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This paper is concerned with a delay Lotka-Volterra model under regime switching diffusion in random environment. Permanence
and asymptotic estimations of solutions are investigated by virtue of 𝑉-function technique, 𝑀-matrix method, and Chebyshev’s
inequality. Finally, an example is given to illustrate the main results.

1. Introduction

The delay differential equation

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑥 (𝑡) (𝑎 − 𝑏𝑥 (𝑡) + 𝑐𝑥 (𝑡 − 𝜏)) (1)

has been used to model the population growth of certain
species and is known as the delay Lotka-Volterramodel or the
delay logistic equation. The delay Lotka-Volterra model for 𝑛
interacting species is described by the 𝑛-dimensional delay
differential equation

𝑑𝑥 (𝑡)

𝑑𝑡
= diag (𝑥

1
(𝑡) , . . . , 𝑥

𝑛
(𝑡)) (𝑏 + 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏)) ,

(2)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇

∈ 𝑅
𝑛, 𝑏 = (𝑏

1
, . . . , 𝑏

𝑛
)
𝑇

∈ 𝑅
𝑛

+
, 𝐴 =

(𝑎
𝑖𝑗
)
𝑛×𝑛

∈ 𝑅
𝑛×𝑛, 𝐵 = (𝑏

𝑖𝑗
)
𝑛×𝑛

∈ 𝑅
𝑛×𝑛. There is an extensive

literature concerned with the dynamics of this delay model
and have had lots of nice results and we here only mention
the work of Ahmad and Rao [1], Bereketoglu and Győri [2],
and Freedman and Ruan [3], and in particular, the books by
Gopalsamy [4], Kolmanovskĭı and Myshkis [5], and Kuang
[6] among many others.

In the equations above, the state 𝑥(𝑡) denotes the popula-
tion sizes of the species. Naturally, we focus on the positive
solutions and also require the solutions not to explode at
a finite time. To guarantee the positive solutions without

explosion (i.e., the global positive solutions), some conditions
are in general needed to impose on the system parameters.
For example, it is generally assumed that 𝑎 > 0, 𝑏 > 0, and
𝑐 < 𝑏 for (1) while much more complicated conditions are
required on matrices 𝐴 and 𝐵 for (2) [7] (and the references
cited therein).

On the other hand, population systems are often subject
to environmental noise, and the system will change signifi-
cantly, which may change the dynamics behavior of solutions
significantly [8, 9]. It is therefore necessary to reveal how
the noise affects the dynamics of solutions for the delay
population systems. In fact, many authors have discussed
population systems subject to white noise [7–18]. Recall that
the parameter 𝑏

𝑖
in (2) represents the intrinsic growth rate of

species 𝑖. In practice, we usually estimate it by an average value
plus an error term. According to the well-known central limit
theorem, the error term follows a normal distribution. In
terms of mathematics, we can therefore replace the rate 𝑏

𝑖
by

𝑏
𝑖
+𝜎
𝑖
𝑤̇(𝑡), where 𝑤̇(𝑡) is a white noise (i.e.,𝑤(𝑡) is a Brownian

motion) and 𝜎
𝑖
≥ 0 represents the intensity of noise. As a

result, (2) becomes a stochastic differential equation (SDE, in
short)

𝑑𝑥 (𝑡) = diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 + 𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎𝑑𝑤 (𝑡)] ,

(3)

where 𝜎 = (𝜎
1
, . . . , 𝜎

𝑛
)
𝑇. We refer to [7] for more details.
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To our knowledge, much attention to environmental
noise is focused on white noise. But another type of envi-
ronmental noise, namely, color noise, say telegraph noise,
has been studied by many authors (see [19–25] and the
references cited therein). In this context, telegraph noise can
be described as a random switching between two or more
environmental regimes, which differ in terms of factors such
as nutrition or rain falls [23, 24]. Usually, the switching
between different environments is memoryless and the wait-
ing time for the next switch has an exponential distribution.
This indicates that we may model the random environments
and other random factors in the system by a continuous-
time Markov chain 𝑟(𝑡), 𝑡 ≥ 0 with a finite state space
𝑆 = {1, 2, . . . , 𝑁}. Therefore, stochastic delay population
system (3) in random environments can be described by the
following stochastic model with regime switching:

𝑑𝑥 (𝑡) = diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)] .

(4)

The mechanism of ecosystem described by (4) can be
explained as follows. Assume that, initially, the Markov chain
𝑟(0) = 𝜄 ∈ 𝑆. Then the ecosystem (4) obeys the SDE

𝑑𝑥 (𝑡)

= diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 (𝜄) + 𝐴 (𝜄) 𝑥 (𝑡) + 𝐵 (𝜄) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎 (𝜄) 𝑑𝑤 (𝑡)] ,

(5)

until the Markov chain 𝑟(𝑡) jumps to another state, say 𝜍.
Therefore, the ecosystem (4) satisfies the SDE

𝑑𝑥 (𝑡)

= diag (𝑥
1
(𝑡) , . . . , 𝑥

𝑛
(𝑡))

× [(𝑏 (𝜍) + 𝐴 (𝜍) 𝑥 (𝑡) + 𝐵 (𝜍) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎 (𝜍) 𝑑𝑤 (𝑡)] ,

(6)

for a random amount of time until the Markov chain 𝑟(𝑡)

jumps to a new state again.
It should be pointed out that the stochastic popula-

tion systems under regime switching have received much
attention lately. For instance, the stochastic permanence and
extinction of a logistic model under regime switching were
considered in [20, 24], asymptotic results of a competitive
Lotka-Volterra model in random environment are obtained
in [25], a new single-species model disturbed by both white
noise and colored noise in a polluted environment was
developed and analyzed in [26], and a general stochastic
logistic systemunder regime switchingwas proposed andwas
treated in [27].

In [28], some results have been obtained for (4), such as
existence of global positive solutions, stochastically ultimate
boundedness, and extinction. In contrast to the existing
results, our new contributions in this paper are as follows.

(i) The stochastic permanence of solutions is derived.
(ii) The asymptotic estimations of the solutions are

obtained, which is related to the stationary probability
distribution of the Markov chain.

The rest of the paper is arranged as follows. For con-
venience of the reader, we briefly recall the main result of
[28] in Section 2. The main results of this paper are arranged
in Sections 3 and 4. Section 3 is devoted to the stochastic
permanence. The asymptotic estimations of the solutions are
obtained in Section 4. Finally, an example is given to illustrate
our main results.

2. Properties of the Solution

Throughout this paper, unless otherwise specified, let
(Ω,F, {F

𝑡
}
𝑡≥0

, 𝑃) be a complete probability space with a
filtration {F

𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is
right continuous and F

0
contains all 𝑃-null sets). Let 𝑤(𝑡),

𝑡 ≥ 0, be a scalar standard Brownian motion defined on this
probability space. We also denote by 𝑅

𝑛

+
the positive cone in

𝑅
𝑛, that is, 𝑅𝑛

+
= {𝑥 ∈ 𝑅

𝑛
: 𝑥
𝑖
> 0 for all 1 ≤ 𝑖 ≤ 𝑛} and

denote by 𝑅
𝑛

+
the nonnegative cone in 𝑅

𝑛, that is, 𝑅𝑛
+

= {𝑥 ∈

𝑅
𝑛
: 𝑥
𝑖
≥ 0 for all 1 ≤ 𝑖 ≤ 𝑛}. If 𝐴 is a vector or matrix, its

transpose is denoted be 𝐴
𝑇. If 𝐴 is a matrix, its trace norm

is denoted by |𝐴| = √trace(𝐴𝑇𝐴), whilst it operator norm is
denoted by ‖𝐴‖ = sup{|𝐴𝑥| : |𝑥| = 1}.Moreover, let 𝜏 > 0 and
denote by 𝐶([−𝜏, 0]; 𝑅

+
) the family of continuous functions

from [−𝜏, 0] to 𝑅
+
.

