𝑡→∞
sup
𝑡
0
≥0

{diam (𝑈 (𝑡, 𝑡

0
, 𝑠

0
))}

1/𝑡
, (13)

where for aR𝑛𝑚,𝑛𝑚matrix in blockmatrix form:𝑈 = (𝑈

𝑖𝑗
)

𝑚

𝑖,𝑗=1

with 𝑈
𝑖𝑗
∈ 𝑅

𝑛,𝑛, its Hajnal diameter is defined as follows:

diam (𝑈) = max
𝑖,𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

𝑈

𝑖
− 𝑈

𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

, (14)

where 𝑈
𝑖
= [𝑈

𝑖1
, 𝑈

𝑖2
, . . . , 𝑈

𝑖𝑚
].

Lemma 9 (Grounwell-Beesack’s inequality). If function V(𝑡)
satisfies the following condition:

V (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫
𝑡

0

V (𝜏) 𝑑𝜏, (15)

where 𝑏(𝑡) ≥ 0 and 𝑎(𝑡) are some measurable functions, then
one has

V (𝑡) ≤ 𝑎 (𝑡) + 𝑏 (𝑡) ∫
𝑡

0

𝑎 (𝜏) 𝑒

∫
𝑡

𝜏
𝑏(𝜃)𝑑𝜃

𝑑𝜏, 𝑡 ≥ 0.
(16)

Based on Assumption 1, for the solution matrix 𝑈, we
have the following lemma.



4 Abstract and Applied Analysis

Lemma 10. Under Assumption 1, one has the following:

(1) ∑𝑚
𝑗=1

𝑈

𝑖𝑗
(𝑡, 𝑡

0
, 𝑠

0
) =

̆

𝑈(𝑡, 𝑡

0
, 𝑠

0
), where ̆

𝑈(𝑡, 𝑡

0
, 𝑠

0
) de-

notes the solution matrix of the following Cauchy
problem:

𝑢̇ =

𝜕𝑓

𝜕𝑠

(𝑠 (𝑡)) 𝑢,

𝑠 (𝑡

0
) = 𝑠

0
;

(17)

(2) for any given 𝑡 ≥ 0 and the compact set 𝑊 given in
Lemma 5, 𝑈(𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
) is bounded for all 𝑡

0
≥ 0 and

𝑠

0
∈ 𝑊 and equicontinuous with respect to 𝑠

0
∈ 𝑊.

Let 𝑃 = (𝑃

𝑖𝑗
)

𝑚

𝑖,𝑗=1
be a R𝑛𝑚,𝑛𝑚 matrix with 𝑃

𝑖𝑗
∈ R𝑛,𝑛 sat-

isfying (a) 𝑃
𝑖1
= (1/√𝑚)𝑃

0
for some orthogonal matrix 𝑃

0
∈

R𝑛,𝑛 and all 𝑖 = 1, 2, . . . , 𝑚; (b) 𝑃 is also an orthogonal matrix
in R𝑛𝑚,𝑛𝑚. We also write 𝑃 and its inverse 𝑃−1 = 𝑃

T in the
form

𝑃 = [𝑃

1
, 𝑃

2
] , 𝑃

T
=

[

[

𝑃

T
1

𝑃

T
2

]

]

, (18)

where 𝑃
1
= (1/√𝑚)1

𝑚
⊗ 𝑃

0
and 𝑃

2
∈ R𝑛𝑚,𝑛(𝑚−1). According

to Lemma 10, we have

𝑈(𝑡, 𝑡

0
, 𝑠

0
) 𝑃

1
=

1

√𝑚

1
𝑚
⊗ [

̆

𝑈 (𝑡, 𝑡

0
, 𝑠

0
) 𝑃

0
] . (19)

Since 𝑃T
2
𝑃

1
= 0 which implies that each row of 𝑃T

2
is located

in the subspace orthogonal to the subspace {1
𝑚
⊗ 𝜉, 𝜉 ∈ R𝑛},

we can conclude that 𝑃T
2
𝑈(𝑡, 𝑡

0
, 𝑠

0
)𝑃

1
= 0. Then, we have

𝑃

−1
𝑈(𝑡, 𝑡

0
, 𝑠

0
) 𝑃 = [

𝑃

T
0

̆

𝑈 (𝑡, 𝑡

0
, 𝑠

0
) 𝑃

0
𝛼 (𝑡, 𝑡

0
, 𝑠

0
)

0

̃

𝑈 (𝑡, 𝑡

0
, 𝑠

0
)

] ,

(20)

where ̆

𝑈(𝑡, 𝑡

0
, 𝑠

0
) denotes the common row sum of 𝑈(𝑡, 𝑡

0
,

𝑠

0
) = (𝑈

𝑖𝑗
)

𝑚

𝑖,𝑗=1
as defined in Lemma 10, ̃𝑈(𝑡, 𝑡

0
, 𝑠

0
) = 𝑃

T
2
𝑈(𝑡,

𝑡

0
, 𝑠

0
)𝑃

2
∈ R𝑛(𝑚−1),𝑛(𝑚−1), 𝛼(𝑡, 𝑡

0
, 𝑠

0
) ∈ R𝑛,𝑛(𝑚−1) denotes a

matrix, and we omit its accurate expression. One can see
that ̃𝑈(𝑡, 𝑡

0
, 𝑠

0
) is the solution matrix of the following linear

differential system.

Definition 11. We define the following linear differential
system by the projection variational system of (9) along the
directions 𝑃

2
:

̇

𝜙 = 𝐷

𝑃
𝐹

𝑡
(𝑠 (𝑡)) 𝜙,

𝑠 (𝑡

0
) = 𝑠

0
,

(21)

where𝐷
𝑃
𝐹

𝑡
(𝑠(𝑡)) = 𝑃

T
2
𝐷𝐹

𝑡
(𝑠(𝑡))𝑃

2
.

Definition 12. For any time varying variational system 𝐷F :

R+ ×R𝑛 → 2

R𝑛𝑚,𝑛𝑚 , we define the Lyapunov exponent of the
variational system (9) as follows:

𝜆 (𝐷F, 𝑢, 𝑠

0
) = lim

𝑡→∞
sup
𝑡
0
≥0

1

𝑡

log 󵄩󵄩󵄩
󵄩

𝑈 (𝑡, 𝑡

0
, 𝑠

0
) 𝑢

󵄩

󵄩

󵄩

󵄩

, (22)

where 𝑢 ∈ R𝑛𝑚 and 𝑠(𝑡
0
) = 𝑠

0
.

Similarly, we can define the projection Lyapunov exponents
by the following projection time-varying variation:

𝐷

𝑃
F : R

+
×R

𝑛
󳨀→ 2

R𝑛(𝑚−1),𝑛(𝑚−1)
,

(𝑡

0
, 𝑠

0
) 󳨃󳨀→ {𝐷

𝑃
𝐹

𝑡
(𝑠 (𝑡))}

𝑡≥𝑡
0

,

(23)

that is,

𝜆 (𝐷

𝑃
F, 𝑢̃, 𝑠

0
) = lim

𝑡→∞
sup
𝑡
0
≥0

1

𝑡

log 󵄩󵄩󵄩
󵄩

󵄩

̃

𝑈 (𝑡, 𝑡

0
, 𝑠

0
) 𝑢̃

󵄩

󵄩

󵄩

󵄩

󵄩

, (24)

where 𝑢̃ ∈ R𝑛(𝑚−1) and 𝑠(𝑡
0
) = 𝑠

0
. Let

𝜆

𝑃
(𝐷F, 𝑠

0
) = max

𝑢̃∈R𝑛(𝑚−1)
𝜆 (𝐷

𝑃
F, 𝑢̃, 𝑠

0
) . (25)

Then, we have the following lemma.

Lemma 13. 𝜆
𝑃
(𝐷F, 𝑠

0
) = log diam(𝐷F, 𝑠

0
).

Remark 14. From Lemma 13, we can see that the largest
projection Lyapunov exponent is independent of the choice
of matrix 𝑃.

Consider the time-varying driven by some metric
dynamical system MDS(Ω,B,P, 󰜚(𝑡)), where Ω is the com-
pact state space,B is the 𝜎-algebra, P is the probability mea-
sure, and 󰜚(𝑡) is a continuous semiflow. Then, the variational
equation (9) is independent of the initial time 𝑡

0
and can be

rewritten as follows:
̇

𝜙 = 𝐷𝐹 (𝑠 (𝑡) , 󰜚

(𝑡)
𝜔

0
) 𝜙,

𝑠 (0) = 𝑠0
.

(26)

In this case, we denote the solution matrix, the projection
solution matrix, and the solution matrix on the synchro-
nization space by 𝑈(𝑡, 𝑠

0
, 𝜔

0
), ̃𝑈(𝑡, 𝑠

0
, 𝜔

0
), and ̆

𝑈(𝑡, 𝑠

0
, 𝜔

0
),

respectively. For simplicity, we write them as 𝑈(𝑡), ̃𝑈(𝑡), and
̆

𝑈(𝑡), respectively. Also, we write the Lyapunov exponents and
the projection Lyapunov exponent as follows:

𝜆 (𝐷F, 𝑢, 𝑠

0
, 𝜔

0
) = lim

𝑡→∞

1

𝑡

log 󵄩󵄩󵄩
󵄩

𝑈 (𝑡, 𝑠

0
, 𝜔

0
) 𝑢

󵄩

󵄩

󵄩

󵄩

,

𝜆 (𝐷F, 𝑠

0
, 𝜔

0
) = max

𝑢∈R𝑛𝑚
𝜆 (𝐷F, 𝑢, 𝑠

0
, 𝜔

0
) ,

𝜆

𝑃
(𝐷F, 𝑢, 𝑠

0
, 𝜔

0
) = lim

𝑡→∞

1

𝑡

log 󵄩󵄩󵄩
󵄩

󵄩

̃

𝑈 (𝑡, 𝑠

0
, 𝜔

0
) 𝑢

󵄩

󵄩

󵄩

󵄩

󵄩

,

𝜆

𝑃
(𝐷F, 𝑠

0
, 𝜔

0
) = max

𝑢∈R𝑛(𝑚−1)
𝜆 (𝐷

𝑃
F, 𝑢̃, 𝑠

0
, 𝜔

0
) .

(27)

We add the following assumption.

Assumption 15. (a) 󰜚(𝑡) is a continuous semiflow; (b)𝐷𝐹(𝑠, 𝜔)
is a continuous map for all (𝑠, 𝜔) ∈ R𝑛 × Ω.

The following are involving linear differential systems.
Formore details, we refer the readers to [21]. For a continuous
scalar function 𝑢(𝑡), we denote its Lyapunov exponent by

𝜒 [𝑢 (𝑡)] = lim
𝑡→∞

1

𝑡

log |𝑢 (𝑡)| . (28)
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The following properties will be used later:

(1) 𝜒[∏𝑛

𝑘=1
𝑐

𝑘
𝑢

𝑘
(𝑡)] ≤ ∑

𝑛

𝑘=1
𝜒[𝑢

𝑘
(𝑡)], where 𝑐

𝑘
, 𝑘 = 1, 2,

. . . , 𝑛, are constants;
(2) if lim

𝑡→∞
(1/𝑡) log |𝑢(𝑡)| = 𝛼, which is finite, then

𝜒[1/(𝑢(𝑡))] = −𝛼;
(3) 𝜒[𝑢(𝑡) + V(𝑡)] ≤ max{𝜒[𝑢(𝑡)], 𝜒[V(𝑡)]};
(4) for a vector-value or matrix-value function 𝑈(𝑡), we

define 𝜒[𝑈(𝑡)] = 𝜒[‖𝑈(𝑡)‖].

