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We propose a new iterative method to find the bisymmetric minimum norm solution of a pair of consistent matrix equations
𝐴
1
𝑋𝐵
1
= 𝐶
1
, 𝐴
2
𝑋𝐵
2
= 𝐶
2
. The algorithm can obtain the bisymmetric solution with minimum Frobenius norm in finite iteration

steps in the absence of round-off errors. Our algorithm is faster and more stable than Algorithm 2.1 by Cai et al. (2010).

1. Introduction

Let R𝑚×𝑛 denote the set of 𝑚 × 𝑛 real matrices. A matrix
𝑋 = (𝑥

𝑖𝑗
) ∈ R𝑛×𝑛 is said to be bisymmetric if 𝑥

𝑖𝑗
= 𝑥
𝑗𝑖
=

𝑥
𝑛−𝑖+1,𝑛−𝑗+1

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. Let BSR𝑛×𝑛 denote 𝑛 × 𝑛 real
bisymmetric matrices. For any 𝑋 ∈ R𝑚×𝑛, 𝑋𝑇, tr(𝑋), ‖𝑋‖,
and ‖𝑋‖

2
represent the transpose, trace, Frobenius norm,

and Euclidean norm of 𝑋, respectively. The symbol vec(⋅)
stands for the vec operator; that is, for 𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈

R𝑚×𝑛, where 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑛) denotes the 𝑖th column of 𝑋,

vec(𝑋) = (𝑥
𝑇

1
, 𝑥
𝑇

2
, . . . , 𝑥

𝑇

𝑛
)
𝑇. Let mat(⋅) represent the inverse

operation of vec operator. In the vector spaceR𝑚×𝑛, we define
the inner product as ⟨𝑋, 𝑌⟩ = tr(𝑌𝑇𝑋) for all 𝑋,𝑌 ∈ R𝑚×𝑛.
Twomatrices𝑋 and𝑌 are said to be orthogonal if ⟨𝑋, 𝑌⟩ = 0.
Let 𝑆
𝑛
= (𝑒
𝑛
, 𝑒
𝑛−1

, . . . , 𝑒
1
) denote the 𝑛 × 𝑛 reverse unit matrix

where 𝑒
𝑖
(𝑖 = 1, 2, . . . , 𝑛) is the 𝑖th column of 𝑛×𝑛 unit matrix

𝐼
𝑛
; then 𝑆𝑇

𝑛
= 𝑆
𝑛
, 𝑆
2

𝑛
= 𝐼
𝑛
.

In this paper, we discuss the following consistent matrix
equations:

𝐴
1
𝑋𝐵
1
= 𝐶
1
, 𝐴
2
𝑋𝐵
2
= 𝐶
2
, 𝑋 ∈ BSR𝑛×𝑛, (1)

where 𝐴
1
∈ R𝑝1×𝑛, 𝐵

1
∈ R𝑛×𝑞1 , 𝐶

1
∈ R𝑝1×𝑞1 , 𝐴

2
∈ R𝑝2×𝑛, 𝐵

2
∈

R𝑛×𝑞2 , and 𝐶
2
∈ R𝑝2×𝑞2 are given matrices, and𝑋 ∈ BSR𝑛×𝑛 is

unknown bisymmetric matrix to be found.
Research on solving a pair of matrix equations 𝐴

1
𝑋𝐵
1
=

𝐶
1
, 𝐴
2
𝑋𝐵
2
= 𝐶
2
has been actively ongoing for the past 30 or

more years (see details in [1–6]). Besides the works on finding
the common solutions to the matrix equations 𝐴

1
𝑋𝐵
1
= 𝐶
1
,

𝐴
2
𝑋𝐵
2
= 𝐶
2
, there are some valuable efforts on solving a

pair of the matrix equations with certain linear constraints
on solution. For instance, Khatri and Mitra [7] derived the
Hermitian solution of the consistent matrix equations 𝐴𝑋 =

𝐶, 𝑋𝐵 = 𝐷. Deng et al. [8] studied the consistent conditions
and the general expressions about the Hermitian solutions of
the matrix equations (𝐴𝑋,𝑋𝐵) = (𝐶,𝐷) and designed an
iterative method for its Hermitianminimum norm solutions.
Peng et al. [9] presented an iterativemethod to obtain the least
squares reflexive solutions of the matrix equations 𝐴

1
𝑋𝐵
1
=

𝐶
1
,𝐴
2
𝑋𝐵
2
= 𝐶
2
. Cai et al. [10, 11] proposed iterativemethods

to solve the bisymmetric solutions of the matrix equations
𝐴
1
𝑋𝐵
1
= 𝐶
1
, 𝐴
2
𝑋𝐵
2
= 𝐶
2
.