In this paper we will use a lot of quadratic functions
of the form 𝑥

𝑇
𝐴𝑥 for the state 𝑥 ∈ 𝑅

𝑛

+
only. Therefore,

for a symmetric 𝑛 × 𝑛 matrix 𝐴, we naturally introduce the
following definition:

𝜆
+

max (𝐴) = sup
𝑥∈𝑅
𝑛

+
,|𝑥|=1

𝑥
𝑇
𝐴𝑥. (7)

For more properties of 𝜆+max(𝐴), please see the appendix in
[7].

Let 𝑟(𝑡) be a right-continuous Markov chain on the
probability space, taking values in a finite state space 𝑆 =

{1, 2, . . . , 𝑁}, with the generator Γ = (𝛾
𝑢V) given by

𝑃 {𝑟 (𝑡 + 𝛿) = V | 𝑟 (𝑡) = 𝑢} = {
𝛾
𝑢V𝛿 + 𝑜 (𝛿) , if 𝑢 ̸= V,

1 + 𝛾
𝑢V𝛿 + 𝑜 (𝛿) , if 𝑢 = V,

(8)

where 𝛿 > 0, 𝛾
𝑢V is the transition rate from 𝑢 to V and 𝛾

𝑢V ≥ 0

if 𝑢 ̸= V, while 𝛾
𝑢𝑢

= −∑V ̸= 𝑢 𝛾𝑢V. We assume that the Markov
chain 𝑟(⋅) is independent of the Brownian motion 𝑤(⋅). It is
well known that almost every sample path of 𝑟(⋅) is a right-
continuous step functionwith a finite number of jumps in any
finite subinterval of 𝑅

+
. As a standing hypothesis, we assume

in this paper that the Markov chain 𝑟(𝑡) is irreducible. This is
a very reasonable assumption as it means that the system can
switch fromany regime to any other regime.This is equivalent
to the condition that for, any 𝑢, V ∈ 𝑆, one can find finite
numbers 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
∈ 𝑆 such that 𝛾

𝑢𝑖
1

𝛾
𝑖
1
𝑖
2

, . . . , 𝛾
𝑖
𝑘
V > 0.
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Under this condition, theMarkov chain has a unique station-
ary (probability) distribution 𝜋 = (𝜋

1
, 𝜋
2
, . . . , 𝜋

𝑁
) ∈ 𝑅

1×𝑁

which can be determined by solving the following linear
equation:

𝜋Γ = 0 (9)

subject to

𝑁

∑

𝑖=1

𝜋
𝑖
= 1, 𝜋

𝑖
> 0, ∀𝑖 ∈ 𝑆. (10)

For the fundamental theory of stochastic differential equa-
tions, one can refer to [12, 29].

For convenience and simplicity in the following discus-
sion, for any constant sequence 𝑓

𝑖
(𝑘), (1 ≤ 𝑖 ≤ 𝑛, 𝑘 ∈ 𝑆),

let

̌𝑓 = max
1≤𝑖≤𝑛,𝑘∈𝑆

𝑓
𝑖
(𝑘) , ̌𝑓 (𝑘) = max

1≤𝑖≤𝑛

𝑓
𝑖
(𝑘) ,

𝑓 = min
1≤𝑖≤𝑛,𝑘∈𝑆

𝑓
𝑖
(𝑘) , 𝑓 (𝑘) = min

1≤𝑖≤𝑛

𝑓
𝑖
(𝑘) .

(11)

To proceed, we first state a result, whose proof can be found
in [28].

Assumption 1. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]} +max

𝑘∈𝑆

󵄩󵄩󵄩󵄩󵄩
𝐶𝐵 (𝑘)

󵄩󵄩󵄩󵄩󵄩
≤ 0,

(12)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
).

Assumption 2. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]} +max

𝑘∈𝑆

󵄩󵄩󵄩󵄩󵄩
𝐶𝐵 (𝑘)

󵄩󵄩󵄩󵄩󵄩
< 0,

(13)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
).

Assumption 3. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

|𝑐|
−1max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]}

+ 𝑐
−1max
𝑘∈𝑆

󵄩󵄩󵄩󵄩󵄩
𝐶𝐵 (𝑘)

󵄩󵄩󵄩󵄩󵄩
≤ 0,

(14)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
) and 𝑐 = min

1≤𝑖≤𝑛
𝑐
𝑖
.

Theorem 1. (1)Under Assumption 1, for any given initial data
{𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

𝑛

+
), there is a unique solution

𝑥(𝑡) to (4) on 𝑡 ≥ −𝜏 and the solution will remain in 𝑅
𝑛

+
with

probability 1, namely, 𝑥(𝑡) ∈ 𝑅
𝑛

+
for all 𝑡 ≥ −𝜏 almost surely.

(2) Under Assumption 2, for any given initial data {𝑥(𝑡) :

−𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅
𝑛

+
) and any given positive constant

𝑝, there are two positive constant 𝐾
1
(𝑝) and 𝐾

2
(𝑝), such that

the solution 𝑥(𝑡) of (4) has the properties that

lim sup
𝑡→∞

𝐸|𝑥 (𝑡)|
𝑝
≤ 𝐾
1
(𝑝) , (15)

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝐸|𝑥 (𝑠)|
𝑝+1

𝑑𝑠 ≤ 𝐾
2
(𝑝) . (16)

(3) Solutions of (4) are stochastically ultimately bounded
under Assumption 2; that is, for any 𝜀 ∈ (0, 1), there exists a
positive constants𝐻 = 𝐻(𝜀), such that the solutions of (4)with
any positive initial value have the property that

lim sup
𝑡→+∞

𝑃 {|𝑥 (𝑡)| > 𝐻} < 𝜀. (17)

(4) Under Assumption 3, for any given initial data {𝑥(𝑡) :

−𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅
+
), the solution 𝑥(𝑡) of (4) has the

properties that

lim sup
𝑡→∞

1

𝑡
log |𝑥 (𝑡)| ≤

𝑛

∑

𝑖=1

𝜋
𝑘
𝛽 (𝑘) 𝑎.𝑠., (18)

where 𝛽(𝑘) = 𝑏̌(𝑘)−(1/2)𝜎̂
2
(𝑘). Particularly, if ∑𝑁

𝑘=1
𝜋
𝑘
𝛽(𝑘) <

0, then

lim sup
𝑡→∞

1

𝑡
log |𝑥 (𝑡)| < 0 𝑎.𝑠. (19)

That is, the population will become extinct exponentially with
probability 1.

3. Stochastic Permanence

Definition 2. Equation (4) is said to be stochastically per-
manent if, for any 𝜀 ∈ (0, 1), there exist positive constants
𝐻 = 𝐻(𝜀), 𝛿 = 𝛿(𝜀) such that

lim inf
𝑡→+∞

𝑃 {|𝑥 (𝑡)| ≤ 𝐻} ≥ 1 − 𝜀,

lim inf
𝑡→+∞

𝑃 {|𝑥 (𝑡)| ≥ 𝛿} ≥ 1 − 𝜀,

(20)

where 𝑥(𝑡) is the solution of (4) with any positive initial value.
It is obvious that if a stochastic equation is stochastically

permanent, its solutions must be stochastically ultimately
bounded. For convenience, let

𝛼 (𝑘) = 𝑏̂ (𝑘) −
1

2
𝜎̌
2
(𝑘) , 𝛽 (𝑘) = 𝑏̌ (𝑘) −

1

2
𝜎̂
2
(𝑘) , (21)

and we impose the following assumptions.

