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The nonlinear hydroelastic waves propagating beneath an infinite ice sheet floating on an inviscid fluid of finite depth are
investigated analytically. The approximate series solutions for the velocity potential and the wave surface elevation are derived,
respectively, by an analytic approximation technique named homotopy analysis method (HAM) and are presented for the second-
order components. Also, homotopy squared residual technique is employed to guarantee the convergence of the series solutions. The
present formulas, different from the perturbation solutions, are highly accurate and uniformly valid without assuming that these
nonlinear partial differential equations (PDEs) have small parameters necessarily. It is noted that the effects of water depth, the ice
sheet thickness, and Young’s modulus are analytically expressed in detail. We find that, in different water depths, the hydroelastic
waves traveling beneath the thickest ice sheet always contain the largest wave energy. While with an increasing thickness of the
sheet, the wave elevation tends to be smoothened at the crest and be sharpened at the trough. The larger Young’s modulus of the
sheet also causes analogous effects. The results obtained show that the thickness and Young’s modulus of the floating ice sheet all

greatly affect the wave energy and wave profile in different water depths.

1. Introduction

In recent decades, the ice cover in the polar region has
attracted more and more attention in the field of ocean
engineering and polar engineering in view of their practical
importance and theoretical investigations. The motivations
for the research work are to study damage to offshore con-
structions by floating ice sheets, the transportation systems in
the cold region where the ice cover can be considered as roads
and aircraft runways and air-cushioned vehicles are used to
break the ice, for example. One of the important problems
in this field would appear to be the accurate measurement of
the characteristics of waves traveling beneath a floating ice
sheet. And such wave may have been generated in the ice
cover itself by the wind, or it may have originated by a moving
load on the ice sheets. Considerable work has been done since
the first theoretical model of wave propagation in sea ice was

proposed by Greenhill [1] in 1887. A comprehensive summary
on mathematical method and modeling for the problem can
be found in some review articles such as Squire et al. [2, 3].
In addition to ice sheets, this work can apply to very large
floating structures (VLESs) such as floating airports, mobile
offshore bases, offshore port facilities, offshore storage and
waste disposal provisions, energy islands including some
wave power configurations, and ultralarge ships, where there
is an extensive complementary literature [4-6].

Most theoretical works on the problem are still in the
scope of linear theory based on the assumption that the
wave amplitudes generated are very small in comparison
with the wave lengths. So such models are not appropriate
to describe waves of arbitrary amplitude considered here.
According to hydrodynamics and elasticity, we can construct
the nonlinear partial differential equations (PDEs) (1)-(5) to
describe nonlinear hydroelastic waves of arbitrary amplitude



traveling through water covered by an ice sheet in finite water
depth. Unfortunately, it is very difficult to solve analytically
the coupled nonlinear PDEs mathematically. Further, most
of the most works literature on the nonlinear theory of sea
waves ice sheet interaction are necessarily in the context of
weakly nonlinear analysis due to the limitation of present
mathematical tools. Now the main analytical study on such
complex nonlinear PDEs still follows the well-known pertur-
bation technique. For example, Forbes [7] derived nonlinear
PDEs to describe two-dimensional periodic waves beneath an
elastic sheet floating on the surface of an infinitely deep fluid.
The periodic solutions are sought using the Fourier series and
perturbation expansions for the Fourier coefficients. And it
is found that the solutions have certain features in common
with capillary-gravity waves. Following the framework in
[7], Forbes continued his study of finite-amplitude surface
waves beneath a floating elastic sheet in infinitely deep water
[8], and optimized their previous perturbation technology
directly by developing the Fourier coefficients as expansions
in the wave height. Waves of extremely large amplitude are
found to exist, and results are presented for waves belonging
to several different nonlinear solution branches. Recently,
Vanden-Broeck and Parau [9] further extended the results of
Forbes for periodic waves to the arbitrary-amplitude waves.
It is noted that perturbation and asymptotic approximations
of nonlinear PDEs often break down as nonlinearity becomes
strong. So the weakly nonlinear solutions of small-amplitude
waves are derived by the perturbation approach, while fully
nonlinear solutions of large-amplitude waves have to be
calculated numerically by means of the numerical series
truncation method in Vanden-BroecKk’s study.