In this paper, we propose a new iterative algorithm to
solve the bisymmetric solution with the minimum Frobenius
norm of the consistent matrix equations 𝐴

1
𝑋𝐵
1

= 𝐶
1
,

𝐴
2
𝑋𝐵
2
= 𝐶
2
, which is faster and more stable than Cai’s algo-

rithm (Algorithm 2.1) in [10].
The rest of the paper is organized as follows. In Section 2,

we propose an iterative algorithm to obtain the bisymmetric
minimum Frobenius norm solution of (1) and present some
basic properties of the algorithm. Some numerical examples
are given in Section 3 to show the efficiency of the proposed
iterative method.
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2. A New Iterative Algorithm

Firstly, we give the following lemmas.

Lemma 1 (see [12]). There is a unique matrix 𝑃(𝑚, 𝑛) ∈

R𝑚𝑛×𝑚𝑛 such that vec(𝑋𝑇) = 𝑃(𝑚, 𝑛) vec (𝑋) for all𝑋 ∈ R𝑚×𝑛.
This matrix 𝑃(𝑚, 𝑛) depends only on the dimensions 𝑚 and
𝑛. Moreover, 𝑃(𝑚, 𝑛) is a permutation matrix and 𝑃(𝑛,𝑚) =
𝑃(𝑚, 𝑛)

𝑇
= 𝑃(𝑚, 𝑛)

−1.

Lemma 2. If 𝑦
0
, 𝑦
1
, 𝑦
2
, . . . ∈ R𝑚 are orthogonal to each other,

then there exists a positive integer 𝑙̂ ≤ 𝑚 such that 𝑦
𝑙
= 0.

Proof. If there exists a positive integer 𝑙̂ ≤ 𝑚 − 1 such that
𝑦
𝑙
= 0, then Lemma 2 is proved.
Otherwise, we have 𝑦

𝑖
̸= 0, 𝑖 = 0, 1, 2, . . . , 𝑚 − 1, and

𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑚−1
are orthogonal to each other in the 𝑚-

dimension vector space of R𝑚. So 𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑚−1
form a set

of orthogonal basis of R𝑚.
Hence 𝑦

𝑚
can be expressed by the linear combination of

𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑚−1
. Denote

𝑦
𝑚
= 𝑎
0
𝑦
0
+ 𝑎
1
𝑦
1
+ ⋅ ⋅ ⋅ + 𝑎

𝑚−1
𝑦
𝑚−1 (2)

in which 𝑎
𝑖
∈ R, 𝑖 = 0, 1, 2 . . . , 𝑚 − 1. Then

⟨𝑦
𝑖
, 𝑦
𝑚
⟩ = 𝑎
0
⟨𝑦
𝑖
, 𝑦
0
⟩ + 𝑎
1
⟨𝑦
𝑖
, 𝑦
1
⟩

+ ⋅ ⋅ ⋅ + 𝑎
𝑚−1

⟨𝑦
𝑖
, 𝑦
𝑚−1

⟩

= 𝑎
𝑖
⟨𝑦
𝑖
, 𝑦
𝑖
⟩ +

𝑚−1

∑

𝑗=1

𝑗 ̸= 𝑖

𝑎
𝑗
⟨𝑦
𝑖
, 𝑦
𝑗
⟩

= 𝑎
𝑖
⟨𝑦
𝑖
, 𝑦
𝑖
⟩ , 𝑖 = 0, 1, 2, . . . , 𝑚 − 1.

(3)

From ⟨𝑦
𝑖
, 𝑦
𝑚
⟩ = 0 and ⟨𝑦

𝑖
, 𝑦
𝑖
⟩ ̸= 0, 𝑖 = 0, 1, 2, . . . , 𝑚 − 1, we

have 𝑎
𝑖
= 0, 𝑖 = 0, 1, 2, . . . , 𝑚 − 1; that is,

𝑦
𝑚
= 0. (4)

This completes the proof.

Lemma 3. A matrix 𝑋 ∈ BSR𝑛×𝑛 if and only if 𝑋 = 𝑋
𝑇
=

𝑆
𝑛
𝑋𝑆
𝑛
.

Lemma 4. If𝑌 ∈ R𝑛×𝑛, then𝑌+𝑌𝑇+𝑆
𝑛
(𝑌+𝑌

𝑇
)𝑆
𝑛
∈ BSR𝑛×𝑛.

Next, we review the algorithm proposed by Paige [13] for
solving the following consistent problem:

𝑀𝑥 = 𝑓, (5)

with given𝑀 ∈ R𝑠×𝑡, 𝑓 ∈ R𝑠.