Assumption 4. For some 𝑢 ∈ 𝑆, 𝛾
𝑖𝑢

> 0 (for all 𝑖 ̸= 𝑢).

Assumption 5. ∑
𝑁

𝑘=1
𝜋
𝑘
𝛼(𝑘) > 0.

Assumption 6. For each 𝑘 ∈ 𝑆, 𝛼(𝑘) > 0.

Let 𝐺 be a vector or matrix. By 𝐺 ≫ 0, we mean all
elements of𝐺 are positive, and by𝐺 ≥ 0, wemean all elements
of 𝐺 are nonnegative. We also adopt here the traditional
notation by letting

𝑍
𝑁×𝑁

= {𝐴 = (𝑎
𝑖𝑗
)
𝑁×𝑁

: 𝑎
𝑖𝑗
≤ 0, 𝑖 ̸= 𝑗} . (22)
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Lemma 3 (see [29]). If𝐴 = (𝑎
𝑖𝑗
)
𝑁×𝑁

∈ 𝑍
𝑁×𝑁 has all of its row

sums positive, that is,

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
> 0, ∀1 ≤ 𝑖 ≤ 𝑁, (23)

then 𝐴 > 0.

Lemma 4 (see [29]). If 𝐴 ∈ 𝑍
𝑁×𝑁, then the following

statements are equivalent:

(1) 𝐴 is a nonsingular 𝑀-matrix.

(2) All of the principal minors of 𝐴 are positive; that is,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
11

⋅ ⋅ ⋅ 𝑎
1𝑘

...
...

...
𝑎
1𝑘

⋅ ⋅ ⋅ 𝑎
𝑘𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 0 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑘 = 1, 2, . . . , 𝑁. (24)

(3) 𝐴 is semipositive; that is, there exists 𝑥 ≫ 0 in 𝑅
𝑁 such

that 𝐴𝑥 ≫ 0.

Lemma 5 (see [23]). Assumptions 4 and 5 imply that there
exists a constant 𝜃 > 0 such that the matrix

𝐴 (𝜃) = diag (𝜉
1
(𝜃) , 𝜉
2
(𝜃) , . . . , 𝜉

𝑁
(𝜃)) − Γ (25)

is a nonsingular 𝑀-matrix, where

𝜉
𝑘
(𝜃) = 𝜃𝛼 (𝑘) −

1

2
𝜃
2
𝜎̌
2
(𝑘) , ∀𝑘 ∈ 𝑆. (26)

Lemma 6 (see [23]). Assumption 6 implies that there exists a
constant 𝜃 > 0 such that the matrix 𝐴(𝜃) is a nonsingular 𝑀-
matrix.

Lemma 7. If there exists a constant 𝜃 > 0 such that 𝐴(𝜃) is a
nonsingular 𝑀-matrix and 𝐵(𝑘) ≥ 0 (𝑘 = 1, 2, . . . , 𝑁), then
the global positive solution 𝑥(𝑡) of (4) has the property that

lim sup
𝑡→∞

𝐸(
1

|𝑥 (𝑡)|
𝜃
) ≤ 𝐻, (27)

where 𝐻 is a fixed positive constant (defined by (42) in the
proof).

Proof. Define 𝑉(𝑥) = ∑
𝑛

𝑖=1
𝑥
𝑖
on 𝑥 ∈ 𝑅

𝑛

+
. Then

𝑑𝑉 (𝑥 (𝑡)) = 𝑥
𝑇
(𝑡) [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

+𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)] .

(28)

Define also

𝑈 (𝑥) =
1

𝑉 (𝑥)
on 𝑥 ∈ 𝑅

𝑛

+
. (29)

Let 𝑦(𝑡) = 𝑥(𝑡 − 𝜏). Applying the generalized Itô formula, we
derive from (28) that

𝑑𝑈 = −𝑈
2
𝑑𝑉 + 𝑈

3
(𝑑𝑉)
2

= −𝑈
2
𝑥
𝑇
{[𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 + 𝐵 (𝑟 (𝑡)) 𝑦] 𝑑𝑡

+ 𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡) } + 𝑈
3󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝜎 (𝑟 (𝑡))

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡

= { − 𝑈
2
𝑥
𝑇
[𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 + 𝐵 (𝑟 (𝑡)) 𝑦]

+ 𝑈
3󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝜎 (𝑟 (𝑡))

󵄨󵄨󵄨󵄨󵄨

2

} 𝑑𝑡 − 𝑈
2
𝑥
𝑇
𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)

(30)

dropping 𝑥(𝑡) from 𝑈(𝑥(𝑡)), 𝑉(𝑥(𝑡)) and 𝑡 from 𝑥(𝑡), 𝑦(𝑡),
respectively. By Lemma 4, for given 𝜃, there is a vector ⃗𝑞 =

(𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑁
)
𝑇
≫ 0 such that

𝜆⃗ = (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑁
)
𝑇

:= 𝐴 (𝜃) ⃗𝑞 ≫ 0, (31)

namely,

𝑞
𝑘
(𝜃𝛼 (𝑘) −

1

2
𝜃
2
𝜎̌
2
(𝑘)) −

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
> 0 ∀1 ≤ 𝑘 ≤ 𝑁. (32)

Define the function 𝑉 : 𝑅
+

× 𝑆 → 𝑅
+
by 𝑉(𝑈, 𝑘) =

𝑞
𝑘
(1 + 𝑈)

𝜃. It follows from the generalized Itô formula that

𝐸𝑉 (𝑈 (𝑡) , 𝑟 (𝑡)) = 𝑉 (𝑈 (0) , 𝑟 (0))

+ 𝐸∫

𝑡

0

𝐿𝑉 (𝑈 (𝑠) , 𝑥 (𝑠 − 𝜏) , 𝑟 (𝑠)) 𝑑𝑠,

(33)

where

𝐿𝑉 (𝑈, 𝑥, 𝑦, 𝑘)

= 𝑞
𝑘
𝜃(1 + 𝑈)

𝜃−1
{ − 𝑈

2
𝑥
𝑇
[𝑏 (𝑘) + 𝐴 (𝑘) 𝑥 + 𝐵 (𝑘) 𝑦]

+ 𝑈
3󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝜎 (𝑘)

󵄨󵄨󵄨󵄨󵄨

2

} + 𝑞
𝑘

𝜃 (𝜃 − 1)

2

× (1 + 𝑈)
𝜃−2

𝑈
4󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝜎 (𝑘)

󵄨󵄨󵄨󵄨󵄨

2

+

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
(1 + 𝑈)

𝜃

= 𝑞
𝑘
𝜃(1 + 𝑈)

𝜃−2

× { − (1 + 𝑈)𝑈
2
𝑥
𝑇
[𝑏 (𝑘) + 𝐴 (𝑘) 𝑥 + 𝐵 (𝑘) 𝑦]

+ (1 + 𝑈)𝑈
3󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝜎 (𝑘)

󵄨󵄨󵄨󵄨󵄨

2

+
1

2
(𝜃 − 1)𝑈

4󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝜎 (𝑘)

󵄨󵄨󵄨󵄨󵄨

2

}

+

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
(1 + 𝑈)

𝜃
.