For the following linear differential system:

𝑥̇ (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) , (29)

where 𝑥(𝑡) ∈ R𝑛, a transformation 𝑥(𝑡) = 𝐿(𝑡)𝑦(𝑡) is said to
be a Lyapunov transformation if 𝐿(𝑡) satisfies

(1) 𝐿(𝑡) ∈ 𝐶1[0, +∞);
(2) 𝐿(𝑡), ̇

𝐿(𝑡), 𝐿−1(𝑡) are bounded for all 𝑡 ≥ 0.

It can be seen that the class of Lyapunov transformations
forms a group and the linear system for 𝑦(𝑡) should be

̇𝑦 (𝑡) = 𝐵 (𝑡) 𝑦 (𝑡) , (30)

where𝐵(𝑡) = 𝐿−1(𝑡)𝐴(𝑡)𝐿(𝑡)−𝐿−1(𝑡) ̇𝐿(𝑡).Then, we say system
(30) is a reducible system of system (29).We define the adjoint
system of (29) by

𝑥̇ (𝑡) = −𝐴

∗
(𝑡) 𝑥 (𝑡) . (31)

If letting 𝑉(𝑡) be the fundamental matrix of (29), then
[𝑉

−1
(𝑡)]

∗ is the fundamental matrix of (31). Thus, we say the
system (29) is a regular system if the adjoint systems (29) and
(31) have convergent Lyapunov exponent series: {𝛼

1
, . . . , 𝛼

𝑛
}

and {𝛽

1
, . . . , 𝛽

𝑛
}, respectively, which satisfy 𝛼

𝑖
+ 𝛽

𝑖
= 0 for

𝑖 = 1, 2, . . . , 𝑛, or its reducible system (30) is also regular.

Lemma 16. Suppose that Assumptions 1, 2, and 15 are satisfied.
Let {𝜎

1
, 𝜎

2
, . . . , 𝜎

𝑛
, 𝜎

𝑛+1
, . . . , 𝜎

𝑛𝑚
} be the Lyapunov exponents

of the variational system (26), where {𝜎
1
, . . . , 𝜎

𝑛
} correspond

to the synchronization space and the remaining correspond to
the transverse space. Let 𝜆

𝑇
(𝐷F, 𝑠

0
, 𝜔

0
) = max

𝑖≥𝑛+1
𝜎

𝑖
and

𝜆

𝑆
(𝐷F, 𝑠

0
, 𝜔

0
) = max

1≤𝑖≤𝑛
𝜎

𝑖
. If (a) the linear system (17) is

a regular system, (b) ‖𝐷𝐹(𝑠(𝑡), 󰜚(𝑡)𝜔
0
)‖ ≤ 𝑀 for all 𝑡 ≥ 0,

(c) 𝜆
𝑃
(𝐷F, 𝑠

0
, 𝜔

0
) ̸= 𝜆

𝑆
(𝐷F, 𝑠

0
, 𝜔

0
), then 𝜆

𝑇
(𝐷F, 𝑠

0
, 𝜔

0
) =

𝜆

𝑃
(𝐷F, 𝑠

0
, 𝜔

0
).

3. General Synchronization Analysis

In this section we provide a methodology based on the previ-
ous theoretical analysis to judgewhether a general differential
system can be synchronized or not.

Theorem 17. Suppose that𝑊 ∈ R𝑛 is the compact subset given
in Lemma 5, and Assumptions 1 and 2 are satisfied. If

sup
𝑠
0
∈𝑊

diam (𝐷F, 𝑠

0
) < 1, (32)

then the coupled system (2) is synchronized.

Proof. The main techniques of the proof come from [3, 6]
with some modifications. Let 𝜗(𝑡) be the semiflow of the
uncoupled system (5). By the condition (32), there exist 𝑑
satisfying sup

𝑠
0
∈𝑊

diam(𝐷F, 𝑠

0
) < 𝑑 < 1 and 𝑇

1
≥ 0 such

that 𝑑𝑇1 < 1/3, and 𝑟
0
= inf{𝑟 > 0,O(𝜗(𝑇1)𝑊, 𝑟) ⊂ 𝑊} > 0.

For each 𝑠

0
∈ 𝑊, there must exist 𝑡(𝑠

0
) ≥ 𝑇

1
such that

diam(𝑈(𝑡
0
+ 𝑡(𝑠

0
), 𝑡

0
, 𝑠

0
)) < 𝑑

𝑡(𝑠
0
) for all 𝑡

0
≥ 0. According

to the equicontinuity of 𝑈(𝑡
0
+ 𝑡(𝑠

0
), 𝑡

0
, 𝑠

0
), there exists 𝛿 > 0

such that for any 𝑠󸀠
0
∈ O(𝑠

0
, 𝛿), diam(𝑈(𝑡

0
+ 𝑡(𝑠

0
), 𝑡

0
, 𝑠

󸀠

0
)) <

𝑑

𝑡(𝑠
0
) for all 𝑡

0
≥ 0. According to the compactness of𝑊, there

exists a finite positive number set T = {𝑡

1
, 𝑡

2
, . . . , 𝑡V} with

𝑡

𝑗
≥ 𝑇

1
for all 𝑗 = 1, 2, . . . , V such that for any 𝑠

0
∈ 𝑊, there

exists 𝑡
𝑗
∈ T such that diam(𝑈(𝑡

0
+ 𝑡

𝑗
, 𝑡

0
, 𝑠

0
)) < 1/3 for

all 𝑡
0
≥ 0. Let 𝑥(𝑡) be the collective states {𝑥1(𝑡), . . . , 𝑥𝑚(𝑡)}

which is the solution of the coupled system (2) with initial
condition 𝑥

𝑖
(𝑡

0
) = 𝑥

𝑖

0
, 𝑖 = 1, 2, . . . , 𝑚. And let 𝑠(𝑡) be the

solution of the synchronization state equation (5) with initial
condition 𝑠(𝑡

0
) = 𝑥

0
= (1/𝑚)∑

𝑚

𝑗=1
𝑥

𝑗

0
∈ 𝑊. Then, letting

Δ𝑥

𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑠(𝑡), we have

Δ𝑥̇

𝑖

𝑘
(𝑡) = 𝑓

𝑖

𝑘
(𝑥

1
(𝑡) , . . . , 𝑥

𝑚
(𝑡) , 𝑡) − 𝑓𝑘 (

𝑠 (𝑡))

=

𝑚

∑

𝑗=1

𝑛

∑

𝑙=1

𝜕𝑓

𝑖

𝑘

𝜕𝑥

𝑗

𝑙

(𝜉

𝑖𝑗

𝑘𝑙
(𝑡) , 𝑡) Δ𝑥

𝑗

𝑙
(𝑡) ,

(33)

where 𝜉𝑖𝑗
𝑘𝑙
(𝑡) ∈ R𝑚𝑛, 𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑘, 𝑙 = 1, 2 . . . , 𝑛, are

obtained by the mean value principle of the differential func-
tions. Letting 𝐷𝐹𝑡(𝜉(𝑡)) = ((𝜕𝑓

𝑖

𝑘
/𝜕𝑥

𝑖

𝑙
)(𝜉

𝑖𝑗

𝑘𝑙
(𝑡), 𝑡)), we can write

the equations above in matrix form:

Δ𝑥̇ (𝑡) = 𝐷𝐹

𝑡
(𝜉 (𝑡)) Δ𝑥 (𝑡) , (34)

and denote its solution matrix by ̂𝑈(𝑡 + 𝑡
0
, 𝑡

0
, 𝑥

0
) = (

̂

𝑈

𝑖𝑗
(𝑡 +

𝑡

0
, 𝑡

0
, 𝑥

0
))

𝑚

𝑖,𝑗=1
. Then, for any 𝑡 > 0 there exists 𝐾

2
> 0 such

that ‖𝐷𝐹𝑡+𝑡0(𝜉(𝑡 + 𝑡
0
))‖ ≤ 𝐾

2
for all 𝑡 ∈ T and 𝑡

0
≥ 0 accord-

ing to the 3th item of Assumption 1. Then, we have

Δ𝑥

𝑖

𝑘
(𝑡 + 𝑡

0
)

= 𝑥

𝑖

0
− 𝑥

0𝑘
+ ∫

𝑡+𝑡
0

𝑡
0

𝑚

∑

𝑗=1

𝑛

∑

𝑙=1

𝜕𝑓

𝑖

𝑘

𝜕𝑥

𝑗

𝑙

(𝜉

𝑖𝑗

𝑘𝑙
(𝜏) , 𝜏) Δ𝑥

𝑗

𝑙
(𝜏) 𝑑𝜏,

𝑚

∑

𝑗=1

𝑛

∑

𝑘=1

󵄩

󵄩

󵄩

󵄩

󵄩

Δ𝑥

𝑖

𝑘
(𝑡 + 𝑡

0
)

󵄩

󵄩

󵄩

󵄩

󵄩

≤

𝑚

∑

𝑗=1

𝑛

∑

𝑘=1

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥

𝑖

0𝑘
− 𝑥

0𝑘

󵄩

󵄩

󵄩

󵄩

󵄩

+ 𝐾

2
∫

𝑡+𝑡
0

𝑡
0

𝑚

∑

𝑗=1

𝑛

∑

𝑙=1

󵄩

󵄩

󵄩

󵄩

󵄩

Δ𝑥

𝑗

𝑙
(𝜏)

󵄩

󵄩

󵄩

󵄩

󵄩

𝑑𝜏.

(35)

By Lemma 9, we have
𝑚

∑

𝑗=1

𝑛

∑

𝑙=1

󵄩

󵄩

󵄩

󵄩

󵄩

Δ𝑥

𝑗

𝑙
(𝑡 + 𝑡

0
)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝑒

𝐾
2
𝑡

𝑚

∑

𝑗=1

𝑛

∑

𝑙=1

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥

𝑗

0𝑙
− 𝑥

0𝑙

󵄩

󵄩

󵄩

󵄩

󵄩

.

(36)
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Let

𝑊

𝛼
=

{

{

{

𝑥 = [𝑥

1T
, . . . , 𝑥

𝑚T
]

T

: 𝑥 ∈ 𝑊,

𝑚

∑

𝑗=1

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥

𝑗
− 𝑥

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝛼

}

}

}

.

(37)

Picking 𝛼 sufficiently small such that for each 𝑥
0
∈ 𝑊

𝛼
, there

exists 𝑡∈T such that∑𝑚
𝑗=1
‖Δ𝑥

𝑗
(𝑡+𝑡

0
)‖ < 𝑟

0
/2 and diam(̂𝑈(𝑡+

𝑡

0
, 𝑡

0
, 𝑥

0
)) < 1/2 for all 𝑡

0
≥ 0.

Thus, we are to prove synchronization step by step.
For any 𝑥

0
∈ 𝑊

𝛼
, there exists 𝑡󸀠 = 𝑡(𝑥

0
) ∈ T such that

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥

𝑖
(𝑡

󸀠
+ 𝑡

0
) − 𝑥

𝑗
(𝑡

󸀠
+ 𝑡

0
)

󵄩

󵄩

󵄩

󵄩

󵄩

=

󵄩

󵄩

󵄩

󵄩

󵄩

Δ𝑥

𝑖
(𝑡

󸀠
+ 𝑡

0
) − Δ𝑥

𝑗
(𝑡

󸀠
+ 𝑡

0
)

󵄩

󵄩

󵄩

󵄩

󵄩

≤

𝑚

∑

𝑘=1

󵄩

󵄩

󵄩

󵄩

󵄩

̂

𝑈

𝑖𝑘
(𝑡

󸀠
+ 𝑡

0
, 𝑡

0
, 𝑥

0
) −

̂

𝑈

𝑗𝑘
(𝑡

󸀠
+ 𝑡

0
, 𝑡

0
, 𝑥

0
)

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

Δ𝑥

𝑘

0

󵄩

󵄩

󵄩

󵄩

󵄩

≤ diam (

̂

𝑈 (𝑡

󸀠
+ 𝑡

0
, 𝑡

0
, 𝑥

0
))max

𝑖,𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥

𝑖

0
− 𝑥

𝑗

0

󵄩

󵄩

󵄩

󵄩

󵄩

≤

1

2

max
𝑖,𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

𝑥

𝑖

0
− 𝑥

𝑗

0

󵄩

󵄩

󵄩

󵄩

󵄩

.