Algorithm 5 (Paige algorithm). (i) Initialization

𝜏
0
= 1; 𝜉

0
= −1; 𝜃

0
= 0;

𝑧
0
= 0; 𝑤

0
= 0; 𝛽

1
𝑢
1
= 𝑓; 𝛼

1
𝑣
1
= 𝑀
𝑇
𝑢
1
.

(6)

(ii) Iteration. For 𝑖 = 1, 2, . . ., until {𝑥
𝑖
} convergence, do

(a) 𝜉
𝑖
= −𝜉
𝑖−1
𝛽
𝑖
/𝛼
𝑖
; 𝑧
𝑖
= 𝑧
𝑖−1

+ 𝜉
𝑖
𝑣
𝑖
;

(b) 𝜃
𝑖
= (𝜏
𝑖−1

− 𝛽
𝑖
𝜃
𝑖−1
)/𝛼
𝑖
; 𝑤
𝑖
= 𝑤
𝑖−1

+ 𝜃
𝑖
𝑣
𝑖
;

(c) 𝛽
𝑖+1
𝑢
𝑖+1

= 𝑀𝑣
𝑖
− 𝛼
𝑖
𝑢
𝑖
;

(d) 𝜏
𝑖
= −𝜏
𝑖−1
𝛼
𝑖
/𝛽
𝑖+1

;

(e) 𝛼
𝑖+1
𝑣
𝑖+1

= 𝑀
𝑇
𝑢
𝑖+1

− 𝛽
𝑖+1
𝑣
𝑖
;

(f) 𝛾
𝑖
= 𝛽
𝑖+1
𝜉
𝑖
/(𝛽
𝑖+1
𝜃
𝑖
− 𝜏
𝑖
);

(g) 𝑥
𝑖
= 𝑧
𝑖
− 𝛾
𝑖
𝑤
𝑖
.

It is well known that if the consistent system of linear
equations 𝑀𝑥 = 𝑓 has a solution 𝑥

∗
∈ 𝑅(𝑀

𝑇
), then 𝑥

∗ is
the unique minimum Euclidean norm solution of𝑀𝑥 = 𝑓. It
is obvious that 𝑥

𝑖
generated byAlgorithm 5 belongs to𝑅(𝑀𝑇)

and this leads to the following result.

Theorem 6. The solution generated by Algorithm 5 is the
minimum Euclidean norm solution of (5).

If 𝑢
1
, 𝑢
2
, . . . and 𝑣

1
, 𝑣
2
, . . . are generated by Algorithm 5,

then 𝑢𝑇
𝑖
𝑢
𝑗
= 𝛿
𝑖𝑗
, 𝑣𝑇
𝑖
𝑣
𝑗
= 𝛿
𝑖𝑗
(see details in [13]), in which

𝛿
𝑖𝑗
= {

1, 𝑖 = 𝑗,

0, 𝑖 ̸= 𝑗.
(7)

If we denote

𝑟
𝑖
= 𝑓 −𝑀𝑥

𝑖
, (8)

where𝑥
𝑖
is the approximation solution obtained byAlgorithm 5

after the 𝑖th iteration, it follows that 𝑟
𝑖
= −𝛽
𝑖+1
𝜉
𝑖
𝑢
𝑖+1

(see details
in [13]). So we have

𝑟
𝑇

𝑖
𝑟
𝑗
= ℎ
𝑖𝑗
𝛿
𝑖𝑗

(9)

in which ℎ
𝑖𝑗
= 𝛽
𝑖+1
𝛽
𝑗+1

𝜉
𝑖
𝜉
𝑗
.

Now we derive our new algorithm, which is based on
Paige algorithm.

Noting that 𝑋 is the bisymmetric solution of (1) if and
only if 𝑋 is the bisymmetric solution of the following linear
equations:

𝐴
1
𝑋𝐵
1
= 𝐶
1
, 𝐵

𝑇

1
𝑋𝐴
𝑇

1
= 𝐶
𝑇

1
,

𝐴
1
𝑆
𝑛
𝑋𝑆
𝑛
𝐵
1
= 𝐶
1
, 𝐵

𝑇

1
𝑆
𝑛
𝑋𝑆
𝑛
𝐴
𝑇

1
= 𝐶
𝑇

1
,

𝐴
2
𝑋𝐵
2
= 𝐶
2
, 𝐵

𝑇

2
𝑋𝐴
𝑇

2
= 𝐶
𝑇

2
,

𝐴
2
𝑆
𝑛
𝑋𝑆
𝑛
𝐵
2
= 𝐶
2
, 𝐵

𝑇

2
𝑆
𝑛
𝑋𝑆
𝑛
𝐴
𝑇

2
= 𝐶
𝑇

2
.