(34)
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It is easy to see that, for all 𝑥 ∈ 𝑅
𝑛

+
,

−
𝑥
𝑇
𝐴 (𝑘) 𝑥

𝑉2
≤ 𝐾,

−
𝑥
𝑇
𝑏 (𝑘)

𝑉
+

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝜎 (𝑘)

󵄨󵄨󵄨󵄨󵄨

2

− 𝑥
𝑇
𝐴 (𝑘) 𝑥

𝑉2
≤ 𝐾,

(35)

where𝐾 is a positive constant, while

𝑥
𝑇
𝑏 (𝑘)

𝑉
−

1

2
(𝜃 + 1)

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝜎 (𝑘)

󵄨󵄨󵄨󵄨󵄨

2

𝑉2
≥ 𝑏̂ (𝑘) −

1

2
(𝜃 + 1) 𝜎̌

2
(𝑘)

= 𝛽 (𝑘) −
1

2
𝜃𝜎̌
2
(𝑘) .

(36)

Consequently,

− (1 + 𝑈)𝑈
2
𝑥
𝑇
[𝑏 (𝑘) + 𝐴 (𝑘) 𝑥 + 𝐵 (𝑘) 𝑦]

+ (1 + 𝑈)𝑈
3󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝜎 (𝑘)

󵄨󵄨󵄨󵄨󵄨

2

+
1

2
(𝜃 − 1)𝑈

4󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝜎 (𝑘)

󵄨󵄨󵄨󵄨󵄨

2

= −𝑈
2
𝑥
𝑇
𝑏 (𝑘) − 𝑈

3
𝑥
𝑇
𝑏 (𝑘) − 𝑈

2
𝑥
𝑇
𝐴 (𝑘) 𝑥

− 𝑈
3
𝑥
𝑇
𝐴 (𝑘) 𝑥 − 𝑈

2
𝑥
𝑇
𝐵 (𝑘) 𝑦 − 𝑈

3
𝑥
𝑇
𝐵 (𝑘) 𝑦

+ 𝑈
3󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝜎 (𝑘)

󵄨󵄨󵄨󵄨󵄨

2

+
1

2
(𝜃 + 1)𝑈

4󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝜎 (𝑘)

󵄨󵄨󵄨󵄨󵄨

2

≤ −(
𝑥
𝑇
𝑏 (𝑘)

𝑉
−

1

2
(𝜃 + 1)

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝜎 (𝑘)

󵄨󵄨󵄨󵄨󵄨

2

𝑉2
)𝑈
2

+ (−
𝑥
𝑇
𝑏 (𝑘)

𝑉
+

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝜎 (𝑘)

󵄨󵄨󵄨󵄨󵄨

2

− 𝑥
𝑇
𝐴 (𝑘) 𝑥

𝑉2
)𝑈

−
𝑥
𝑇
𝐴 (𝑘) 𝑥

𝑉2

≤ −(𝛼 (𝑘) −
1

2
𝜃𝜎̌
2
(𝑘))𝑈

2
+ 𝐾 (1 + 𝑈) .

(37)

Substituting (37) into (34) yields

𝐿𝑉 (𝑈, 𝑥, 𝑦, 𝑘)

≤ 𝑞
𝑘
𝜃(1 + 𝑈)

𝜃−2
{−(𝛼 (𝑘) −

1

2
𝜃𝜎̌
2
(𝑘))𝑈

2
+ 𝐾 (1 + 𝑈)}

+

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
(1 + 𝑈)

𝜃

= (1 + 𝑈)
𝜃−2

× {−[𝑞
𝑘
𝜃 (𝛼 (𝑘) −

1

2
𝜃𝜎̌
2
(𝑘)) −

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
]𝑈
2

+ (𝑞
𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
)𝑈

+ (𝑞
𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
)} .

(38)

Now, choose a constant 𝜅 > 0 sufficiently small such that it
satisfies 𝜆⃗ − 𝜅 ⃗𝑞 ≫ 0, that is,

𝑞
𝑘
(𝜃𝛼 (𝑘) −

1

2
𝜃
2
𝜎̌
2
(𝑘)) −

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
− 𝜅𝑞
𝑘
> 0 ∀1 ≤ 𝑘 ≤ 𝑁.

(39)

Then, by the generalized Itô formula again,

𝐸 [𝑒
𝜅𝑡
𝑉 (𝑈 (𝑡) , 𝑟 (𝑡))]

= 𝑉 (𝑈 (0) , 𝑟 (0))

+ 𝐸∫

𝑡

0

[𝜅𝑒
𝜅𝑡
𝑉 (𝑈 (𝑠) , 𝑟 (𝑠))

+𝑒
𝜅𝑡
𝐿𝑉 (𝑈 (𝑠) , 𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏) , 𝑟 (𝑠))] 𝑑𝑠.

(40)

It is computed that

𝜅𝑒
𝜅𝑡
𝑉 (𝑈, 𝑖) + 𝑒

𝜅𝑡
𝐿𝑉 (𝑈, 𝑥, 𝑦, 𝑖)

≤ 𝑒
𝜅𝑡
(1 + 𝑈)

𝜃−2

× {𝜅𝑞
𝑘
(1 + 𝑈)

2

− [𝑞
𝑘
𝜃 (𝛼 (𝑘) −

1

2
𝜃𝜎̌
2
(𝑘)) −

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
]𝑈
2

+(𝑞
𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
)𝑈 + (𝑞

𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
)}

≤ 𝑒
𝜅𝑡
(1 + 𝑈)

𝜃−2

× {−[𝑞
𝑘
𝜃 (𝛼 (𝑘) −

1

2
𝜃𝜎̌
2
(𝑘)) −

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
− 𝜅𝑞
𝑘
]𝑈
2

+ (𝑞
𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
+ 2𝜅𝑞

𝑘
)𝑈

+(𝑞
𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
+ 𝜅𝑞
𝑘
)}

≤ 𝑛
−𝜃

𝑞𝜅𝐻𝑒
𝜅𝑡
,

(41)
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where

𝐻 =
1

𝑞𝜅
𝑛
𝜃max
𝑖∈𝑆

{ sup
𝑈∈𝑅
+

(1 + 𝑈)
𝜃−2

× {−[𝑞
𝑘
𝜃 (𝛼 (𝑘)−

1

2
𝜃𝜎̌
2
(𝑘))

−

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
− 𝜅𝑞
𝑘
]𝑈
2

+ (𝑞
𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
+ 2𝜅𝑞

𝑘
)𝑈

+ (𝑞
𝑘
𝜃𝐾 + 2

𝑁

∑

𝑙=1

𝛾
𝑘𝑙
𝑞
𝑙
+ 𝜅𝑞
𝑘
)} ∨ 1} .

(42)

This implies

lim sup
𝑡→∞

𝐸 [𝑈
𝜃
(𝑥 (𝑡))] ≤ lim sup

𝑡→∞

𝐸 [(1 + 𝑈 (𝑥 (𝑡)))
𝜃
] ≤ 𝑛
−𝜃

𝐻.

(43)

For 𝑥(𝑡) ∈ 𝑅
𝑛

+
, note that (∑𝑛

𝑖=1
𝑥
𝑖
(𝑡))
𝜃

≤ (𝑛max
1≤𝑖≤𝑛

𝑥
𝑖
(𝑡) )
𝜃
≤

𝑛
𝜃
|𝑥(𝑡)|
𝜃. Consequently,

lim sup
𝑡→∞

𝐸(
1

|𝑥 (𝑡)|
𝜃
) ≤ 𝐻. (44)

The required assertion (27) is obtained.