(38)

Therefore, we have max
𝑖,𝑗
‖𝑥

𝑖
(𝑡

󸀠
+ 𝑡

0
) − 𝑥

𝑗
(𝑡

󸀠
+ 𝑡

0
) ‖ ≤ (1/

2)max
𝑖,𝑗
‖𝑥

𝑖

0
− 𝑥

𝑗

0
‖, which implies that 𝑥(𝑡󸀠+𝑡

0
)∈𝑊 and 𝑥(𝑡󸀠+

𝑡

0
) ∈ 𝑊

𝛼/2
.

Then, reinitiated with time 𝑡󸀠 + 𝑡

0
and condition 𝑥(𝑡

󸀠
+

𝑡

0
), continuing with the phase above, we can obtain that

lim
𝑡→∞

max
𝑖,𝑗
‖𝑥

𝑖
(𝑡)−𝑥

𝑗
(𝑡)‖ = 0. Namely, the coupled system

(2) is synchronized. Furthermore, from the proof, we can
conclude that the convergence is exponential with rate 𝑂(𝛿𝑡)
where 𝛿 = sup

𝑠
0
∈𝑊

diam(𝐷F𝑡
, 𝑠

0
), and uniform with respect

to 𝑡
0
≥ 0 and 𝑥

0
∈ 𝑊

𝛼
. This completes the proof.

Remark 18. According to Assumption 2 that attractor 𝐴 is
asymptotically stable and the properties of the compact
neighbor𝑊 given in Lemma 5, we can conclude that the quan-
tity

sup
𝑠
0
∈𝑊

diam (𝐷F, 𝑠

0
) (39)

is independent on the choice of𝑊.

If the timevariation is driven by some MDS(Ω,B,P𝑃,

󰜚

(𝑡)
) and there exists a metric dynamical system {𝑊 ×

Ω, F,P, 𝜋(𝑡)}, where F is the product 𝜎-algebra on𝑊×Ω, P is
the probability measure, and 𝜋(𝑡)(𝑠

0
, 𝜔) = (𝜃

(𝑡)
𝑠

0
, 󰜚

(𝑡)
𝜔). From

Theorem 17, we have the following.

Corollary 19. Suppose that the conditions in Lemma 16 are
satisfied, 𝑊 × Ω is compact in the topology defined in this
MDS, the semiflow 𝜋

(𝑡) is continuous, and on 𝑊 × Ω the
Jacobian matrix 𝐷𝐹(𝜃(𝑡)𝑠

0
, 󰜚

(𝑡)
𝜔) is continuous. Let {𝜎

𝑖
}

𝑛𝑚

𝑖=1
be

the Lyapunov exponents of this MDS with multiplicity and
{𝜎

𝑖
}

𝑛

𝑖=1
correspond to the synchronization space. If

sup
P∈Erg

𝜋
(𝑊×Ω)

sup
𝑖≥𝑛+1

𝜎

𝑖
< 0, (40)

where Erg
𝜋
(𝑊 × Ω) denotes the ergodic probability measure

set supported in the MDS {𝑊 × Ω, F,P, 𝜋(𝑡)}, then the coupled
system (2) is synchronized.

4. Synchronization of LCODEs with
Identity Inner Coupling Matrix and
Time-Varying Couplings

In this section we study synchronization in linearly coupled
ordinary differential equation systems (LCODEs) with time-
varying couplings. Considering the following LCODEs with
identity inner coupling matrix:

𝑥̇

𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) + 𝜎

𝑚

∑

𝑗=1

𝑙

𝑖𝑗 (
𝑡) 𝑥

𝑗
(𝑡) , 𝑖 = 1, 2, . . . , 𝑚,

(41)

where 𝑥𝑖(𝑡) ∈ R𝑛 denotes the state variable of the 𝑖th node,
𝑓(⋅) : R𝑛 → R𝑛 is a differential map, 𝜎 ∈ R+ denotes
coupling strength, and 𝑙

𝑖𝑗
(𝑡) denotes the coupling coefficient

from node 𝑗 to 𝑖 at time 𝑡, for all 𝑖 ̸= 𝑗, which are supposed to
satisfy the following assumption. Here, we highlight that the
inner coupling matrix is the identity matrix.

Assumption 20. (a) 𝑙
𝑖𝑗
(𝑡) ≥ 0, 𝑖 ̸= 𝑗 are measurable and 𝑙

𝑖𝑖
(𝑡) =

−∑

𝑚

𝑗=1,𝑗 ̸= 𝑖
𝑙

𝑖𝑗
(𝑡); (b) there exists𝑀

1
> 0 such that |𝑙

𝑖𝑗
(𝑡)| ≤ 𝑀

1

for all 𝑖, 𝑗 = 1, 2, . . . , 𝑚.
Similarly, we can define the Hajnal diameter of the

following linear system:

𝑢̇ (𝑡) = 𝜎𝐿 (𝑡) 𝑢 (𝑡) . (42)

Let 𝑉(𝑡) = (V
𝑖𝑗
(𝑡))

𝑚

𝑖,𝑗=1
be the fundamental solution matrix

of the system (42). Then, its solution matrix can be written
as 𝑉(𝑡, 𝑡

0
) = 𝑉(𝑡)𝑉(𝑡

0
)

−1. Thus, the Hajnal diameter of the
system (42) can be defined as follows:

diam (L) = lim
𝑡→∞

sup
𝑡
0
≥0

{diam (𝑉 (𝑡, 𝑡

0
))}

1/𝑡
. (43)

ByTheorem 17, we have the following theorem.

Theorem 21. Suppose Assumptions 1, 2, and 20 are satisfied.
Let 𝜇 be the largest Lyapunov exponent of the synchronized
system ̇𝑠(𝑡) = 𝑓(𝑠(𝑡)), that is,

𝜇 = sup
𝑠
0
∈𝑊

max
𝑢∈R𝑛

𝜆 (𝐷𝑓, 𝑢, 𝑠

0
) . (44)

If log(diam(L)) + 𝜇 < 0, then the LCODEs (41) is synchro-
nized.

Proof. Considering the variational equation of (41):

𝛿𝑥̇ (𝑡) = {𝐼𝑚
⊗ 𝐷𝑓 (𝑠 (𝑡)) + 𝜎𝐿 (𝑡) ⊗ 𝐼𝑛

} 𝛿𝑥 (𝑡) . (45)
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Let ̆

𝑈(𝑡, 𝑡

0
, 𝑠

0
) be the solution matrix of the synchronized

state system (17) and 𝑉(𝑡, 𝑡
0
) = (V

𝑖𝑗
(𝑡, 𝑡

0
))

𝑚

𝑖,𝑗=1
be the solution

matrix of the linear system (42). We can see that 𝑉(𝑡, 𝑡
0
) ⊗

̆

𝑈(𝑡, 𝑡

0
, 𝑠

0
) is the solution matrix of the variational system

(45). Then,

diam (𝑉 (𝑡 + 𝑡

0
, 𝑡

0
) ⊗

̆

𝑈 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
))

= max
𝑖,𝑗=1,...,𝑚

𝑚

∑

𝑘=1

󵄨

󵄨

󵄨

󵄨

󵄨

V
𝑖𝑘
(𝑡 + 𝑡

0
, 𝑡

0
) − V

𝑗𝑘
(𝑡 + 𝑡

0
, 𝑡

0
)

󵄨

󵄨

󵄨

󵄨

󵄨

×

󵄩

󵄩

󵄩

󵄩

󵄩

̆

𝑈 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
)

󵄩

󵄩

󵄩

󵄩

󵄩

= diam (𝑉 (𝑡 + 𝑡

0
, 𝑡

0
))

󵄩

󵄩

󵄩

󵄩

󵄩

̆

𝑈 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
)

󵄩

󵄩

󵄩

󵄩

󵄩

.

(46)

This implies that theHajnal diameter of the variational system
(45) is less than 𝑒𝜇 diam(L).This completes the proof accord-
ing toTheorem 17.

For the linear system (42), we firstly have the following
lemma.

Lemma 22 (see [22]). 𝑉(𝑡, 𝑡
0
) is a stochastic matrix.

From Lemmas 13 and 16, we have the following corollary.

Corollary 23. log diam(L) = 𝜆

𝑃
(L), where 𝜆

𝑃
(L) denotes

the largest one of all the projection Lyapunov exponents of
system (41). Moreover, if the conditions in Lemma 16 are
satisfied, then log diam(L) = 𝜆

𝑇
(L), where 𝜆

𝑇
(L) denotes

the largest one of all the Lyapunov exponents corresponding
to the transverse space, that is, the space orthogonal to the
synchronization space.

If 𝐿(𝑡) is periodic, we have the following.

Corollary 24. Suppose that 𝐿(𝑡) is periodic. Let 𝜍
𝑖
, 𝑖 =

1, 2, . . . , 𝑚, are the Floquet multipliers of the linear system
(42). Then, there exists one multiplier denoted by 𝜍

1
= 1 and

diam(L) = maxi≥2𝜍𝑖.

If 𝐿(𝑡) = 𝐿(󰜚

(𝑡)
𝜔) is driven by some MDS(Ω,B, 𝑃, 󰜚

(𝑡)
),

from Corollaries 19 and 23, we have the following corollary.

Corollary 25. Suppose 𝐿(𝜔) is continuous on Ω and condi-
tions in Lemma 16 are satisfied. Let 𝜇 = sup

𝑠
0
∈𝑊

max
𝑢∈R𝑛𝜆(𝐷𝑓,

𝑢, 𝑠

0
), 𝜍

𝑖
, 𝑖 = 1, 2, . . . , 𝑚, be the Lyapunov exponents of the

linear system (42) with 𝜍
1
= 0, and 𝜍 = sup

𝑃∈𝐸𝑟𝑓
𝜃
(Ω)

max
𝑖≥2
𝜍

𝑖
.

If 𝜇 + 𝜍 < 0, then the coupled system (41) is synchronized.

Let I be the set consisting of all compact time intervals
in [0, +∞) and G be the the set consisting of all graph with
vertex setN = {1, 2, . . . , 𝑚}.

Define

𝐺 : I × 𝑅

+
󳨀→ G,

(𝐼 = [𝑡

1
, 𝑡

2
] , 𝛿) 󳨃󳨀→ 𝐺 (𝐼, 𝛿) ,

(47)

where 𝐺(𝐼, 𝛿) = {N,E} is a graph with vertex set N and its
edge set E is defined as follows: there exists an edge from
vertex 𝑗 to vertex 𝑖 if and only if ∫𝑡2

𝑡
1

𝑙

𝑖𝑗
(𝜏)𝑑𝜏 > 𝛿. Namely, we

say that there is a 𝛿-edge from vertex 𝑗 to 𝑖 across 𝐼 = [𝑡
1
, 𝑡

2
].

Definition 26. We say that the LCODEs (41) has a 𝛿-spanning
tree across the time interval 𝐼 if the corresponding graph
𝐺(𝐼, 𝛿) has a spanning tree.