(10)

Furthermore, suppose (10) is consistent; let 𝑌 be a solution of
(10). If 𝑌 is a bisymmetric matrix, then 𝑌 is a bisymmetric
solution of (1); otherwise we can obtain a bisymmetric
solution of (10) by𝑋 = (𝑌 + 𝑌

𝑇
+ 𝑆
𝑛
(𝑌 + 𝑌

𝑇
)𝑆
𝑛
)/4.
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The system of (10) can be transformed into (5) with
coefficient matrix𝑀 and vector 𝑓 as

𝑀 =

(
(
(
(
(
(

(

𝐵
𝑇

1
⊗ 𝐴
1

𝐴
1
⊗ 𝐵
𝑇

1

𝐵
𝑇

1
𝑆
𝑛
⊗ 𝐴
1
𝑆
𝑛

𝐴
1
𝑆
𝑛
⊗ 𝐵
𝑇

1
𝑆
𝑛

𝐵
𝑇

2
⊗ 𝐴
2

𝐴
2
⊗ 𝐵
𝑇

2

𝐵
𝑇

2
𝑆
𝑛
⊗ 𝐴
2
𝑆
𝑛

𝐴
2
𝑆
𝑛
⊗ 𝐵
𝑇

2
𝑆
𝑛

)
)
)
)
)
)

)

, 𝑓 =

(
(
(
(
(
(

(

vec (𝐶
1
)

vec (𝐶𝑇
1
)

vec (𝐶
1
)

vec (𝐶𝑇
1
)

vec (𝐶
2
)

vec (𝐶𝑇
2
)

vec (𝐶
2
)

vec (𝐶𝑇
2
)

)
)
)
)
)
)

)

.

(11)

Therefore, 𝛽
1
𝑢
1
= 𝑓, 𝛼

1
𝑣
1
= 𝑀
𝑇
𝑢
1
, 𝛽
𝑖+1
𝑢
𝑖+1

= 𝑀𝑣
𝑖
− 𝛼
𝑖
𝑢
𝑖
,

and 𝛼
𝑖+1
𝑣
𝑖+1

= 𝑀
𝑇
𝑢
𝑖+1

− 𝛽
𝑖+1
𝑣
𝑖
can be written as

𝛽
1
𝑢
1
=

(
(
(
(
(
(

(

vec (𝐶
1
)

vec (𝐶𝑇
1
)

vec (𝐶
1
)

vec (𝐶𝑇
1
)

vec (𝐶
2
)

vec (𝐶𝑇
2
)

vec (𝐶
2
)

vec (𝐶𝑇
2
)

)
)
)
)
)
)

)

,

𝛼
1
𝑣
1
=

(
(
(
(
(
(

(

𝐵
𝑇

1
⊗ 𝐴
1

𝐴
1
⊗ 𝐵
𝑇

1

𝐵
𝑇

1
𝑆
𝑛
⊗ 𝐴
1
𝑆
𝑛

𝐴
1
𝑆
𝑛
⊗ 𝐵
𝑇

1
𝑆
𝑛

𝐵
𝑇

2
⊗ 𝐴
2

𝐴
2
⊗ 𝐵
𝑇

2

𝐵
𝑇

2
𝑆
𝑛
⊗ 𝐴
2
𝑆
𝑛

𝐴
2
𝑆
𝑛
⊗ 𝐵
𝑇

2
𝑆
𝑛

)
)
)
)
)
)

)

𝑇

𝑢
1
,

𝛽
𝑖+1
𝑢
𝑖+1

=

(
(
(
(
(
(

(

𝐵
𝑇

1
⊗ 𝐴
1

𝐴
1
⊗ 𝐵
𝑇

1

𝐵
𝑇

1
𝑆
𝑛
⊗ 𝐴
1
𝑆
𝑛

𝐴
1
𝑆
𝑛
⊗ 𝐵
𝑇

1
𝑆
𝑛

𝐵
𝑇

2
⊗ 𝐴
2

𝐴
2
⊗ 𝐵
𝑇

2

𝐵
𝑇

2
𝑆
𝑛
⊗ 𝐴
2
𝑆
𝑛

𝐴
2
𝑆
𝑛
⊗ 𝐵
𝑇

2
𝑆
𝑛

)
)
)
)
)
)

)

𝑣
𝑖
− 𝛼
𝑖
𝑢
𝑖
, 𝑖=1, 2, . . . ,

𝛼
𝑖+1
𝑣
𝑖+1

=

(
(
(
(
(
(

(

𝐵
𝑇

1
⊗ 𝐴
1

𝐴
1
⊗ 𝐵
𝑇

1

𝐵
𝑇

1
𝑆
𝑛
⊗ 𝐴
1
𝑆
𝑛

𝐴
1
𝑆
𝑛
⊗ 𝐵
𝑇

1
𝑆
𝑛

𝐵
𝑇

2
⊗ 𝐴
2

𝐴
2
⊗ 𝐵
𝑇

2

𝐵
𝑇

2
𝑆
𝑛
⊗ 𝐴
2
𝑆
𝑛

𝐴
2
𝑆
𝑛
⊗ 𝐵
𝑇

2
𝑆
𝑛

)
)
)
)
)
)

)

𝑇

𝑢
𝑖+1

− 𝛽
𝑖+1
𝑣
𝑖
, 𝑖=1, 2, . . . .