Furthermore, perturbation and asymptotic techniques
depend extremely on the small/large parameters in general,
while our nonlinear PDEs have no any small/large parame-
ters. Thus the perturbation techniques are not applicable to
the nonlinear problem under consideration. In this paper,
we apply a new analytic approximation method known as
the homotopy analysis method (HAM) to effectively solve
the nonlinear PDEs presented here. Based on the concept
of homotopy in algebraic topology, the HAM was proposed
by Liao [10] in 1992. Unlike the perturbation method, the
HAM is entirely independent of any small/large parameters.
Moreover, it provides us with extremely large freedom to
choose base functions and initial approximations (16) and
(17) of solutions and auxiliary linear operators (21)-(23)
only under some basic rules [11, 12]. More importantly, in
contrast to all other previous analytic techniques, the HAM
provides us a convenient way to control and adjust the
convergence of the approximate series solutions by means of
introducing an auxiliary parameter ¢,. The method has been
systematically described by Liao [11, 12]. Recently the HAM
has been successfully applied to the study of a number of
classical nonlinear differential equations including nonlinear
equations arising in fluid mechanics [13-18], heat transfer
[19, 20], solitons and integrable models [21-24], and finance
[25, 26]. These aforementioned studies show the validity
and generality of the HAM for some highly nonlinear PDEs
with multiple solutions, singularity, and unknown boundary
conditions.
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The objective of the present work is to analytically study
the nonlinear hydroelastic waves under an ice sheet lying
over an incompressible inviscid fluid of finite uniform depth
by means of the HAM. According to the potential theory in
hydrodynamics and elasticity, the nonlinear partial differen-
tial equations (PDEs) (1)-(5) are composed of the Laplace
equation taken as the governing equation for inviscid flows,
the kinematic and dynamic boundary conditions on the
unknown ice sheet-water interface with a zero draft, a simple
linear model for the thin sheet that includes the effects of
flexural rigidity and vertical inertia, and a bottom boundary
condition. The convergent homotopy-series solutions for the
velocity potential and the wave surface elevation are formally
derived by applying the HAM with the consideration of the
minimum of the squared residual, respectively. It should
be mentioned that we study the effects of the water depth
and two important physical parameters including Young’s
modulus and the thickness of the ice sheet on the wave energy
and its elevation in detail. Discussion and conclusions are
made in Sections 4 and 5, respectively. All of results obtained
will help enrich our understanding of nonlinear hydroelastic
waves propagating under a floating ice sheet on a fluid of finite
depth.

2. Mathematical Description

The problem under consideration is a train of nonlinear
hydroelastic waves propagating beneath a two-dimensional
infinite elastic plate floating on a fluid of finite depth h
and a zero draft. A Cartesian coordinate oxz is used in
which the z-axis points vertically upward, while z = 0
represents the undisturbed surface. We follow Greenhill in
[1] assuming that this problem is capable of modeling ocean
waves in the presence of sea ice when the fluid is inviscid and
incompressible and the flow is irrotational, and the ice sheet
is mathematically idealized as a thin elastic plate. Then the
governing equations for a velocity potential ¢(x, z,t) can be
written as
2 2
a_(p + a_(p = 0’

PR (~h <z <{(x1), €]

where {(x,t) is the wave surface elevation. The bottom
boundary condition reads

% g

5z - % (z=-h). (2)

The motion of the fluid and the plate is coupled through
the dynamic free-surface condition. We also assume that
any particle which is once between the elastic plate and the
water surface remains on it. So the kinematic and dynamic
boundary conditions on the unknown surface z = {(x, t) are,
respectively, modeled as
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where p, is the water-plate interface pressure, p is the fluid
density, and g is the gravitational acceleration, for a thin
homogeneous elastic plate with uniform mass density p, and
constant thickness d.