For a stochastic matrix 𝑉 = (V
𝑖𝑗
)

𝑚

𝑖,𝑗=1
, let

𝜂 (𝑉) = min
𝑖,𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

V
𝑖
∧ V

𝑗

󵄩

󵄩

󵄩

󵄩

󵄩1
, (48)

where V
𝑖
= [V

𝑖1
, . . . , V

𝑖𝑚
], 𝑖 = 1, 2, . . . , 𝑚, and V

𝑖
∧ V

𝑗
=

[min{V
𝑖1
, V
𝑗1
}, . . . ,min{V

𝑖𝑚
, V
𝑗𝑚
}]

T. Then, we can also define
that 𝑉 is 𝛿-scrambling if 𝜂(𝑉) > 𝛿.

Theorem 27. Suppose Assumption 20 is satisfied. diam(L) <

1 if and only if there exist 𝛿 > 0 and 𝑇 > 0 such that the
LCODEs (41) has a 𝛿-spanning tree across any 𝑇-length time
interval.

Remark 28. Different from [16], we do not need to assume
that 𝐿(𝑡) has zero column sums and the timeaverage is
achieved sufficiently fast.

Before proving this theorem, we need the following
lemma.

Lemma 29. If the LCODEs (41) has a 𝛿-spanning tree across
any 𝑇-length time interval, then there exist 𝛿

1
> 0 and 𝑇

1
>

0 such that 𝑉(𝑡, 𝑡
0
) is 𝛿

1
-scrambling for any 𝑇

1
-length time

interval.

Proof of Theorem 27. Sufficiency. From Lemma 29, we can
conclude that there exist 𝛿

1
> 0, 𝛿󸀠 > 0, and 𝑇

1
> 0

such that 𝑉(𝑡, 𝑡
0
) is 𝛿

1
-scrambling across any 𝑇

1
-length time

interval and inf
𝑡
0
≥0
𝜂(𝑉(𝑇

1
+ 𝑡

0
, 𝑡

0
)) > 𝛿

󸀠. For any 𝑡 ≥ 𝑡

0
, let

𝑡 − 𝑡

0
= 𝑝𝑇

1
+ 𝑇

󸀠, where 𝑝 is an integer and 0 ≤ 𝑇

󸀠
< 𝑇

1
and

𝑡

𝑙
= 𝑡

0
+ 𝑙𝑇

1
, 0 ≤ 𝑙 ≤ 𝑝. Then, we have

diam (𝑉 (𝑡, 𝑡

0
)) = diam(𝑉(𝑡, 𝑡

𝑝
)

𝑝

∏

𝑙=1

𝑉 (𝑡

𝑙
, 𝑡

𝑙−1
))

≤ diam(

𝑝

∏

𝑙=1

𝑉 (𝑡

𝑙
, 𝑡

𝑙−1
))

≤ 2

𝑝

∏

𝑙=1

(1 − 𝜂 (𝑉 (𝑡

𝑙
, 𝑡

𝑙−1
)))

≤ 2(1 − 𝛿

󸀠
)

⌊(𝑡−𝑡
0
)/𝑇
1
⌋

.

(49)

For the first inequality, we use the results in [23, 24]. This
implies diam(L) ≤ (1 − 𝛿

󸀠
)

1/𝑇
1
< 1.

Necessity. Suppose that for any 𝑇 ≥ 0 and 𝛿 > 0, there exists
𝑡

0
= 𝑡

0
(𝑇, 𝛿), ∫𝑇+𝑡0

𝑡
0

𝐿(𝜏)𝑑𝜏 does not have a 𝛿-spanning tree.
According to the condition, there exist 1 > 𝑑 > diam(L),
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𝜖 > 0, and 𝑇

󸀠
> 0 such that diam(𝑉(𝑡 + 𝑡

0
)) < 𝑑

𝑡 for all
𝑡

0
≥ 0 and 𝑡 ≥ 𝑇

󸀠 and 𝑑𝑇
󸀠

< 1 − 𝜖. Thus, picking 𝑇 > 𝑇

󸀠,
𝛿 = 𝑚

−3
𝑒

−𝑀
1
𝑚𝑇
𝜖/2, 𝑡

1
= 𝑡

0
(𝑇, 𝛿), and 𝐿

󸀠
= (𝑙

󸀠

𝑖𝑗
)

𝑚

𝑖,𝑗=1
=

(∫

𝑇+𝑡
1

𝑇
𝑙

𝑖𝑗
(𝜏)𝑑𝜏)

𝑚

𝑖,𝑗=1
, there exist two vertex set 𝐽

1
and 𝐽

2
such

that 𝑙󸀠
𝑖𝑗
≤ 𝛿 if 𝑖 ∈ 𝐽

1
and 𝑗 ∉ 𝐽

1
, or 𝑖 ∈ 𝐽

2
and 𝑗 ∉ 𝐽

2
. For each

𝑖 ∈ 𝐽

1
and 𝑗 ∉ 𝐽

1
, we have

V̇
𝑖𝑗 (
𝑡) = 𝑙𝑖𝑖 (

𝑡) V𝑖𝑗 (𝑡) +
𝑘 ̸= 𝑖

∑

𝑘∈𝐽
1

𝑙

𝑖𝑘 (
𝑡) V𝑘𝑗 (𝑡)

+ ∑

𝑘∉𝐽
1

𝑙

𝑖𝑘 (
𝑡) V𝑘𝑗 (𝑡)

≤ 𝑀

1

𝑘 ̸= 𝑖

∑

𝑘∈𝐽
1

V
𝑘𝑗 (

𝑡) + ∑

𝑘∉𝐽
1

𝑙

𝑖𝑘 (
𝑡) .

(50)

Then,

∑

𝑖∈𝐽
1
,𝑗∉𝐽
1

V̇
𝑖𝑗 (
𝑡) ≤ 𝑀1

𝑘 ̸= 𝑖,𝑗∉𝐽
1

∑

𝑖∈𝐽
1
,𝑘∈𝐽
1

V
𝑘𝑗 (

𝑡) +

𝑗∉𝐽
1

∑

𝑖∈𝐽
1
,𝑘∉𝐽
1

𝑙

𝑖𝑘 (
𝑡)

= 𝑀

1
(#𝐽

1
− 1)

𝑗∉𝐽
1

∑

𝑘∈𝐽
1

V
𝑘𝑗 (

𝑡) + (𝑚 − #𝐽
1
)

𝑘∉𝐽
1

∑

𝑖∈𝐽
1

𝑙

𝑖𝑘 (
𝑡) .

(51)

Let V(𝑡) = ∑
𝑖∈𝐽
1
,𝑗∉𝐽
1

V
𝑖𝑗
(𝑡). According to Lemma 9, we have

V (𝑇 + 𝑡
1
) ≤ 𝑒

𝑀
1
(#𝐽
1
−1)𝑇

(𝑚 − #𝐽
1
) ∫

𝑇+𝑡
1

𝑡
1

𝑗∉𝐽
1

∑

𝑖∈𝐽
1

𝑙

𝑖𝑗 (
𝜏) 𝑑𝜏

≤ (𝑚 − #𝐽
1
) 𝑒

𝑀
1
(#𝐽
1
−1)𝑇#𝐽

1
(𝑚 − #𝐽

1
) 𝛿

≤ 𝑚

3
𝑒

𝑚𝑀
1
𝑇
𝛿 ≤

𝜖

2

.

(52)

Similarly, we can conclude that ∑
𝑖∈𝐽
𝑙
,𝑗∉𝐽
𝑙

V
𝑖𝑗
(𝑇 + 𝑡

1
) ≤ 𝜖/2

for all 𝑙 = 1, 2. Without loss of generality, we suppose 𝐽
1
=

{1, 2, . . . , 𝑝} and 𝐽
2
= {𝑝 + 1, 𝑝 + 2, . . . , 𝑝 + 𝑞}, where 𝑝 and 𝑞

are integers with 𝑝 + 𝑞 ≤ 𝑚. Then, we can write 𝑉(𝑇 + 𝑡
1
, 𝑡

1
)

in the following matrix form:

𝑉 (𝑇 + 𝑡

1
, 𝑡

1
) =

[

[

𝑋

11
𝑋

12
𝑋

13

𝑋

21
𝑋

22
𝑋

23

𝑋

31
𝑋

32
𝑋

33

]

]

, (53)

where 𝑋
11
∈ R𝑝,𝑝 and 𝑋

22
∈ 𝑅

𝑞,𝑞 correspond to the vertex
subset 𝐽

1
and 𝐽

2
, respectively. Immediately, we have ‖𝑋

12
‖

∞
+

‖𝑋

13
‖

∞
+ ‖𝑋

21
‖

∞
+ ‖𝑋

23
‖

∞
≤ 𝜖. Let V = [

1
𝑝

0

0

]. We let

𝑉 (𝑡

1
+ 𝑇, 𝑡

1
) V = [

[

𝑋

11
1
𝑝

𝑋

21
1
𝑝

𝑋

31
1
𝑝

]

]

. (54)

Let 𝑢 = [

𝑢
1

𝑢
2

𝑢
3

] = [𝑢

1
, . . . , 𝑢

𝑚
]

T with 𝑢

𝑖
= [𝑢

𝑖

1
, . . . , 𝑢

𝑖

𝑝
𝑖

]

T
=

𝑋

𝑖1
1
𝑝
and 𝑝

1
= 𝑝, 𝑝

2
= 𝑞, 𝑝

3
= 𝑚 − 𝑝 − 𝑞. Then,

max
𝑖,𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

𝑖
− 𝑢

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

≥ max
𝑘,𝑙

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

1

𝑘
− 𝑢

2

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

≥ 1 −

󵄩

󵄩

󵄩

󵄩

𝑋

12

󵄩

󵄩

󵄩

󵄩∞
−

󵄩

󵄩

󵄩

󵄩

𝑋

13

󵄩

󵄩

󵄩

󵄩∞
−

󵄩

󵄩

󵄩

󵄩

𝑋

21

󵄩

󵄩

󵄩

󵄩∞
−

󵄩

󵄩

󵄩

󵄩

𝑋

23

󵄩

󵄩

󵄩

󵄩∞

≥ 1 − 𝜖.

(55)

Also,

max
𝑖,𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

𝑖
− 𝑢

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

≤ diam (𝑉 (𝑡

1
+ 𝑇, 𝑡

1
)) ≤ 𝑑

𝑇
. (56)

This implies 𝑑𝑇 ≥ 1 − 𝜖 which leads contradiction with 𝑑𝑇 <
1 − 𝜖. Therefore, we can conclude the necessity.

5. Consensus Analysis of Multiagent System
with Directed Time-Varying Graphs

If we let 𝑛 = 1, 𝑓 ≡ 0, and 𝜎 = 1 in system (41), then we have

𝑥̇

𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝑙

𝑖𝑗 (
𝑡) 𝑥

𝑗
(𝑡) , 𝑖 = 1, 2, . . . , 𝑚. (57)

In this case, if Assumption 20 is satisfied, then the synchro-
nization analysis of system (57) becomes another important
research field named consensus problems.

Definition 30. We say the differential system (57) reaches
consensus if for any𝑥(𝑡

0
) ∈ R𝑚, ‖𝑥𝑖(𝑡)−𝑥𝑗(𝑡)‖→ 0 as 𝑡 → ∞

for all 𝑖, 𝑗 ∈ N.