(12)

From (12), we have

𝑢
𝑖
=

(
(
(
(
(
(

(

vec (𝑈
𝑖1
)

vec (𝑈𝑇
𝑖1
)

vec (𝑈
𝑖1
)

vec (𝑈𝑇
𝑖1
)

vec (𝑈
𝑖2
)

vec (𝑈𝑇
𝑖2
)

vec (𝑈
𝑖2
)

vec (𝑈𝑇
𝑖2
)

)
)
)
)
)
)

)

, 𝑣
𝑖
= vec (𝑉

𝑖
) , (13)

where𝑈
𝑖1
∈ R𝑝1×𝑞1 ,𝑈

𝑖2
∈ R𝑝2×𝑞2 ,𝑉

𝑖
∈ R𝑛×𝑛, and𝑉

𝑖
is a bisym-

metric matrix.
And so, the vector form of 𝛽

1
𝑢
1
= 𝑓, 𝛼

1
𝑣
1
= 𝑀
𝑇
𝑢
1
,

𝛽
𝑖+1
𝑢
𝑖+1

= 𝑀𝑣
𝑖
− 𝛼
𝑖
𝑢
𝑖
, and 𝛼

𝑖+1
𝑣
𝑖+1

= 𝑀
𝑇
𝑢
𝑖+1

− 𝛽
𝑖+1
𝑣
𝑖
in

Algorithm 5 can be rewritten as matrix form. Then we now
propose the following matrix-form algorithm.

Algorithm 7. (i) Initialization

𝜏
0
= 1; 𝜉
0
= −1; 𝜃

0
= 0; 𝑍

0
= 0 (∈ R𝑛×𝑛);𝑊

0
= 𝑍
0
;

𝛽
1
= 2√‖𝐶

1
‖
2
+ ‖𝐶
2
‖
2; 𝑈
1𝑗
= 𝐶
𝑗
/𝛽
1
, 𝑗 = 1, 2;

𝑇
1
= 𝐴
𝑇

1
𝑈
11
𝐵
𝑇

1
+ 𝐴
𝑇

2
𝑈
12
𝐵
𝑇

2
; 𝑉
1
= 𝑇
1
+ 𝑇
𝑇

1
+ 𝑆
𝑛
(𝑇
1
+

𝑇
𝑇

1
)𝑆
𝑛
; 𝛼
1
= ‖𝑉
1
‖; 𝑉
1
= 𝑉
1
/𝛼
1
.

(ii) Iteration. For 𝑖 = 1, 2, . . ., until {𝑋
𝑖
} convergence, do

(a) 𝜉
𝑖
= −𝜉
𝑖−1
𝛽
𝑖
/𝛼
𝑖
; 𝑍
𝑖
= 𝑍
𝑖−1

+ 𝜉
𝑖
𝑉
𝑖
;

(b) 𝜃
𝑖
= (𝜏
𝑖−1

− 𝛽
𝑖
𝜃
𝑖−1
)/𝛼
𝑖
; 𝑊
𝑖
= 𝑊
𝑖−1

+ 𝜃
𝑖
𝑉
𝑖
;

(c) 𝑈
𝑖+1,𝑗

= 𝐴
𝑗
𝑉
𝑖
𝐵
𝑗
− 𝛼
𝑖
𝑈
𝑖𝑗
, 𝑗 = 1, 2;

𝛽
𝑖+1

= 2√‖𝑈
𝑖+1,1

‖
2

+ ‖𝑈
𝑖+1,2

‖
2;

𝑈
𝑖+1,𝑗

= 𝑈
𝑖+1,𝑗

/𝛽
𝑖+1
, 𝑗 = 1, 2;

(d) 𝜏
𝑖
= −𝜏
𝑖−1
𝛼
𝑖
/𝛽
𝑖+1

;
(e) 𝑇
𝑖+1

= 𝐴
𝑇

1
𝑈
𝑖+1,1

𝐵
𝑇

1
+ 𝐴
𝑇

2
𝑈
𝑖+1,2

𝐵
𝑇

2
;

𝑉
𝑖+1

= 𝑇
𝑖+1

+ 𝑇
𝑇

𝑖+1
+ 𝑆
𝑛
(𝑇
𝑖+1

+ 𝑇
𝑇

𝑖+1
)𝑆
𝑛
− 𝛽
𝑖+1
𝑉
𝑖
;

𝛼
𝑖+1

= ‖𝑉
𝑖+1
‖; 𝑉
𝑖+1

= 𝑉
𝑖+1
/𝛼
𝑖+1

;
(f) 𝛾
𝑖
= 𝛽
𝑖+1
𝜉
𝑖
/(𝛽
𝑖+1
𝜃
𝑖
− 𝜏
𝑖
);

(g) 𝑋
𝑖
= 𝑍
𝑖
− 𝛾
𝑖
𝑊
𝑖
.