Since we are considering long waves here, the linear
Kirchhoff (Euler-Bernoulli) beam theory is applied to the
floating elastic plate as follows:

pe =Dy g +m (at2 g) ®)

where m, = p,d, D = Ed®/[12(1 — »*)] is the flexural rigidity
of the plate, E is the effective Young’s modulus of the plate,
and v Poisson’s ratio. We substitute (5) into (4) to derive a new
form of the dynamic boundary condition as follows:

—+—|V¢| + C+—[Da—€1 m(ag g)]:o. (6)

Here, we consider a train of nonlinear waves traveling
beneath an elastic plate with constant wave number k and
constant angular frequency w of the incident wave. For a
general case it should be emphasized that, by means of the
traveling-wave method directly, the progressive waves are
transferred from the temporal differentiation into the spatial
one, which is very different from the mathematical model
obtained by simply eliminating the time-dependent terms
from the kinematic and dynamic boundary conditions on
the unknown free surface [7-9]. Namely, we introduce an
independent variable transformation

X = kx — wt, 7)

where the angular frequency w and the wave number k are
given. Thus, we can express the potential function ¢(x, z,t) =
¢(X, z) and the traveling wave profile {(x, t) = {(X).

Then the governing equation and the bottom boundary
condition for the velocity potential are transformed, respec-
tively, by

o’ &
kzax(/; a‘f:o, (-h <z <{(X)), (®)
2—?:0, (z=-h). )

With the transformation (7), (3), and (6) on z = {(X) are
given by
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respectively, where

f=%[k2<§—§>2+(g—f)z]. (12)

We combine partially (10) and (11) to gain the boundary
conditions on z = {(X) as follows:
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Now the corresponding unknown potential function ¢(X, z)
and the wave surface elevation {(X) are governed by (8), (9),
(11), and (13).

3. Analytic Approach Based on
the Homotopy Analysis Method

3.1 Solution Expression and Initial Approximation. Using
the homotopy analysis method, we should first of all start
from a set of base functions and solution expression which
are very important to approximate the unknown solutions
of the nonlinear boundary problem under consideration.
Mathematically, it seems impossible to guess the expression
forms of the unknown potential function and the wave
vertical displacement. Fortunately, considering the physical
background of our problem, we may gain proper solution
expressions of it. From viewpoints of the physical considera-
tions here, our problem is composed of a train of progressive
waves cause by a load moving on the ice sheet, an infinite
elastic plate acting as an ice sheet floating on an fluid of finite
depth. As is well known, in case of the pure water waves, the
progressive wave elevation can be expressed as

{((X)= Zﬂn cos (nX) (14)
n=0

by a set of base functions {cos(nX),n > 0}, where f3, are
unknown coefficients. In the case of plate-covered surface,
since we assume that there is no gap between the bottom
surface of the thin elastic plate and the top surface of the fluid
layer and a zero draft, the vertical displacement of the thin
plate is still periodic in the X direction. Therefore, we clearly
know that {(X) can be expressed in the above form (14) too.

Besides, according to the linear wave theory, we can find
the solutions of the Laplace equation (8) by the separation
of variables method. To acquire those solutions, we have to
use kinematic and dynamic boundary conditions of the free
surface and the boundary condition in finite water depth,
and we consider the solution derived here as the solution
expression of potential function

& cosh[nk(z+ h)]
P2 =8 — 0 (nkh)

n=1

in (nX) (15)

by a set of base functions {cosh[nk(z+h)]/cosh(nkh) sin(nX),
n > 0}, where «, are unknown coefficients. Note that the
potential function ¢(X,z) defined by (15) automatically
satisfies the governing equation (8) and the bottom boundary
condition (9). The above expressions (14) and (15) are called
the solution expressions of ¢(X,z) and {(X), respectively,



which play important roles in the method of homotopy
analysis.

According to the solution expression (15) and the bound-
ary condition (9), we construct the initial approximation of
the potential function:

cosh [k(z + h)] .

(/50 (X> Z) = o, cosh (kh) 1n (X) > (16)

where &, is an unknown coefficient. We choose

o (X) =0. 17)

as the initial approximation of wave profile {(X) to simplify
the subsequent solution procedure [18, 20]. It should be
emphasized that higher order terms can hold the corrections
of the analytic series solutions due to the nonlinearity
inherent in (11) and (13) although the initial guess {,(X) is
zero.