Assumption 7. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]} +max

𝑘∈𝑆

󵄩󵄩󵄩󵄩󵄩
𝐶𝐵 (𝑘)

󵄩󵄩󵄩󵄩󵄩
< 0,

(45)

where𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
). Moreover for each 𝑘 ∈ 𝑆,𝐵(𝑘) ≥ 0.

Theorem 8. Under Assumptions 4, 5, and 7, (4) is stochasti-
cally permanent.

The proof is a simple application of the Chebyshev’s
inequality, Lemmas 5 and 7, and Theorem 1(3). Similarly, we
have the following result.

Theorem 9. Under Assumptions 6 and 7, (4) is stochastically
permanent.

4. Asymptotic Properties

Lemma 10. Under Assumption 2, for any given initial data
{𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

+
), the solution 𝑥(𝑡) of

(4) with any positive initial value has the property

lim sup
𝑡→∞

log (𝑥 (𝑡))

log 𝑡
≤ 1 𝑎.𝑠. (46)

Proof. By Theorem 1 (1), the solution 𝑥(𝑡) will remain in 𝑅
𝑛

+

for all 𝑡 ≥ −𝜏 with probability 1. Denote 𝑉(𝑥) = ∑
𝑛

𝑖=1
𝑥
𝑖
, on

𝑥 ∈ 𝑅
𝑛

+
. It is known that

𝑑𝑉 (𝑥 (𝑡))

= 𝑥
𝑇
(𝑡) [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)] .

(47)

We can also derive from this that

𝐸( sup
𝑡≤𝑢≤𝑡+1

𝑉 (𝑥 (𝑢)))

≤ 𝐸𝑉 (𝑥 (𝑡)) +max
𝑘∈𝑆

|𝑏 (𝑘)| ∫

𝑡+1

𝑡

𝐸 |𝑥 (𝑠)| 𝑑𝑠

+max
𝑘∈𝑆

|𝐴 (𝑘)| ∫

𝑡+1

𝑡

𝐸|𝑥 (𝑠)|
2
𝑑𝑠 +max

𝑘∈𝑆

|𝐵 (𝑘)|

× ∫

𝑡+1

𝑡

𝐸 (|𝑥 (𝑠)| |𝑥 (𝑠 − 𝜏)|) 𝑑𝑠

+ 𝐸( sup
𝑡≤𝑢≤𝑡+1

∫

𝑢

𝑡

𝑥
𝑇
(𝑠) 𝜎 (𝑟 (𝑠)) 𝑑𝑤 (𝑠)) .

(48)

From (15), we know that lim sup
𝑡→∞

𝐸|𝑥(𝑡)| ≤ 𝐾
1
(1) and

lim sup
𝑡→∞

𝐸|𝑥(𝑡)|
2

≤ 𝐾
1
(2). By the well-known BDG’s

inequality [29] and the Hölder’s inequality, we derive that

𝐸( sup
𝑡≤𝑢≤𝑡+1

∫

𝑢

𝑡

𝑥
𝑇
(𝑠) 𝜎 (𝑟 (𝑠)) 𝑑𝑤 (𝑠))

≤ 3max
𝑘∈𝑆

|𝑏 (𝑘)| 𝐸(∫

𝑡+1

𝑡

|𝑥 (𝑠)|
2
𝑑𝑠)

1/2

≤ 𝐸(9𝜎̌ ∫

𝑡+1

𝑡

𝑥
2
(𝑠) 𝑑𝑠)

1/2

≤ 𝐸( sup
𝑡≤𝑢≤𝑡+1

𝑥 (𝑢) ⋅ 9𝜎̌ ∫

𝑡+1

𝑡

𝑥 (𝑠) 𝑑𝑠)

1/2

≤ 𝐸[(
1

2
sup
𝑡≤𝑢≤𝑡+1

𝑥 (𝑢))

2

+ 9𝜎̌ ∫

𝑡+1

𝑡

(𝑥 (𝑠) 𝑑𝑠)
2
]

1/2

≤ 𝐸(
1

2
sup
𝑡≤𝑢≤𝑡+1

𝑥 (𝑢) + 9𝜎̌
2
∫

𝑡+1

𝑡

𝑥 (𝑠) 𝑑𝑠)

≤
1

2
𝐸( sup
𝑡≤𝑢≤𝑡+1

𝑥 (𝑢)) + 9𝜎̌
2
∫

𝑡+1

𝑡

𝐸 (𝑥 (𝑠)) 𝑑𝑠.

(49)

Combining the inequality above with

∫

𝑡+1

𝑡

𝐸 (|𝑥 (𝑠)| |𝑥 (𝑠 − 𝜏)|) 𝑑𝑠

≤
1

2
∫

𝑡+1

𝑡

𝐸|𝑥 (𝑠)|
2
𝑑𝑠 +

1

2
∫

𝑡+1

𝑡

𝐸|𝑥 (𝑠 − 𝜏)|
2
𝑑𝑠,

(50)
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we get that

𝐸( sup
𝑡≤𝑢≤𝑡+1

𝑉 (𝑥 (𝑢)))

≤ 𝐸𝑉𝑥 (𝑡) +max
𝑘∈𝑆

|𝑏 (𝑘)| ∫

𝑡+1

𝑡

𝐸 |𝑥 (𝑠)| 𝑑𝑠

+ (max
𝑘∈𝑆

|𝐴 (𝑘)| +
1

2
max
𝑘∈𝑆

|𝐵 (𝑘)|)∫

𝑡+1

𝑡

𝐸|𝑥 (𝑠)|
2
𝑑𝑠

+
1

2
max
𝑘∈𝑆

|𝐵 (𝑘)| ∫

𝑡+1

𝑡

𝐸|𝑥 (𝑠 − 𝜏)|
2
𝑑𝑠

+ 3max
𝑘∈𝑆

|𝑏 (𝑘)| 𝐸(∫

𝑡+1

𝑡

|𝑥 (𝑠)|
2
𝑑𝑠)

1/2

.

(51)

Recalling the following inequality |𝑥| ≤ ∑
𝑛

𝑖=1
𝑥
𝑖
≤ 𝑉(𝑥) for

any 𝑥 ∈ 𝑅
𝑛

+
, we obtain

lim sup
𝑡→∞

𝐸( sup
𝑡≤𝑢≤𝑡+1

𝑥 (𝑢))

≤ max
𝑘∈𝑆

|𝑏 (𝑘)| 𝐾
1
(1)

+ (max
𝑘∈𝑆

|𝐴 (𝑘)| +max
𝑘∈𝑆

|𝐵 (𝑘)|)𝐾
1
(2)

+ 3max
𝑘∈𝑆

|𝑏 (𝑘)| (𝐾 (2))
1/2

.

(52)

It is following from (52) that there is a positive constant 𝑀
such that

𝐸( sup
𝑘≤𝑡≤𝑘+1

|𝑥 (𝑡)|) ≤ 𝑀, 𝑘 = 1, 2, . . . . (53)

Let 𝜀 > 0 be arbitrary. Then, by Chebyshev’s inequality, we
have

𝑃( sup
𝑘≤𝑡≤𝑘+1

|𝑥 (𝑢)| > 𝑘
1+𝜀

) ≤
𝑀

𝑘1+𝜀
, 𝑘 = 1, 2, . . . . (54)

Applying the well-known Borel-Cantelli lemma [24], we
obtain that for almost all 𝜔 ∈ Ω

sup
𝑘≤𝑡≤𝑘+1

|𝑥 (𝑢)| ≤ 𝑘
1+𝜀

(55)

holds for all but finitely many 𝑘. Hence, there exists a 𝑘
0
(𝜔),

for almost all 𝜔 ∈ Ω, for which (55) holds whenever 𝑘 ≥ 𝑘
0
.