In graph view, the coefficients matrix of (57) 𝐿(𝑡) =

(𝑙

𝑖𝑗
(𝑡)) ∈ R𝑚,𝑚 is equal to the negative graph Laplacian

associated with the digraph 𝐺(𝑡) at time 𝑡, where 𝐺(𝑡) =

(V,E(𝑡),A(𝑡)) is a weighted digraph (or directed graph)with
𝑚 vertices, the set of nodes V = {V

1
, . . . , V

𝑚
}, set of edges

E(𝑡) ⊆ V × V, and the weighted adjacency matrix A(𝑡) =

(𝑎

𝑖𝑗
(𝑡)) with nonnegative adjacency elements 𝑎

𝑖𝑗
(𝑡). An edge

of 𝐺(𝑡) is denoted by 𝑒
𝑖𝑗
(𝑡) = (V

𝑖
, V
𝑗
) ∈ E(𝑡) if there is a

directed edge from vertex 𝑖 to vertex 𝑗 at time 𝑡.The adjacency
elements associated with the edges of the graph are positive,
that is, 𝑒

𝑖𝑗
(𝑡) ∈ E(𝑡) ⇔ 𝑎

𝑖𝑗
(𝑡) > 0, for all 𝑖, 𝑗 ∈ N. It is assumed

that 𝑎
𝑖𝑖
(𝑡) = 0 for all 𝑖 ∈ N. The indegree and outdegree of

node V
𝑖
at time 𝑡 are, respectively, defined as follows:

degin (V𝑖 (𝑡)) =
𝑁

∑

𝑗=1

𝑎

𝑗𝑖(𝑡)
, degout (V𝑖 (𝑡)) =

𝑁

∑

𝑗=1

𝑎

𝑖𝑗(𝑡)
.

(58)

The degree matrix of digraph 𝐺(𝑡) is defined as 𝐷(𝑡) =

diag(degout(V1(𝑡)), . . . , degout(V𝑚(𝑡))) at time 𝑡. The graph
Laplacian associated with the digraph𝐺(𝑡) at time 𝑡 is defined
as

−𝐿 (𝑡) = L (𝐺 (𝑡)) = 𝐷 (𝑡) −A (𝑡) . (59)
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Let𝐺(𝐼, 𝛿) defined as before.We say that the digraph𝐺(𝑡)
has a 𝛿-spanning tree across the time interval 𝐼 if 𝐺(𝐼, 𝛿) has
a spanning.

Theorem 31. Suppose Assumption 20 is satisfied. The system
(57) reaches consensus if and only if there exist 𝛿 > 0 and𝑇 > 0

such that the corresponding digraph𝐺(𝑡) has a 𝛿-spanning tree
across any 𝑇-length time interval.

Proof. Since 𝑓 ≡ 0, we have 𝜇 = 0 in Theorem 21. This
completes the proof according toTheorems 27 and 21.

Remark 32. This theorem is a part of Theorem 17 in [25].

6. Numerical Examples

In this section, a numerical example is given to demonstrate
the effectiveness of the presented results on synchronization
of LCODEs with time-varying couplings. The Lyapunov
exponents are computed numerically. By this way, we can
verify the the synchronization criterion and analyze synchro-
nization numerically. We use the Rössler system [16, 26] as
the node dynamics

𝑥̇

1 (
𝑡) = −𝑥2 (

𝑡) − 𝑥3 (
𝑡) ,

𝑥̇

2 (
𝑡) = 𝑥1 (

𝑡) + 𝑎𝑥2 (
𝑡) ,

𝑥̇

3 (
𝑡) = 𝑏 + 𝑥3 (

𝑡) (𝑥1 (
𝑡) − 𝑐) ,

(60)

where 𝑎 = 0.165, 𝑏 = 0.2, and 𝑐 = 10. Figure 1 shows the
dynamical behaviors of the Rössler system (60) with random
initial value in [0, 1] that includes a chaotic attractor [16, 26].

The network with time-varying topology we used here
is NW small-world network with a time-varying coupling,
which was introduced as the blinking model in [11, 27].
The time-varying network model algorithm is presented as
follows: we divide the time axis into intervals of length 𝜏, in
each interval: (a) begin with the nearest neighbor coupled
network consisting of𝑚 nodes arranged in a ring, where each
node 𝑖 is adjacent to its 2𝑘-nearest neighbor nodes; (b) add a
connection between each pair of nodes with probability 𝑝,
which usually is a random number between [0, 0.1]; for more
details, we refer the readers to [11]. Figure 2 shows the time-
varying structure of shortcut connections in the blinking
model with𝑚 = 50 and 𝑘 = 3.

In this example, the parameters are taken values as 𝑚 =

50, 𝑘 = 3, 𝜏 = 1, and 𝑝 = 0.04. Then blinking small-world
network can be generated with the coupling graph Laplacian
L(𝐺(𝑡)) = −𝐿(𝑡). The dynamical network system can be
described as follows:

𝑥̇

𝑖

1
(𝑡) = −𝑥

𝑖

2
(𝑡) − 𝑥

𝑖

3
(𝑡) + 𝜎

𝑚

∑

𝑗=1

𝑙

𝑖𝑗 (
𝑡) 𝑥

𝑗

1
(𝑡) ,

𝑥̇

𝑖

2
(𝑡) = 𝑥

𝑖

1
(𝑡) + 𝑎𝑥

𝑖

2
(𝑡) + 𝜎

𝑚

∑

𝑗=1

𝑙

𝑖𝑗 (
𝑡) 𝑥

𝑗

2
(𝑡) ,

𝑥̇

𝑖

3
(𝑡) = 𝑏 + 𝑥

𝑖

3
(𝑡) (𝑥

𝑖

1
(𝑡) − 𝑐) + 𝜎

𝑚

∑

𝑗=1

𝑙

𝑖𝑗 (
𝑡) 𝑥

𝑗

3
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑚.

(61)

0
10

20
0

10
20
0

10

20

30

40

50

−20 −20
−10

−10
x1

x2

x
3

Figure 1: The dynamical behavior of the Rössler system (60) with
𝑎 = 0.165, 𝑏 = 0.2, and 𝑐 = 10.

Let 𝑒(𝑡) = max
1≤𝑖<𝑗≤50

‖𝑥

𝑖
(𝑡) − 𝑥

𝑗
(𝑡)‖ denotes the maxi-

mum distance between nodes at time 𝑡. Let 𝐸 = ∫

𝑇+𝑅

𝑇
𝑒(𝑡)𝑑𝑡,

for some sufficiently large 𝑇 > 0 and 𝑅 > 0. Let 𝐻 = 𝜇 + 𝜍

defined in Corollary 25. As described in Corollary 25, two
steps are needed for verification: (a) calculating the largest
Lyapunov exponent of the uncoupled synchronized system
(60), 𝜇 and (b) calculating the second largest Lyapunov
exponent of the linear system (42). In detail, we use Wolf ’s
method [28] to compute 𝜇 and the Jacobian method [29] to
compute Lyapunov spectra of (42).More details can be found
in [28–30]. Figure 3 shows convergence of the maximum
distance between nodes during the topology evolution with
a different coupling strength 𝜎. It can be seen from Figure 3
that the dynamical network system (61) can be synchronized
with 𝜎 = 0.4 and 𝜎 = 0.5.

We pick the time length 200. Let 𝑇 = 190 and 𝑅 = 10.
And choose initial state randomly from the interval [0, 1].
Figure 4 shows the variation of 𝐸 and 𝐻 with respect to
the coupling strength 𝜎. It can be seen that the parameter
(coupling strength 𝜎) region where 𝐻 is negative coincides
with that of synchronization, that is, where 𝐸 is near zero.
This verified the theoretical result (Corollary 25). In addition,
we find that 𝜎 ≈ 0.38 is the threshold for synchronizing the
coupled systems in this case.

7. Conclusions

In this paper, we present a theoretical framework for synchro-
nization analysis of general coupled differential dynamical
systems. The extended Hajnal diameter is introduced to
measure the synchronization.The coupling between nodes is
timevarying in both network structure and reaction dynam-
ics. Inspired by the approaches in [6, 13], we show that the
Hajnal diameter of the linear system induced by the time-
varying coupling matrix and the largest Lyapunov exponent
of the synchronized system play the key roles in synchroniza-
tion analysis of LCODEs. These results extend synchroniza-
tion analysis of discrete-time network in [6] to continuous-
time case. As an application, we obtain a very general
sufficient condition ensuring directed time-varying graph
reaching consensus, and the way we get this result is different
from [25]. An example of numerical simulation is provided
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Figure 2: The blinking model of shortcuts connections. Probability of switchings 𝑝 = 0.04, the switching time step 𝜏 = 1.
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Figure 3: Convergence of the maximum distance between nodes
with a different coupling strength 𝜎.

to show the effectiveness the theoretical results. Additional
contributions of this paper are that we explicitly show that the
largest projection Lyapunov exponent, the Hajnal diameter,
and the largest Lyapunov exponent of the transverse space
are equal to each other in coupled differential systems (see
Lemmas 13 and 16), which was proved in [6] for couple
discrete-time systems.

Appendix

Proof of Lemma 5. Let 𝑈 be a bounded open neighborhood
of 𝐴 satisfying ⋂

𝑡≥0
𝜗

(𝑡)
𝑈 = 𝐴 and 𝑈

𝑡
= {𝑥 ∈ 𝑅

𝑛
: 𝜗

(𝜏)
𝑥 ∈

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
−0.04

−0.02

0

0.02

0.04

0.06

0.08

𝜎

Variation of E and H with respect to 𝜎

E

H

Figure 4: Variation of 𝑒 and 𝐻 with respect to 𝜎 for the blinking
topology.

𝑈, 0 ≤ 𝜏 ≤ 𝑡}. This implies 𝑈
𝑡
⊃ 𝑈

𝑡
󸀠 if 𝑡󸀠 ≥ 𝑡 ≥ 0, 𝑈

𝑡
is

an open set due to the continuity of the semiflow 𝜗

(𝑡), and
𝜗

(𝛿)
𝑈

𝑡
⊂ 𝑈

𝑡−𝛿
for all 𝑡 ≥ 𝛿 ≥ 0. Let 𝑉 = ⋂

𝑡≥0
𝑈

𝑡
. We claim

that there exists 𝑡
0
≥ 0 such that 𝑉 = 𝑈

𝑡
for all 𝑡 ≥ 𝑡

0
.

For any 𝛿 > 0, let 𝑡
𝑛
= 𝑛𝛿 and 𝑈

𝑛
= 𝑈

𝑡
𝑛

. We can conclude
that 𝑉 = ⋂

∞

𝑛=1
𝑈

𝑛
. We will prove in the following that there

exists 𝑛
0
such that 𝑉 = 𝑈

𝑛
0

. Otherwise, there always exists
𝑥

𝑛
∈ 𝑈

𝑛
\ 𝑈

𝑛+1
for 𝑛 ≥ 0. Let 𝑦

𝑛
= 𝜗

(𝑡
𝑛+1
)
𝑥

𝑛
. We have (i)

𝑦

𝑛
∈ ⋂

𝑛

𝑘=0
𝜗

(𝑡
𝑘
)
𝑈 and (ii) 𝑦

𝑛
∉ 𝑈. For any limit point 𝑦 of

𝑦

𝑛
, 𝑦 can be either finite or infinite. For both cases, 𝑦 ∉ 𝑈

which implies 𝑦 ∉ 𝐴. However, the claim (i) implies that
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𝑦 ∈ 𝐴, which contradicts with the claim (ii). This completes
the proof by letting𝑊 = 𝑉.