Remark 8. The stopping criteria on Algorithm 7 can be used
as

󵄩󵄩󵄩󵄩𝐶1 − 𝐴1𝑋𝑖𝐵1
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝐶2 − 𝐴2𝑋𝑖𝐵2
󵄩󵄩󵄩󵄩 ≤ 𝜖,

󵄨󵄨󵄨󵄨𝜉𝑖
󵄨󵄨󵄨󵄨 ≤ 𝜖 or 󵄩󵄩󵄩󵄩𝑋𝑖 − 𝑋𝑖−1

󵄩󵄩󵄩󵄩 ≤ 𝜖,

(14)

where 𝜖 is a small tolerance.

Remark 9. As 𝑉
𝑖
, 𝑍
𝑖
, and𝑊

𝑖
in Algorithm 7 are bisymmetric

matrices, we can see that𝑋
𝑖
obtained by Algorithm 7 are also

bisymmetric matrices.

Some basic properties of Algorithm 7 are listed in the
following theorems.
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Theorem 10. The solution generated by Algorithm 7 is the
bisymmetric minimum Frobenius norm solution of (1).

Theorem 11. The iteration of Algorithm 7 will be terminated
in at most 𝑝

1
𝑞
1
+ 𝑝
2
𝑞
2
steps in the absence of round-off errors.

Proof. By (8) and (11), we have by simple calculation that

𝑟
𝑖
=

(
(
(
(
(
(
(
(

(

vec (𝑅
𝑖1
)

vec (𝑅𝑇
𝑖1
)

vec (𝑅
𝑖1
)

vec (𝑅𝑇
𝑖1
)

vec (𝑅
𝑖2
)

vec (𝑅𝑇
𝑖2
)

vec (𝑅
𝑖2
)

vec (𝑅𝑇
𝑖2
)

)
)
)
)
)
)
)
)

)

, (15)

inwhich𝑅
𝑖1
= 𝐶
1
−𝐴
1
𝑋
𝑖
𝐵
1
, and𝑅

𝑖2
= 𝐶
2
−𝐴
2
𝑋
𝑖
𝐵
2
, where𝑋

𝑖

is the approximation solution obtained by Algorithm 7 after
the 𝑖th iteration.

By Lemma 1, we have that

vec (𝑅𝑇
𝑖1
) = 𝑃 (𝑝

1
, 𝑞
1
) vec (𝑅

𝑖1
) ,

vec (𝑅𝑇
𝑖2
) = 𝑃 (𝑝

2
, 𝑞
2
) vec (𝑅

𝑖2
) ,

(16)

where 𝑃(𝑝
1
, 𝑞
1
) ∈ R𝑝1𝑞1×𝑝1𝑞1 and 𝑃(𝑝

2
, 𝑞
2
) ∈ R𝑝2𝑞2×𝑝2𝑞2

are permutation matrices. For simplicity, we denote 𝑃
1
=

𝑃(𝑝
1
, 𝑞
1
), 𝑃
2
= 𝑃(𝑝

2
, 𝑞
2
). Then 𝑃𝑇

1
𝑃
1
= 𝐼
𝑝
1
𝑞
1

, 𝑃
𝑇

2
𝑃
2
= 𝐼
𝑝
2
𝑞
2

.
Hence

𝑟
𝑇

𝑖
𝑟
𝑗
=

(
(
(
(
(
(
(
(

(

vec (𝑅
𝑖1
)

vec (𝑅𝑇
𝑖1
)

vec (𝑅
𝑖1
)

vec (𝑅𝑇
𝑖1
)

vec (𝑅
𝑖2
)

vec (𝑅𝑇
𝑖2
)

vec (𝑅
𝑖2
)

vec (𝑅𝑇
𝑖2
)

)
)
)
)
)
)
)
)

)

𝑇

(
(
(
(
(
(
(
(
(

(

vec (𝑅
𝑗1
)

vec (𝑅𝑇
𝑗1
)

vec (𝑅
𝑗1
)

vec (𝑅𝑇
𝑗1
)

vec (𝑅
𝑗2
)

vec (𝑅𝑇
𝑗2
)

vec (𝑅
𝑗2
)

vec (𝑅𝑇
𝑗2
)