Consequently, for almost all𝜔 ∈ Ω, if 𝑘 ≥ 𝑘
0
and 𝑘 ≤ 𝑡 ≤ 𝑘+1,

log (|𝑥 (𝑡)|)

log 𝑡
≤

(1 + 𝜀) log 𝑘
log 𝑘

= 1 + 𝜀. (56)

Therefore, lim sup
𝑡→∞

(log(|𝑥(𝑡)|)/ log 𝑡) ≤ 1 + 𝜀 a.s. Letting
𝜀 → 0, we obtain the desired assertion (46).

Lemma 11. If there exists a constant 𝜃 > 0 such that 𝐴(𝜃) is a
nonsingular 𝑀-matrix and for each 𝑘 ∈ 𝑆, 𝐵(𝑘) ≥ 0, then the
global positive solution 𝑥(𝑡) of SDE (4) has the property that

lim inf
𝑡→∞

log (|𝑥 (𝑡)|)

log 𝑡
≥ −

1

𝜃
𝑎.𝑠. (57)

Proof. Let 𝑈 : 𝑅
𝑛

+
→ 𝑅

𝑛

+
be the same as defined by (29);

for convenience, we write 𝑈(𝑥(𝑡)) = 𝑈(𝑡). Applying the
generalized Itô formula, for the fixed constant 𝜃 > 0, we
derive from (37) that

𝑑(1 + 𝑈 (𝑡))
𝜃
≤ 𝜃(1 + 𝑈 (𝑡))

𝜃−2

× [−𝑈
2
(𝑡) (𝛼 (𝑟 (𝑡)) −

1

2
𝜃𝜎̌
2
(𝑟 (𝑡)))

+ 𝐾
1
𝑈 (𝑡) + 𝐾

1
+ 𝑏̌] 𝑑𝑡

− 𝜃(1 + 𝑈 (𝑡))
𝜃−1

𝑈
2
(𝑡) 𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡) .

(58)

By (43), there exists a positive constant𝑀 such that

𝐸(1 + 𝑈 (𝑡))
𝜃
≤ 𝑀 on 𝑡 ≥ 0. (59)

Let 𝛿 > 0 be sufficiently small such that

𝜃 [(|𝛼̂| +
1

2
𝜃𝜎̌
2
+ 𝐾
1
) 𝛿 + 3max

𝑘∈𝑆

|𝜎 (𝑘)| 𝛿
1/2

] <
1

2
. (60)

Then (58) implies that

𝐸[ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑡))
𝜃
]

≤ 𝐸 [(1 + 𝑈 ((𝑘 − 1) 𝛿))
𝜃
]

+ 𝐸{ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

(𝑘−1)𝛿

𝜃(1 + 𝑈 (𝑠))
𝜃−2

× [−𝑈
2
(𝑠) (𝛼̂ (𝑟 (𝑠))

−
1

2
𝜃𝜎̌
2
(𝑟 (𝑠)))

+𝐾
1
(𝑈 (𝑠) + 1) ] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

+ 𝐸{ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

(𝑘−1)𝛿

𝜃(1 + 𝑈 (𝑠))
𝜃−1

𝑈
2

× (𝑠) 𝑥
𝑇
(𝑠) 𝜎 (𝑟 (𝑠)) 𝑑𝑤 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

} .

(61)
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It is computed that

𝐸{ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

(𝑘−1)𝛿

𝜃(1 + 𝑈 (𝑠))
𝜃−2

× [−𝑈
2
(𝑠) (𝛼̂ (𝑟 (𝑠)) −

1

2
𝜃𝜎̌
2
(𝑟 (𝑠)))

+𝐾
1
(𝑈 (𝑠) + 1) ] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

≤ 𝐸{∫

𝑘𝛿

(𝑘−1)𝛿

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜃(1 + 𝑈 (𝑠))

𝜃−2
[−𝑈
2
(𝑠) (𝛼̂ −

1

2
𝜃𝜎̌
2
)

+𝐾
1
(𝑈 (𝑠) + 1) ]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑠}

≤ 𝜃𝐸{∫

𝑘𝛿

(𝑘−1)𝛿

(|𝛼̂| +
1

2
𝜃𝜎̌
2
+ 𝐾
1
) (1 + 𝑈 (𝑠))

𝜃
𝑑𝑠}

≤ 𝜃 (|𝛼̂| +
1

2
𝜃𝜎̌
2
+ 𝐾
1
)𝐸[∫

𝑡

(𝑘−1)𝛿

sup
(𝑘−1)𝛿≤𝑠≤𝑘𝛿

(1 + 𝑈 (𝑠))
𝜃
𝑑𝑠]

≤ 𝜃 (|𝛼̂| +
1

2
𝜃𝜎̌
2
+ 𝐾
1
) 𝛿𝐸[ sup

(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑡))
𝜃
] .

(62)

On the other hand, by the BDG’s inequality, we derive that

𝐸{ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑘𝛿

(𝑘−1)𝛿

𝜃(1 + 𝑈 (𝑠))
𝜃−1

𝑈
2

× (𝑠) 𝑥
𝑇
(𝑠) 𝜎 (𝑟 (𝑠)) 𝑑𝑤 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

≤3𝐸{∫

𝑘𝛿

(𝑘−1)𝛿

[𝜃(1 + 𝑈 (𝑠))
𝜃−1

𝑈
2
(𝑠)]
2󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝜎 (𝑟 (𝑠))

󵄨󵄨󵄨󵄨󵄨

2

}

1/2

≤3𝜃𝐸{∫

𝑘𝛿

(𝑘−1)𝛿

(1 + 𝑈 (𝑠))
2(𝜃−1)

𝑈
2
(𝑠)

|𝑥 (𝑠)|
2
|𝜎 (𝑟 (𝑠))|

2

|𝑥 (𝑠)|
2

}

1/2

≤ 3𝜃max
𝑘∈𝑆

|𝜎 (𝑘)| 𝐸{∫

𝑘𝛿

(𝑘−1)𝛿

(1 + 𝑈 (𝑠))
2𝜃
𝑑𝑠}

1/2

≤ 3𝜃max
𝑘∈𝑆

|𝜎 (𝑘)| 𝛿
1/2

𝐸{ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑠))
2𝜃
}

1/2

≤ 3𝜃max
𝑘∈𝑆

|𝜎 (𝑘)| 𝛿
1/2

𝐸{ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑠))
𝜃
} .

(63)

Substituting this and (62) into (61) gives

𝐸[ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑡))
𝜃
]

≤ 𝐸 [(1 + 𝑈 ((𝑘 − 1) 𝛿))
𝜃
]

+ 𝜃 {[𝛼̂ +
1

2
𝜃𝜎̌
2
+ 𝐾
1
] 𝛿 +3max

𝑘∈𝑆

|𝜎 (𝑘)| 𝛿
1/2

}

× 𝐸{ sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑠))
𝜃
} .