Proof of Lemma 10. (a) For any initial condition with the
form 𝛿𝑥

0
= 1

𝑚
⊗ 𝑢

0
, the solution of (11) can be 𝑈(𝑡, 𝑡

0
,

𝑠

0
)(1

𝑚
⊗𝑢

0
) = 1

𝑚
⊗

̆

𝑈(𝑡, 𝑡

0
, 𝑠

0
)𝑢

0
according to Lemma 4.This

implies the first claim in this lemma.
(b) According to Lemma 5, there exists 𝐾

1
> 0 such that

𝑠(𝑡), the solution of (5), satisfies ‖𝑠(𝑡)‖ ≤ 𝐾

1
for all 𝑠

0
∈ 𝑊

and 𝑡 ≥ 0. So, there exists 𝐾 > 0 such that ‖𝐷𝐹𝑡(𝑠(𝑡)) ‖ ≤ 𝐾

according to the 3th item of Assumption 1.Write the solution
of (11) 𝛿𝑥(𝑡) = 𝑈(𝑡, 𝑡

0
, 𝑠

0
)𝛿𝑥

0
as

𝛿𝑥 (𝑡 + 𝑡

0
) = 𝛿𝑥

0
+ ∫

𝑡+𝑡
0

𝑡
0

𝐷𝐹

𝜏
(𝑠 (𝜏)) 𝛿𝑥 (𝜏) 𝑑𝜏. (A.1)

Then,
󵄩

󵄩

󵄩

󵄩

𝛿𝑥 (𝑡 + 𝑡

0
)

󵄩

󵄩

󵄩

󵄩

≤

󵄩

󵄩

󵄩

󵄩

𝛿𝑥

0

󵄩

󵄩

󵄩

󵄩

+ ∫

𝑡+𝑡
0

𝑡
0

󵄩

󵄩

󵄩

󵄩

𝐷𝐹

𝜏
(𝑠 (𝜏))

󵄩

󵄩

󵄩

󵄩

‖𝛿𝑥 (𝜏)‖ 𝑑𝜏

≤

󵄩

󵄩

󵄩

󵄩

𝛿𝑥

0

󵄩

󵄩

󵄩

󵄩

+ 𝐾∫

𝑡

0

󵄩

󵄩

󵄩

󵄩

𝛿𝑥 (𝜏 + 𝑡

0
)

󵄩

󵄩

󵄩

󵄩

𝑑𝜏.

(A.2)

According to Lemma 9, we have ‖𝛿𝑥(𝑡 + 𝑡

0
)‖ ≤ ‖𝛿𝑥

0
‖ +

𝐾∫

𝑡

0
‖𝛿𝑥

0
‖𝑒

(𝑡−𝜏)𝐾
𝑑𝜏 = 𝑒

𝐾𝑡
‖𝛿𝑥

0
‖.This implies that ‖𝑈(𝑡+𝑡

0
, 𝑡

0
,

𝑠

0
)‖ ≤ 𝑒

𝐾𝑡 for all 𝑠
0
∈ 𝑊 and 𝑡

0
≥ 0.

For any 𝑠
0
, 𝑠

󸀠

0
∈ 𝑊, let 𝑠(𝑡) and 𝑠󸀠(𝑡) be the solution of the

synchronized state equation (5) with initial condition 𝑠(𝑡
0
) =

𝑠

0
and 𝑠󸀠(𝑡

0
) = 𝑠

󸀠

0
, respectively. We have

𝑠 (𝑡 + 𝑡

0
) − 𝑠

󸀠
(𝑡 + 𝑡

0
)

= ∫

𝑡+𝑡
0

𝑡
0

[𝑓 (𝑠 (𝜏)) − 𝑓 (𝑠

󸀠
(𝜏))] 𝑑𝜏 + 𝑠 (𝑡0

) − 𝑠

󸀠
(𝑡

0
) ,

󵄩

󵄩

󵄩

󵄩

󵄩

𝑠 (𝑡 + 𝑡

0
) − 𝑠

󸀠
(𝑡 + 𝑡

0
)

󵄩

󵄩

󵄩

󵄩

󵄩

≤

󵄩

󵄩

󵄩

󵄩

󵄩

𝑠 (𝑡

0
) − 𝑠

󸀠
(𝑡

0
)

󵄩

󵄩

󵄩

󵄩

󵄩

+ 𝐾∫

𝑡+𝑡
0

𝑡
0

󵄩

󵄩

󵄩

󵄩

󵄩

𝑠 (𝜏) − 𝑠

󸀠
(𝜏)

󵄩

󵄩

󵄩

󵄩

󵄩

𝑑𝜏.

(A.3)

By Lemma 9, we have ‖𝑠(𝑡 + 𝑡
0
) − 𝑠

󸀠
(𝑡 + 𝑡

0
)‖ ≤ 𝑒

𝐾𝑡
‖𝑠

0
− 𝑠

󸀠

0
‖

for all 𝑡
0
, 𝑡 ≥ 0 and 𝑠

0
, 𝑠

󸀠

0
∈ 𝑊. Also, according to the 4th

item of Assumption 1, there must exist 𝐾
2
> 0 such that

‖ 𝐷𝐹

𝑡
(𝑠(𝑡)) − 𝐷𝐹

𝑡
(𝑠

󸀠
(𝑡)) ‖ ≤ 𝐾

2
‖ 𝑠(𝑡) − 𝑠

󸀠
(𝑡) ‖ for all 𝑡 ≥ 0

and 𝑠

0
, 𝑠

󸀠

0
∈ 𝑊. Then, let 𝛿𝑥(𝑡) = 𝑈(𝑡, 𝑡

0
, 𝑠

0
)𝛿𝑥

0
, 𝛿𝑦(𝑡) =

𝑈(𝑡, 𝑡

0
, 𝑠

󸀠

0
)𝛿𝑥

0
, and V(𝑡) = 𝛿𝑥(𝑡) − 𝛿𝑦(𝑡). We have

V (𝑡 + 𝑡
0
)

= ∫

𝑡+𝑡
0

𝑡
0

[𝐷𝐹

𝜏
(𝑠 (𝜏)) 𝛿𝑥 (𝜏) − 𝐷𝐹

𝜏
(𝑠

󸀠
(𝜏)) 𝛿𝑦 (𝜏)] 𝑑𝜏

= ∫

𝑡+𝑡
0

𝑡
0

[𝐷𝐹

𝜏
(𝑠 (𝜏)) − 𝐷𝐹

𝜏
(𝑠

󸀠
(𝜏))] 𝛿𝑥 (𝜏) 𝑑𝜏

+ ∫

𝑡+𝑡
0

𝑡
0

𝐷𝐹

𝜏
(𝑠

󸀠
(𝜏)) V (𝜏) 𝑑𝜏,

󵄩

󵄩

󵄩

󵄩

V (𝑡 + 𝑡
0
)

󵄩

󵄩

󵄩

󵄩

≤ ∫

𝑡+𝑡
0

𝑡
0

[

󵄩

󵄩

󵄩

󵄩

󵄩

𝐷𝐹

𝜏
(𝑠 (𝜏)) − 𝐷𝐹

𝜏
(𝑠

󸀠
(𝜏))

󵄩

󵄩

󵄩

󵄩

󵄩

‖𝛿𝑥 (𝜏)‖

+

󵄩

󵄩

󵄩

󵄩

󵄩

𝐷𝐹

𝜏
(𝑠

󸀠
(𝜏))

󵄩

󵄩

󵄩

󵄩

󵄩

‖V (𝜏)‖] 𝑑𝜏

≤ 𝐾

2
∫

𝑡

0

𝑒

2𝐾𝜏
𝑑𝜏

󵄩

󵄩

󵄩

󵄩

𝛿𝑥

0

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑠

0
− 𝑠

󸀠

0

󵄩

󵄩

󵄩

󵄩

󵄩

+ 𝐾∫

𝑡
0
+𝑡

𝑡
0

‖V (𝜏)‖ 𝑑𝜏.

(A.4)

According to Lemma 9,

󵄩

󵄩

󵄩

󵄩

V (𝑡 + 𝑡
0
)

󵄩

󵄩

󵄩

󵄩

≤ [

𝐾

2
(𝑒

2𝐾𝑡
− 𝑒

𝐾𝑡
)

𝐾

]

󵄩

󵄩

󵄩

󵄩

𝛿𝑥

0

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑠

0
− 𝑠

󸀠

0

󵄩

󵄩

󵄩

󵄩

󵄩

.

(A.5)

This implies

󵄩

󵄩

󵄩

󵄩

󵄩

𝑈 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
) − 𝑈 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

󸀠

0
)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ [

𝐾

2
(𝑒

2𝐾𝑡
− 𝑒

𝐾𝑡
)

𝐾

]

󵄩

󵄩

󵄩

󵄩

󵄩

𝑠

0
− 𝑠

󸀠

0

󵄩

󵄩

󵄩

󵄩

󵄩

(A.6)

for all 𝑠
0
, 𝑠

󸀠

0
∈ 𝑊. This completes the proof.

Proof of Lemma 13. We define the projection joint spectral
radius as follows:

𝜌

𝑃
(𝐷F, 𝑠

0
) = lim

𝑡→∞
sup
𝑡
0
≥0

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑈 (𝑡, 𝑡

0
, 𝑠

0
)

󵄩

󵄩

󵄩

󵄩

󵄩

1/𝑡

. (A.7)

First, we will prove that diam(𝐷F, 𝑠

0
) = 𝜌

𝑃
(𝐷F, 𝑠

0
). For any

𝑑>𝜌

𝑃
(𝐷F, 𝑠

0
), there exists𝑇≥ 0 such that ‖̃𝑈(𝑡+𝑡

0
, 𝑡

0
, 𝑠

0
)‖ ≤

𝑑

𝑡 for all 𝑡
0
≥ 0 and 𝑡 ≥ 𝑇. This implies that

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑃

−1
𝑈 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
) 𝑃 −

[

[

[

[

[

[

[

𝐼

𝑛

0

...
0

]

]

]

]

]

]

]

× [𝑃

T
0

̆

𝑈 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
) 𝑃

0
, 𝛼 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
)]

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

=

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

[

0 0

0

̃

𝑈 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
)

]

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝐶

1
𝑑

𝑡

(A.8)
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for some 𝐶
1
> 0, all 𝑡

0
≥ 0 and all 𝑡 ≥ 𝑇. Thus, there exist

some 𝐶
2
> 0 and some matrix function 𝑞(𝑡) ∈ R𝑛,𝑛𝑚 such

that
󵄩

󵄩

󵄩

󵄩

𝑈 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
) − 1

𝑚
⊗ 𝑞 (𝑡)

󵄩

󵄩

󵄩

󵄩

=

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑈 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
) − 𝑃

[

[

[

[

[

[

[

𝐼

𝑛

0

...
0

]

]

]

]

]

]

]

× [𝑃

T
0

̆

𝑈 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
) 𝑃

0
, 𝛼 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
)] 𝑃

−1V

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝐶

2
𝑑

𝑡

(A.9)

for all 𝑡
0
≥ 0 and 𝑡 ≥ 𝑇, where 𝑞(𝑡) ∈ R𝑛,𝑛𝑚 denotes a matrix,

and we omit its accurate expression. So, we can conclude
that diam(𝑈(𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
)) ≤ 𝐶

3
𝑑

𝑡 for some 𝐶
3
> 0, all

𝑡

0
≥ 0, and 𝑡 ≥ 𝑇. This implies that diam(𝐷F, 𝑠

0
) ≤ 𝑑, that

is, diam(𝐷F, 𝑠

0
) ≤ 𝜌

𝑃
(𝐷F, 𝑠

0
) due to the arbitrariness of

𝑑 ≥ 𝜌

𝑃
(𝐷F, 𝑠

0
). Conversely, for any 𝑑 > diam(𝐷F, 𝑠

0
), there

exists 𝑇 > 0 such that

󵄩

󵄩

󵄩

󵄩

𝑈 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
) − 1

𝑚
⊗ 𝑈

1

󵄩

󵄩

󵄩

󵄩

≤ 𝐶

4
𝑑

𝑡 (A.10)

for some 𝐶
4
> 0, all 𝑡

0
≥ 0, and 𝑡 ≥ 𝑇, where 𝑈

1
= [𝑈

11
,

𝑈

12
, . . . , 𝑈

1𝑚
] the first 𝑛 rows of 𝑈(𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
). Then,