)
)
)
)
)
)
)
)
)

)

=

(
(
(
(
(
(
(

(

vec (𝑅
𝑖1
)

𝑃
1
vec (𝑅

𝑖1
)

vec (𝑅
𝑖1
)

𝑃
1
vec (𝑅

𝑖1
)

vec (𝑅
𝑖2
)

𝑃
2
vec (𝑅

𝑖2
)

vec (𝑅
𝑖2
)

𝑃
2
vec (𝑅

𝑖2
)

)
)
)
)
)
)
)

)

𝑇

(
(
(
(
(
(
(
(
(

(

vec (𝑅
𝑗1
)

𝑃
1
vec (𝑅

𝑗1
)

vec (𝑅
𝑗1
)

𝑃
1
vec (𝑅

𝑗1
)

vec (𝑅
𝑗2
)

𝑃
2
vec (𝑅

𝑗2
)

vec (𝑅
𝑗2
)

𝑃
2
vec (𝑅

𝑗2
)

)
)
)
)
)
)
)
)
)

)

= 2(vec (𝑅
𝑖1
))
𝑇 vec (𝑅

𝑗1
) + 2(vec (𝑅

𝑖1
))
𝑇

𝑃
𝑇

1
𝑃
1
vec (𝑅

𝑗1
)

+ 2(vec (𝑅
𝑖2
))
𝑇 vec (𝑅

𝑗2
)

+ 2(vec (𝑅
𝑖2
))
𝑇

𝑃
𝑇

2
𝑃
2
vec (𝑅

𝑗2
)

= 4 ((vec (𝑅
𝑖1
))
𝑇 vec (𝑅

𝑗1
) + (vec (𝑅

𝑖2
))
𝑇 vec (𝑅

𝑗2
))

= 4(
vec (𝑅

𝑖1
)

vec (𝑅
𝑖2
)
)

𝑇

(
vec (𝑅

𝑗1
)

vec (𝑅
𝑗2
)
) .

(17)

If we let 𝑡
𝑖
= (

vec(𝑅
𝑖1
)

vec(𝑅
𝑖2
)
) ∈ R𝑝1𝑞1+𝑝2𝑞2 , then we have by (9)

that 𝑡
0
, 𝑡
1
, 𝑡
2
, . . . are orthogonal to each other in R𝑝1𝑞1+𝑝2𝑞2 . By

Lemma 2, there exists a positive integer 𝑙̂ ≤ (𝑝
1
𝑞
1
+𝑝
2
𝑞
2
) such

that 𝑡
𝑙̂
= 0. Hence

𝑅
𝑙̂1
= 𝑅
𝑙̂2
= 0, (18)

that is, the iteration of Algorithm 7 will be terminated in at
most 𝑝

1
𝑞
1
+𝑝
2
𝑞
2
steps in the absence of round-off errors.

3. Numerical Examples

In this section, we use some numerical examples to illustrate
the efficiency of our algorithm.The computations are carried
out at PC computer, with softwareMATLAB 7.0.Themachine
precision is around 10−16.

We stop the iteration when ‖𝑅
𝑖1
‖ + ‖𝑅

𝑖2
‖ ≤ 10

−12.

Example 12. Given matrices 𝐴
1
, 𝐵
1
, 𝐶
1
, 𝐴
2
, 𝐵
2
, and 𝐶

2
as

follows:

𝐴
1
= (

(

1 −4 −2 −1 0 1 −3

3 1 −1 3 −1 −2 1

4 −3 −3 2 −1 −1 −2

2 5 1 4 −1 −3 4

−1 4 2 1 0 −1 3

−3 −1 1 −3 1 2 −1

)

)

,

𝐵
1
=

(
(
(

(

−3 2 −1 3 −2 1

2 −3 −1 −2 3 −4

−1 1 0 1 −1 1

0 1 1 0 −1 2

1 2 3 −1 −2 5

3 −3 0 −3 3 −3

0 −1 −1 0 1 −2

)
)
)

)

,

𝐶
1
= (

(

−19 30 11 19 −30 41

−55 47 −8 55 −47 39

−74 77 3 74 −77 80

−36 17 −19 36 −17 −2

19 −30 −11 −19 30 −41

55 −47 8 −55 47 −39

)

)

,
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Figure 1: Convergence curves of log
10
(‖𝑅
𝑖1
‖ + ‖𝑅

𝑖2
‖).