(64)

Making use of (59) and (60), we obtain that

sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

𝐸 [(1 + 𝑈 (𝑡))
𝜃
] ≤ 2𝑀 on 𝑡 ≥ 0. (65)

Let 𝜀 > 0 be arbitrary.Then, by Chebyshev inequality, we have

𝑃{𝜔 : sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑡))
𝜃
> (𝑘𝛿)

1+𝜀
}

≤
2𝑀

(𝑘𝛿)
1+𝜀

, 𝑘 = 1, 2, . . . .

(66)

Applying the Borel-Cantelli lemma, we obtain that for almost
all 𝜔 ∈ Ω

sup
(𝑘−1)𝛿≤𝑡≤𝑘𝛿

(1 + 𝑈 (𝑡))
𝜃
≤ (𝑘𝛿)

1+𝜀

(67)

holds for all but finitelymany 𝑘. Hence, there exists an integer
𝑘
0
(𝜔) > 1/𝛿 + 2, for almost all 𝜔 ∈ Ω, for which (67) holds

whenever 𝑘 ≥ 𝑘
0
. Consequently, for almost all 𝜔 ∈ Ω, if 𝑘 ≥

𝑘
0
and (𝑘 − 1)𝛿 ≤ 𝑡 ≤ 𝑘𝛿,

log (1 + 𝑈 (𝑡))
𝜃

log 𝑡
≤

(1 + 𝜀) log (𝑘𝛿)
log ((𝑘 − 1) 𝛿)

≤ 1 + 𝜀. (68)

Therefore lim sup
𝑡→∞

(log (1 + 𝑈(𝑡))
𝜃
/ log 𝑡) ≤ 1 + 𝜀 a.s. Let

𝜀 → 0, we obtain the desired assertion

lim sup
𝑡→∞

log (1 + 𝑈 (𝑡))
𝜃

log 𝑡
≤ 1 a.s. (69)

Recalling the definition of 𝑈(𝑡), this yields
lim sup

𝑡→∞
(log |𝑥(𝑡)|−𝜃/ log 𝑡) ≤ 1 a.s., which further

implies

lim inf
𝑡→∞

log (|𝑥 (𝑡)|)

log 𝑡
≥ −

1

𝜃
a.s. (70)

This is our required assertion (57).

Assumption 8. Assume that there exist positive numbers
𝑐
1
, . . . , 𝑐

𝑛
such that

− 𝜆 = |𝑐|
−1max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]}

+ 𝑐
−1max
𝑘∈𝑆

󵄩󵄩󵄩󵄩󵄩
𝐶𝐵 (𝑘)

󵄩󵄩󵄩󵄩󵄩
< 0,

(71)

where 𝐶 = diag(𝑐
1
, . . . , 𝑐

𝑛
) and 𝑐 = min

1≤𝑖≤𝑛
𝑐
𝑖
. Moreover for

each 𝑘 ∈ 𝑆, 𝐵(𝑘) ≥ 0.
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Theorem 12. Under Assumptions 4, 5, and 8, for any given
initial data {𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

+
), the solution

𝑥(𝑡) of (4) obeys

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠 ≤
1

𝜆

𝑁

∑

𝑖=𝑘

𝜋
𝑘
𝛽 (𝑘) 𝑎.𝑠.,

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠 ≥
2𝑐

𝜆̂

𝑛

∑

𝑘=1

𝜋
𝑘
𝛼 (𝑘) 𝑎.𝑠.,

(72)

where −𝜆̂ = min
𝑘∈𝑆

[𝜆min(𝐶𝐴(𝑘) + 𝐴
𝑇
(𝑘)𝐶)] < 0.

Proof. ByTheorem 1(1), the solution𝑥(𝑡)will remain in𝑅
+
for

all 𝑡 ≥ −𝜏 with probability 1. Define 𝑉(𝑥) = 𝑐
𝑇
𝑥 = ∑

𝑛

𝑖=1
𝑐
𝑖
𝑥
𝑖
,

for 𝑥 ∈ 𝑅
𝑛

+
. By generalized Itô formula, one has

𝑑𝑉 (𝑥 (𝑡)) = 𝑥
𝑇
(𝑡) 𝐶 [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

+𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)] .

(73)

From Lemmas 5, 10, and 11, it follows that

lim
𝑡→∞

log (𝑉 (𝑥 (𝑡)))

𝑡
= 0 a.s. (74)

By (73), it has

𝑑 log𝑉 (𝑥 (𝑡))

= 𝑉
−1

(𝑥 (𝑡)) 𝑥
𝑇
(𝑡) 𝐶 [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

+𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡

+𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)]

− 0.5𝑉
−2

(𝑥 (𝑡))
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
(𝑡) 𝐶𝜎 (𝑟 (𝑡))

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑡.

(75)

Meanwhile,

𝛼 (𝑟 (𝑡)) ≤ 𝑉
−1

(𝑥 (𝑡)) 𝐶𝑏 (𝑟 (𝑡))

− 0.5𝑉
−2

(𝑥 (𝑡))
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
(𝑡) 𝐶𝜎 (𝑟 (𝑡))

󵄨󵄨󵄨󵄨󵄨

2

≤ 𝛽 (𝑟 (𝑡)) ,

− 0.5𝑐
−1
𝜆̂ |𝑥 (𝑡)|

≤ 𝑉
−1

(𝑥 (𝑡)) 𝑥
𝑇
(𝑡) 𝐶 (𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

+𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏))

≤ |𝑐|
−1max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴

𝑇
(𝑘) 𝐶)]}

+ 𝑐
−1max
𝑘∈𝑆

󵄩󵄩󵄩󵄩󵄩
𝐶𝐵 (𝑘)

󵄩󵄩󵄩󵄩󵄩
|𝑥 (𝑡)| + 0.5𝑐

−1max
𝑘∈𝑆

󵄩󵄩󵄩󵄩󵄩
𝐶𝐵 (𝑘)

󵄩󵄩󵄩󵄩󵄩

× (− |𝑥 (𝑡)| + |𝑥 (𝑡 − 𝜏)|) .

(76)

Substituting (76) into (75) yields

𝑑 log𝑉 (𝑥 (𝑡)) ≤ 𝛽 (𝑟 (𝑡)) 𝑑𝑡 − 𝜆 |𝑥 (𝑡)| 𝑑𝑡

+ 0.5𝑐
−1max
𝑘∈𝑆

󵄩󵄩󵄩󵄩󵄩
𝐶𝐵 (𝑘)

󵄩󵄩󵄩󵄩󵄩
(− |𝑥 (𝑡)| + |𝑥 (𝑡 − 𝜏)|)

+ 𝑉
−1

(𝑥 (𝑡)) 𝑥
𝑇
(𝑡) 𝐶𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡) .

(77)

Hence,

log𝑉 (𝑥 (𝑡)) + 𝜆∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠

≤ log𝑉 (𝑥 (0)) + ∫

𝑡

0

𝛽 (𝑟 (𝑠)) 𝑑𝑠 + ∫

0

−𝜏

|𝑥 (𝑠)| 𝑑𝑠

+ ∫

𝑡

0

𝑉
−1

(𝑥 (𝑠)) 𝑥
𝑇
(𝑠) 𝐶𝜎 (𝑟 (𝑠)) 𝑑𝑤 (𝑠) .