󵄩

󵄩

󵄩

󵄩

󵄩

𝑃

−1
𝑈 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
) 𝑃 − 𝑃

−11
𝑚
⊗ 𝑈

1
𝑃

󵄩

󵄩

󵄩

󵄩

󵄩

=

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

𝑃

−1
𝑈 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
) 𝑃 − [

𝛾 (𝑡) 𝛽 (𝑡)

0 0

]

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

=

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

[

0 𝛽 (𝑡)

0

̃

𝑈 (𝑡 + 𝑡

0
, 𝑡

0
, 𝑠

0
)

]

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝐶

5
𝑑

𝑡

(A.11)

for some 𝐶
5
> 0, all 𝑡

0
≥ 0, and 𝑡 ≥ 𝑇, where 𝛾(𝑡) =

𝑃

T
0

̆

𝑈(𝑡, 𝑡

0
, 𝑠

0
)𝑃

0
∈ R𝑛,𝑛 and 𝛽(𝑡) ∈ R𝑛,𝑛(𝑚−1) denotes a matrix,

and we omit its accurate expression. This implies that ‖ ̃𝑈(𝑡 +
𝑡

0
, 𝑡

0
, 𝑠

0
) ‖ ≤ 𝐶

6
𝑑

𝑡 holds for some 𝐶
6
> 0, all 𝑡

0
≥ 0, and

𝑡 ≥ 𝑇. Therefore, we can conclude that 𝜌
𝑃
(𝐷F, 𝑠

0
) ≤ 𝑑. So,

𝜌

𝑃
(𝐷F, 𝑠

0
) = diam(𝐷F, 𝑠

0
).

Second, it is clear that log 𝜌
𝑃
(𝐷F, 𝑠

0
) ≥ 𝜆

𝑃
(𝐷F, 𝑠

0
).

We will prove that log 𝜌
𝑃
(𝐷F, 𝑠

0
) = 𝜆

𝑃
(𝐷F, 𝑠

0
). Otherwise,

there exists some 𝑟, 𝑟
0
> 0 satisfying 𝜌

𝑃
(𝐷F, 𝑠

0
) > 𝑟 > 𝑟

0
>

𝑒

𝜆
𝑃
(𝐷F,𝑠

0
). If so, there exists a sequence 𝑡

𝑘
↑ ∞ as 𝑘 →

∞, 𝑡𝑘
0
≥ 0, and V

𝑘
∈ R𝑛(𝑚−1) with ‖V

𝑘
‖ = 1 such that

‖

̃

𝑈(𝑡

𝑘
+ 𝑡

𝑘

0
, 𝑡

𝑘

0
, 𝑠

0
)V
𝑘
‖ > 𝑟

𝑡
𝑘 for all 𝑘 ∈ N. Then, there exists a

subsequence V
𝑘
𝑙

with lim
𝑙→∞

V
𝑘
𝑙

= V∗. Let {𝑒
1
, 𝑒

2
, . . . , 𝑒

𝑛(𝑚−1)
}

be a normalized orthogonal basis ofR𝑛(𝑚−1). And, let V
𝑘
𝑙

−V∗ =

∑

𝑛(𝑚−1)

𝑗=1
𝜉

𝑘
𝑙

𝑗
𝑒

𝑗
. We have lim

𝑙→∞
𝜉

𝑘
𝑙

𝑗
= 0 for all 𝑗 = 1, . . . , 𝑛(𝑚 −

1). Thus, there exists 𝐿 > 0 such that

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑈 (𝑡

𝑘
𝑙

+ 𝑡

𝑘
𝑙

0
, 𝑡

𝑘
𝑙

0
, 𝑠

0
) V∗

󵄩

󵄩

󵄩

󵄩

󵄩

≥

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑈 (𝑡

𝑘
𝑙

+ 𝑡

𝑘
𝑙

0
, 𝑡

𝑘
𝑙

0
, 𝑠

0
) V
𝑘
𝑙

󵄩

󵄩

󵄩

󵄩

󵄩

−

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑈 (𝑡

𝑘
𝑙

+ 𝑡

𝑘
𝑙

0
, 𝑡

𝑘
𝑙

0
, 𝑠

0
) (V

𝑘
𝑙

− V∗)
󵄩

󵄩

󵄩

󵄩

󵄩

≥ 𝑟

𝑡
𝑘
𝑙
−

𝑛(𝑚−1)

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝜉

𝑘
𝑙

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑈 (𝑡

𝑘
𝑙

+ 𝑡

𝑘
𝑙

0
, 𝑡

𝑘
𝑙

0
, 𝑠

0
) 𝑒

𝑗

󵄩

󵄩

󵄩

󵄩

󵄩

≥ 𝑟

𝑡
𝑘
𝑙
− 𝑟

𝑡
𝑘
𝑙

0
> 𝑟

𝑡
𝑘
𝑙

0

(A.12)

for all 𝑙 ≥ 𝐿. This implies 𝑒𝜆(𝐷𝑃F,V
∗
,𝑠
0
)
≥ 𝑟

0
which contradicts

with 𝑒

𝜆
𝑃
(𝐷F,𝑠

0
)
< 𝑟

0
. This implies 𝜌

𝑃
(𝐷F, 𝑠

0
) = 𝑒

𝜆
𝑃
(𝐷F,𝑠

0
).

Therefore, we can conclude log diam(𝐷F, 𝑠

0
) = 𝜆

𝑃
(F, 𝑠

0
).

The proof is completed.

Proof of Lemma 16. Let ̃𝜙 = 𝑃−1𝜙. We have

̇

̃

𝜙 = 𝑃

−1
𝐷𝐹(𝑠 (𝑡) , 󰜚

(𝑡)
𝜔

0
) 𝑃

̃

𝜙

=

[

[

𝑃

T
0

𝜕𝑓

𝜕𝑠

(𝑠 (𝑡)) 𝑃0
𝛼 (𝑡)

0

̃

𝐷𝐹 (𝑠 (𝑡) , 󰜚

(𝑡)
𝜔

0
)

]

]

̃

𝜙.

(A.13)

Write ̃𝜙 = [ 𝑦(𝑡)
𝑧(𝑡)

], where 𝑦(𝑡) ∈ R𝑛. Then, we have

𝑧̇ (𝑡) =

̃

𝐷𝐹 (𝑠 (𝑡) , 󰜚

(𝑡)
𝜔

0
) 𝑧 (𝑡) ,

̇𝑦 (𝑡) = 𝑃

T
0

𝜕𝑓

𝜕𝑠

(𝑠 (𝑡)) 𝑃0
𝑦 (𝑡) + 𝛼 (𝑡) 𝑧 (𝑡) .

(A.14)

Thus, we can write its solution by

𝑧 (𝑡) =

̃

𝑈 (𝑡) 𝑧0
,

𝑦 (𝑡) = 𝑃

T
0

̆

𝑈 (𝑡) 𝑃0
𝑦

0
+ ∫

𝑡

0

𝑃

T
0

̆

𝑈 (𝑡)

̆

𝑈

−1
(𝜏) 𝑃0

𝛼 (𝜏)

̃

𝑈 (𝜏) 𝑧0
𝑑𝜏.

(A.15)

We write 𝜆
𝑃
(𝐷F, 𝑠

0
, 𝜔

0
), 𝜆

𝑆
(𝐷F, 𝑠

0
, 𝜔

0
), and 𝜆

𝑇
(𝐷F,

𝑠

0
, 𝜔

0
) by 𝜆

𝑃
, 𝜆
𝑆
, and 𝜆

𝑇
, respectively for simplicity.

Case 1 (𝜆
𝑃
> 𝜆

𝑆
). We can conclude that 𝜒[𝑧(𝑡)] ≤ 𝜆

𝑃
and

𝜒 [𝑦 (𝑡)] ≤ max{𝜒 [𝑃T
0

̆

𝑈 (𝑡) 𝑃0
𝑦

0
] ,

𝜒 [∫

𝑡

0

𝑃

T
0

̆

𝑈 (𝑡)

̆

𝑈

−1
(𝜏) 𝑃0

𝛼 (𝜏)

×

̃

𝑈 (𝜏) 𝑧 (0) 𝑑𝜏] } .

(A.16)
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From Cauchy-Buniakowski-Schwarz inequality, we have

𝜒[

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∫

𝑡

0

𝑃

T
0

̆

𝑈 (𝑡)

̆

𝑈

−1
(𝜏) 𝑃0

𝛼 (𝜏)

̃

𝑈 (𝜏) 𝑑𝜏

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

]

≤ 𝜒[{∫

𝑡

0

󵄩

󵄩

󵄩

󵄩

󵄩

̆

𝑈 (𝑡)

̆

𝑈

−1
(𝜏)

󵄩

󵄩

󵄩

󵄩

󵄩

2

𝑑𝜏}

1/2

]

+ 𝜒[{∫

𝑡

0

󵄩

󵄩

󵄩

󵄩

󵄩

𝛼 (𝜏)

̃

𝑈 (𝜏)

󵄩

󵄩

󵄩

󵄩

󵄩

𝑑𝜏}

1/2

] .

(A.17)

Claim 1 (𝜒(∫𝑡
0
‖

̆

𝑈(𝑡)

̆

𝑈

−1
(𝜏)‖

2
𝑑𝜏) ≤ 0). Considering the linear

system

𝑢̇ (𝑡) =

𝜕𝑓

𝜕𝑠

(𝑠 (𝑡)) 𝑢 (𝑡) ,
(A.18)

due to its regularity and the boundedness of its coefficients,
there exists a Lyapunov transform 𝐿(𝑡) such that letting
𝑢(𝑡) = 𝐿(𝑡)V(𝑡), consider the transformed linear system

V̇ (𝑡) = [𝐿−1 (𝑡)
𝜕𝑓

𝜕𝑠

(𝑠 (𝑡)) 𝐿 (𝑡) − 𝐿

−1
(𝑡)

̇

𝐿 (𝑡)] V (𝑡)

=

̆

𝐴 (𝑡) V (𝑡) .

(A.19)

Let solution matrix ̆

𝑉(𝑡) = (V̆
𝑖𝑗
(𝑡))

𝑛

𝑖,𝑗=1
, ̆

𝐴(𝑡) = ( ̆𝑎

𝑖𝑗
(𝑡))

𝑛

𝑖,𝑗=1

which satisfies that ̆

𝐴(𝑡) and ̆

𝑉(𝑡) are lowertriangular. And
its Lyapunov exponents can be written as follows:

𝜎

𝑖
= lim
𝑡→∞

1

𝑡

∫

𝑡

0

̆𝑎

𝑖𝑖 (
𝜏) 𝑑𝜏,

(A.20)

which are just the Lyapunov exponents of the regular linear
system (A.18), 𝑖 = 1, 2, . . . , 𝑛. We have 𝜒[V̆

𝑖𝑖
(𝑡)] = 𝜎

𝑖
and

V̆
𝑘+1,𝑘 (

𝑡)

= 𝑒

∫
𝑡

0
̆𝑎
𝑘+1,𝑘+1

(𝜏)𝑑𝜏
∫

𝑡

0

𝑒

−∫
𝜏

0
̆𝑎
𝑘+1,𝑘+1

(𝜗)𝑑𝜗
̆𝑎

𝑘+1,𝑘 (
𝜏) V̆𝑘,𝑘 (𝜏) 𝑑𝜏.