𝐴
2
= (

3 −2 −1 1 −4 0 −1

0 −3 1 −3 2 3 1

−2 −4 1 −3 0 3 1

0 3 −1 3 −2 −3 −1

1 −6 0 −2 −4 3 0

),

𝐵
2
=

(
(
(

(

2 1 3 −2

−3 −1 −4 3

1 2 3 −1

0 4 4 0

−2 0 −2 2

1 −5 −4 −1

−1 −2 −3 1

)
)
)

)

,

𝐶
2
= (

33 107 140 −33

17 −34 −17 −17

27 −29 −2 −27

−17 34 17 17

60 78 138 −60

)

(19)

then (1) is consistent, for one can easily verify that it has a
bisymmetric solution:

𝑋 =

(
(
(

(

1 −1 1 2 1 −1 1

−1 3 1 1 1 1 −1

1 1 0 −2 −1 1 1

2 1 −2 1 −2 1 2

1 1 −1 −2 0 1 1

−1 1 1 1 1 3 −1

1 −1 1 2 1 −1 1

)
)
)

)

. (20)

We choose the initial matrix𝑋
0
= 0, then using Algorithm 7

and iterating 13 steps, we have the unique bisymmetric
minimum Frobenius norm solution of (1) as follows:

𝑋
13
=

(
(
(

(

0.4755 −0.6822 0.6274 1.4586 0.2774 −1.2112 −0.1053

−0.6822 2.6628 0.4046 0.0716 1.0133 0.4001 −1.2112

0.6274 0.4046 −1.0215 −2.2128 −1.6176 1.0133 0.2774

1.4586 0.0716 −2.2128 −1.1548 −2.2128 0.0716 1.4586

0.2774 1.0133 −1.6176 −2.2128 −1.0215 0.4046 0.6274

−1.2112 0.4001 1.0133 0.0716 0.4046 2.6628 −0.6822

−0.1053 −1.2112 0.2774 1.4586 0.6274 −0.6822 0.4755

)
)
)

)

, (21)

with ‖𝑅
13,1

‖ + ‖𝑅
13,2

‖ = 6.2303𝑒 − 013.

Figure 1 illustrates the performance of our algorithm and
Cai’s algorithm [10]. From Figure 1, we see that our algorithm
is faster than Cai’s algorithm.

Example 13. Let

𝐴
1
= hilb (7) , 𝐵

1
= pascal (7) ,

𝐴
2
= rand (7, 7) , 𝐵

2
= rand (7, 7) ,

(22)
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Figure 2: Convergence curves of log
10
(‖𝑅
𝑖1
‖ + ‖𝑅

𝑖2
‖).

with hilb, pascal, and rand being functions in Matlab. And
we let 𝐶

1
= 𝐴
1
𝑋𝐵
1
, 𝐶
2
= 𝐴
2
𝑋𝐵
2
, in which 𝑋 is defined in

Example 12. Hence (1) is consistent.

We choose the initial matrix 𝑋
0
= 0; Figure 2 illustrates

the performance of our algorithm and Cai’s algorithm [10].
From Figure 2, we see that our algorithm is faster and more
stable than Cai’s algorithm.

Acknowledgments

This research was supported by the Natural Science Foun-
dation of China (nos. 10901056, 11071079, and 11001167),
the Shanghai Science and Technology Commission “Venus”
Project (no. 11QA1402200), and the Natural Science Founda-
tion of Zhejiang Province (no. Y6110043).

References

[1] X. P. Sheng andG. L. Chen, “A finite iterativemethod for solving
a pair of linearmatrix equations (𝐴𝑋𝐵, 𝐶𝑋𝐷) = (𝐸, 𝐹),”Applied
Mathematics and Computation, vol. 189, no. 2, pp. 1350–1358,
2007.

[2] Y. X. Yuan, “Least squares solutions of matrix equation 𝐴𝑋𝐵 =

𝐸; 𝐶𝑋𝐷 = 𝐹,” Journal of East China Shipbuilding Institute, vol.
18, no. 3, pp. 29–31, 2004.

[3] A. Navarra, P. L. Odell, and D. M. Young, “A representation
of the general common solution to the matrix equations
𝐴
1
𝑋𝐵
1
= 𝐶
1
and 𝐴

2
𝑋𝐵
2
= 𝐶
2
with applications,” Computers

& Mathematics with Applications, vol. 41, no. 7-8, pp. 929–935,
2001.

[4] S. K. Mitra, “A pair of simultaneous linear matrix equations
and a matrix programming problem,” Linear Algebra and its
Applications, vol. 131, pp. 107–123, 1990.

[5] S. K. Mitra, “The matrix equations 𝐴𝑋 = 𝐶,𝑋𝐵 = 𝐷,” Linear
Algebra and its Applications, vol. 59, pp. 171–181, 1984.

[6] P. Bhimasankaram, “Common solutions to the linear matrix
equations 𝐴𝑋 = 𝐶,𝑋𝐵 = 𝐷 and 𝐹𝑋𝐺 = 𝐻,” Sankhyā A, vol.
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