(78)

Applying the strong law of large numbers for martingales, we
have

lim
𝑡→∞

1

𝑡
∫

𝑡

0

𝑉
−1

(𝑥 (𝑠)) 𝑥
𝑇
(𝑠) 𝐶𝜎 (𝑟 (𝑠)) 𝑑𝑤 (𝑠) = 0 a.s. (79)

Dividing both sides of (78) by 𝑡 and letting 𝑡 → ∞, we obtain
that

𝜆 lim sup
𝑡→+∞

1

𝑡
∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠 ≤

𝑁

∑

𝑘=1

𝜋
𝑘
𝛽 (𝑘) a.s., (80)

which implies the required assertion (72).
On the other hand, it is observed from (75)-(76) that

𝑑 log𝑉 (𝑥 (𝑡)) ≥ 𝛼 (𝑟 (𝑡)) 𝑑𝑡 − 0.5𝑐
−1
𝜆̂ |𝑥 (𝑡)| 𝑑𝑡

+ 𝑉
−1

(𝑥 (𝑡)) 𝑥
𝑇
(𝑡) 𝐶𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡) .

(81)

Hence,

log𝑉 (𝑥 (𝑡)) + 0.5𝑐
−1
𝜆̂ ∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠

≥ log𝑉 (𝑥 (0)) + ∫

𝑡

0

𝛼 (𝑟 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑉
−1

(𝑥 (𝑠)) 𝑥
𝑇
(𝑠) 𝐶𝜎 (𝑟 (𝑠)) 𝑑𝑤 (𝑠) .

(82)

Consequently, one gets that

0.5𝑐
−1
𝜆̂ lim inf
𝑡→+∞

1

𝑡
∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠 ≥

𝑁

∑

𝑘=1

𝜋
𝑘
𝛼 (𝑘) a.s., (83)

which implies the other required assertion (4.12).

Similarly, using Lemmas 6, 10, and 11, we can show the
following
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Theorem 13. Under Assumptions 5 and 8, for any given initial
data {𝑥(𝑡) : −𝜏 ≤ 𝑡 ≤ 0} ∈ 𝐶([−𝜏, 0]; 𝑅

+
), the solution 𝑥(𝑡) of

(4) obeys

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠 ≤
1

𝜆

𝑁

∑

𝑖=𝑘

𝜋
𝑘
𝛽 (𝑘) 𝑎.𝑠.,

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠 ≥
2𝑐

𝜆̂

𝑛

∑

𝑘=1

𝜋
𝑘
𝛼 (𝑘) 𝑎.𝑠.,

(84)

where −𝜆̂ = min
𝑘∈𝑆

[𝜆min(𝐶𝐴(𝑘) + 𝐴
𝑇
(𝑘)𝐶)] < 0.

5. Examples

In this section, an example is given to illustrate our main
results.

Example 1. Consider the two-species Lotka-Volterra system
with regime switching described by

𝑑𝑥 (𝑡) = diag (𝑥
1
(𝑡) , 𝑥
2
(𝑡))

× [(𝑏 (𝑟 (𝑡)) + 𝐴 (𝑟 (𝑡)) 𝑥 (𝑡)

+𝐵 (𝑟 (𝑡)) 𝑥 (𝑡 − 𝜏)) 𝑑𝑡 + 𝜎 (𝑟 (𝑡)) 𝑑𝑤 (𝑡)] ,

(85)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡))
𝑇, 𝑏(𝑟(𝑡)) = (𝑏

1
𝑟(𝑡)), 𝑏

2
(𝑟(𝑡)))𝑇,

𝜎(𝑟(𝑡)) = (𝜎
1
(𝑟(𝑡)), 𝜎

2
(𝑟(𝑡)))𝑇,

𝐴 (𝑟 (𝑡)) = (
𝑎
11

(𝑟 (𝑡)) 𝑎
12

(𝑟 (𝑡))

𝑎
21

(𝑟 (𝑡)) 𝑎
22

(𝑟 (𝑡))
) ,

𝐵 (𝑟 (𝑡)) = (
𝑏
11

(𝑟 (𝑡)) 𝑏
12

(𝑟 (𝑡))

𝑏
21

(𝑟 (𝑡)) 𝑏
22

(𝑟 (𝑡))
) ,

(86)

and 𝑟(𝑡) is a right-continuous Markov chain taking values in
𝑆 = {1, 2}, and 𝑟(𝑡) and 𝑤(𝑡) are independent. Here

𝑏
1
(1) = 5, 𝑎

11
(1) = −5, 𝑎

12
(1) = √10,

𝑏
2
(1) = 8, 𝑎

21
(1) = √10, 𝑎

22
(1) = −5,

𝑏
1
(2) = 4, 𝑎

11
(2) = −3, 𝑎

12
(2) = √2,

𝑏
2
(2) = 5, 𝑎

21
(2) = √2, 𝑎

22
(2) = −3,

𝑏
11

(1) = 0, 𝑏
12

(1) =
1

2
, 𝜎

1
(1) = √2,

𝑏
21

(1) = 1, 𝑏
22

(1) = 0, 𝜎
2
(1) = 2,

𝑏
11

(2) = 0, 𝑏
12

(2) =
√2

2
, 𝜎

1
(2) = √14,

𝑏
21

(2) =
√2

2
, 𝑏

22
(2) = 0, 𝜎

2
(2) = 4.

(87)

Let 𝐶 = 𝐼 ∈ 𝑅
2 × 2. It is easy to compute that

|𝑐| = √2, 𝑐 = 1,

max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]} ≤ −3 + √2,

−𝜆̂ = −5 − √10 < 0, max
𝑘∈𝑆

󵄩󵄩󵄩󵄩󵄩
𝐶𝐵 (𝑘)

󵄩󵄩󵄩󵄩󵄩
≤

√5

2
.

(88)

Then

−𝜆 = |𝑐|
−1max
𝑘∈𝑆

{𝜆
+

max [
1

2
(𝐶𝐴 (𝑘) + 𝐴 (𝑘) 𝐶)]}

+ 𝑐
−1max
𝑘∈𝑆

󵄩󵄩󵄩󵄩󵄩
𝐶𝐵 (𝑘)

󵄩󵄩󵄩󵄩󵄩
< 0.

(89)

Moreover, 𝛼(1) = 3, 𝛼(2) = −4, 𝛽(1) = 7, and 𝛽(2) = −2.
By Theorem 1(1), the solution 𝑥(𝑡) of (85) will remain in

𝑅
+
for all 𝑡 ≥ −𝜏 with probability 1. Let the generator of the

Markov chain 𝑟(𝑡) be

Γ = (
−1 1

2 −2
) . (90)

By solving the linear equation 𝜋Γ = 0, we obtain the
unique stationary (probability) distribution 𝜋 = (𝜋

1
, 𝜋
2
) =

(2/3, 1/3). Then

2

∑

1=1

𝜋
𝑘
𝛼 (𝑘) =

2

3
> 0,

2

∑

1=1

𝜋
𝑘
𝛽 (𝑘) = 4 > 0. (91)

Therefore, by Theorems 8 and 12, (85) is stochastically
permanent and the solutions have the following properties:

2

𝜆̂

≤ lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠

≤ lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

|𝑥 (𝑠)| 𝑑𝑠 ≤
4

𝜆
a.s.

(92)
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[2] H. Bereketoglu and I. Győri, “Global asymptotic stability in a
nonautonomous Lotka-Volterra type systemwith infinite delay,”
Journal of Mathematical Analysis and Applications, vol. 210, no.
1, pp. 279–291, 1997.

[3] H. I. Freedman and S. G. Ruan, “Uniform persistence in
functional-differential equations,” Journal of Differential Equa-
tions, vol. 115, no. 1, pp. 173–192, 1995.

[4] K. Gopalsamy, Stability and Oscillations in Delay Differential
Equations of Population Dynamics, Kluwer Academic Publish-
ers, Dordrecht, The Netherlands, 1992.
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