(A.21)

This implies

𝜒 [V̆
𝑘+1,𝑘 (

𝑡)] ≤ 𝜎𝑘+1
− 𝜎

𝑘+1
+ 0 + 𝜎

𝑘
= 𝜎

𝑘
. (A.22)

By induction, we can conclude that 𝜒[V̆
𝑗𝑘
(𝑡)] ≤ 𝜎

𝑘
for all 𝑗 >

𝑘. For 𝑗 < 𝑘, 𝜒[V̆
𝑗𝑘
(𝑡)] = −∞ due to the lower-triangularity

of the matrix ̆

𝑉(𝑡).
Considering the lower-triangular matrix ̆

𝑉

−1
(𝑡) =

(𝑤̆

𝑖𝑗
)

𝑛

𝑖,𝑗=1
, its transpose ( ̆

𝑉

−1
(𝑡))

T can be regarded as the solu-
tion matrix of the adjoint system of (A.18):

𝑤̇ (𝑡) = −

̆

𝐴

T
(𝑡) 𝑤 (𝑡) ,

(A.23)

which is also regular. By the same arguments, we can conclude
that 𝜒[𝑤̆

𝑘𝑘
] = −𝜎

𝑘
for all 𝑘 = 1, 2, . . . , 𝑛, 𝜒[𝑤̆

𝑗𝑘
] ≤ −𝜎

𝑘
for all

𝑘 > 𝑗, and 𝜒[𝑤̆
𝑗𝑘
] = −∞ for all 𝑘 < 𝑗. Therefore, for each

𝑖 > 𝑗,

max
𝑖,𝑗

𝜒[∫

𝑡

0

󵄨

󵄨

󵄨

󵄨

󵄨

̆

𝑈 (𝑡)

̆

𝑈

−1
(𝜏)

󵄨

󵄨

󵄨

󵄨

󵄨𝑖𝑗
𝑑𝜏]

≤ max
𝑖,𝑗

𝜒[∫

𝑡

0

󵄨

󵄨

󵄨

󵄨

󵄨

̆

𝑉 (𝑡)

̆

𝑉

−1
(𝜏)

󵄨

󵄨

󵄨

󵄨

󵄨𝑖𝑗
𝑑𝜏]

≤ max
𝑖,𝑗

𝜒

[

[

∫

𝑡

0

∑

𝑗≤𝑘≤𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

V̆
𝑖𝑘 (
𝑡) 𝑤̆𝑘𝑗 (

𝜏)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝜏

]

]

≤ max
𝑖,𝑗

max
𝑗≤𝑘≤𝑖

𝜒[∫

𝑡

0

󵄨

󵄨

󵄨

󵄨

󵄨

V̆
𝑖𝑘 (
𝑡) 𝑤̆𝑘𝑗 (

𝜏)

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝜏]

≤ max
𝑖,𝑗

max
𝑗≤𝑘≤𝑖

(𝜎

𝑘
− 𝜎

𝑘
) = 0.

(A.24)

This implies that 𝜒[∫𝑡
0
‖

̆

𝑈(𝑡)

̆

𝑈

−1
(𝜏)𝑑𝜏‖

2
𝑑𝜏] ≤ 0.

Noting that

𝜒[∫

𝑡

0

󵄩

󵄩

󵄩

󵄩

󵄩

𝛼 (𝜏)

̃

𝑈 (𝜏)

󵄩

󵄩

󵄩

󵄩

󵄩

2

2
𝑑𝜏] ≤ 𝜒 [

󵄩

󵄩

󵄩

󵄩

󵄩

𝛼 (𝑡)

̃

𝑈 (𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

2

] ≤ 2𝜆

𝑃
.

(A.25)

So, 𝜒[𝑦(𝑡)] ≤ max{𝜆
𝑆
, 𝜆

𝑃
} = 𝜆

𝑃
. This leads to 𝜒[ ̃𝜙(𝑡)] ≤ 𝜆

𝑃
.

This implies that 𝜆
𝑃
= max{𝜆

𝑆
, 𝜆

𝑇
}. Thus, 𝜆

𝑃
= 𝜆

𝑇
can be

concluded due to 𝜆
𝑃
> 𝜆

𝑆
.

Case 2 (𝜆
𝑃
< 𝜆

𝑆
). For any 𝜖 with 0 < 𝜖 < (𝜆

𝑆
− 𝜆

𝑃
)/3, there

exists 𝑇 > 0 such that
󵄩

󵄩

󵄩

󵄩

󵄩

̆

𝑈

−1
(𝜏)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝑒

(−𝜆
𝑆
+𝜖)𝜏

, ‖𝛼 (𝜏)‖ ≤ 𝑒

𝜖𝜏
,

󵄩

󵄩

󵄩

󵄩

󵄩

̃

𝑈 (𝜏)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝑒

(𝜆
𝑃
+𝜀)𝜏

(A.26)

for all 𝑡 ≥ 𝑇. Define the subspace of R𝑛𝑚:

𝑉 = {[

𝑦

𝑧

] : 𝑦 = −∫

∞

0

𝑃

T
0

̆

𝑈

−1
(𝜏) 𝑃0

𝛼 (𝜏)

̃

𝑈 (𝜏) 𝑑𝜏𝑧} ,

(A.27)

which is well defined due to ‖𝑃

T
0

̆

𝑈

−1
(𝜏)𝑃

0
𝛼(𝜏)

̃

𝑈(𝜏)‖ ≤

𝑒

(3𝜖−𝜆
𝑆
+𝜆
𝑃
)𝜏
∈ 𝐿([𝑇, +∞)). For each ̃

𝜙(𝑡)with initial condition
[

𝑦

𝑧 ] ∈ 𝑉, we have 𝜒[𝑧(𝑡)] ≤ 𝜆𝑃 and

𝜒 [𝑦 (𝑡)]

= 𝜒 [{−𝑃

−1

0
̆

𝑈 (𝑡) 𝑃0
∫

∞

0

𝑃

T
0

̆

𝑈

−1
(𝜏) 𝑃0

𝛼 (𝜏)

̃

𝑈 (𝜏) 𝑑𝜏

+𝑃

T
0

̆

𝑈 (𝑡) 𝑃0
∫

𝑡

0

𝑃

T
0

̆

𝑈

−1
(𝜏) 𝑃0

𝛼 (𝜏)

̃

𝑈 (𝜏) 𝑑𝜏} 𝑧]

= 𝜒 [−𝑃

T
0

̆

𝑈 (𝑡) ∫

∞

𝑡

̆

𝑈

−1
(𝜏) 𝑃0

𝛼 (𝜏)

̃

𝑈 (𝜏) 𝑑𝜏𝑧] ≤ 𝜆𝑃

(A.28)

according to the arguments above. Thus, we have
max

𝑢∈𝑉
𝜆(𝐷F, 𝑢, 𝑠

0
, 𝜔

0
) = 𝜆

𝑃
. Since dim(𝑉) = 𝑛(𝑚 − 1), 𝑉

define the transverse space and 𝜆
𝑇
= 𝜆

𝑃
. This completes the

proof.
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Proof of Lemma 22. Since 𝐿(𝑡) satisfies Assumption 20, if the
initial condition is 𝑢(𝑡

0
) = 1

𝑚
, then the solution must be

𝑢(𝑡) = 1
𝑚
, which implies that each row sum of𝑉(𝑡, 𝑡

0
) is one.

Then, we will prove all elements in 𝑉(𝑡, 𝑡
0
) are nonnegative.

Consider the 𝑖th column of𝑉(𝑡, 𝑡
0
) denoted by𝑉𝑖(𝑡, 𝑡

0
)which

can be regarded as the solution of the following equation:

𝑢̇ = 𝜎𝐿 (𝑡) 𝑢,

𝑢 (𝑡

0
) = 𝑒

𝑚

𝑖
.

(A.29)

For any 𝑡 ≥ 𝑡

0
, if 𝑖

0
= 𝑖

0
(𝑡) is the index with 𝑢

𝑖
0

(𝑡) =

min
𝑖=1,2,...,𝑚

𝑢

𝑖
(𝑡), we have 𝑢̇

𝑖
0

(𝑡) = ∑

𝑚

𝑗=1
𝜎𝑙

𝑖
0
𝑗
(𝑢

𝑗
(𝑡)−𝑢

𝑖
0

(𝑡)) ≥ 0.
This implies that min

𝑖=1,2,...,𝑚
𝑢

𝑖
(𝑡) is always nondecreasing for

all 𝑡 ≥ 𝑡

0
. Therefore, 𝑢

𝑖
(𝑡) ≥ 0 holds for all 𝑖 = 1, 2, . . . , 𝑚 and

𝑡 ≥ 𝑡

0
. We can conclude that 𝑉(𝑡, 𝑡

0
) is a stochastic matrix.

The proof is completed.

Proof of Lemma 29. Consider the following Cauchy problem:

𝑢̇

𝑖 (
𝑡) =

𝑚

∑

𝑗=1

𝜎𝑙

𝑖𝑗 (
𝑡) 𝑢𝑗 (

𝑡) ,

𝑢

𝑖
(𝑡

0
) = {

1, 𝑖 = 𝑘,

0, otherwise,

𝑖 = 1, 2, . . . , 𝑚.

(A.30)

Noting that 𝑢̇
𝑘
(𝑡) ≥ 𝜎𝑙

𝑘𝑘
𝑢

𝑘
, we have 𝑢

𝑘
(𝑡) ≥ 𝑒

−𝑀
1
(𝑡−𝑡
0
). For

each 𝑖 ̸= 𝑘, since 𝑢
𝑖
(𝑡) ≥ 0 for all 𝑖 = 1, 2, . . . , 𝑚 and 𝑡 ≥ 𝑡

0
, we

have

𝑢

𝑖 (
𝑡) = ∑

𝑗 ̸= 𝑖

∫

𝑡

𝑡
0

𝑒

∫
𝑡

𝜏
𝜎𝑙
𝑖𝑖
(𝜗)𝑑𝜗

𝜎𝑙

𝑖𝑗 (
𝜏) 𝑢𝑗 (

𝜏) 𝑑𝜏

≥ ∫

𝑡

𝑡
0

𝑒

∫
𝑡

𝜏
𝜎𝑙
𝑖𝑖
(𝜗)𝑑𝜗

𝜎𝑙

𝑖𝑘 (
𝜏) 𝑢𝑘 (

𝜏) 𝑑𝜏

≥ ∫

𝑡

𝑖
0

𝑒

−𝑀
1
(𝑡−𝜏)

𝑒

−𝑀
1
(𝜏−𝑡
0
)
𝜎𝑙

𝑖𝑘 (
𝜏) 𝑑𝜏

= 𝑒

−𝑀
1
(𝑡−𝑡
0
)
∫

𝑡

𝑡
0

𝜎𝑙

𝑖𝑘 (
𝜏) 𝑑𝜏.

(A.31)

So, if there exists a 𝛿-edge from vertex 𝑗 to 𝑖 across [𝑡
0
,

𝑡

0
+ 𝑇], then we have V

𝑖𝑗
(𝑡

0
+ 𝑇, 𝑡

0
) ≥ 𝑒

−𝑀
1
𝑇
𝛿. Let

𝛿

2
= min{𝑒−𝑀1𝑇, 𝑒−𝑀1𝑇𝛿}. We can see that 𝑉(𝑡, 𝑡

0
) has a 𝛿

2

spanning tree across any 𝑇-length time interval. Therefore,
according to [31, 32], there exist 𝛿

1
> 0 and 𝑇

1
= (𝑚 − 1)𝑇

such that 𝑉(𝑡, 𝑡
0
) is 𝛿

1
scrambling across any 𝑇

1
-length time

interval. The Lemma is proved.
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