3.2. Continuous Variation. The HAM is based on a kind
of continuous mapping of an initial approximation to the
exact solution through a series of deformation equations. For
simplicity, based on the nonlinear boundary condition (13)
and (11), we define the two following nonlinear operators ./,
and J//, as follows

N [@ (X, 2:9), 1 (X:9)]

,0°D(X,z;q) 0P (X,z;q)  OF
+g —w—
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p
2,00 (X q) 01 (X q)
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Ny (X q), @ (X,zq)]
O (X, z;
= w%*'lj*'gﬂ(xalﬂ
1[ 40" (X:q) ,0°1(X3q)
Z | DKt/ v ,
+P[ k oxi T\ 5 9
19)
where
[, aq>>2 <aq>>2
S - - 20
E 2[k<ax " 0z (20)

and g € [0, 1] is the embedding parameter of the HAM.
Here, it should be emphasized that, as mentioned by Liao
and Cheung and Tao et al. [14, 15], the HAM provides us
with extremely large freedom to choose the auxiliary linear
operators and the initial guess. Note that both linear terms
of ®(X, z;q) and linear terms of #(X; gq) are all contained in
(18). If we choose all linear terms, the subsequent iterative
procedure will become very complex. Fortunately, based on
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the HAM, we can completely forget the linear terms in (13)
and choose proper auxiliary linear operator of (X, z; q) by
means of the solution expression (15) which is obtained under
the physical considerations as

,0°0 (X,z3q) 0D (X,z9)

21
0X>2 0z

Z,[0(X%z9) =w

In particular, if the angular frequency w is given, we
can choose such an approximation based on the linear wave
theory to simplify the subsequent resolution of the nonlinear

PDEs as follows:
w =~ \/gk tanh (kh). (22)

So we simplify the auxiliary linear operator in (21) as follows:

RO (X,z59)

Z,[®(X,2;9)] = gk tanh (kh) e

(23)
0D (X, z;9)
9T

where #,[0] = 0. Note that, due to the weakly nonlinear
effects, the actual frequency w is often slightly different
from the linear dispersion relation w, = +/gktanh(kh). In
Section 4, w/w, = 1.01 is chosen so that the perturbation
theory is valid and corresponding results are highly accurate,
and then we can compare our results with those obtained by
the perturbation method.

Based on the linear operator of the wave profile function
7(X; q) in the nonlinear operator ./, for simplicity, we may
choose another auxiliary linear operator:

4 . 2 .
' (X%q) ' (X%q) in(X%q), @4

<, [’7 (X;Q)] = X4 0X2

where Z,[0] = 0.

We let ¢, be an nonzero convergence-control parameter.
It is noted that both ¢, and g in the HAM are auxiliary
parameters without any physical meaning. Instead of the
nonlinear PDEs (8), (9), (11), and (13), we reconstruct the so-
called zeroth-order deformation equations as follows:

2 0’ (X,2;9) . 0’ (X, 2;9) _

0, (-h<z<n(Xq),

0Xx? 0z2
(25)
M =0, (z=-h), (26)
0z
(1-9) 2, [@(X,2:9) - ¢ (X, 2)]
=gV [@(X,29),1(X59)],  (z2=n(X9)),
(27)
(1-q) %> [n(Xq) - (X)]
=qe /2 [1(X:q), @ (X, z9)],  (z2=n(Xq)).
(28)
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Then, from (27) and (28), two mapping functions (X, z; q)
and #(X; q) vary respectively continuously from their initial
approximation ¢y(X,z) and {,(X) to the exact solutions
¢(X, z) and {(X) of the original problem. The Taylor series
of ®(X, z;q) and y(X; q) at g = 0 are

D (X,2;9) = ¢y (X,2)+ ) ¢, (X,2)q", (29
m=1

n(X:q) = (X) + ) ¢, (X)q", (30)
m=1
where
19"
{bn (X,2).8,, 0} = o 3 (@ (X,29),1 (%59} -
(31)

Assume that ¢, is so properly chosen that the series in
(29) and (30) converge at g = 1; then we have the so-called
homotopy-series solutions as follows:

$(X.2) = O (X2 1) = ¢ (X,2) + ) $ (X,2),
m=1

(32)
(X)) =n(X 1) =)+ Y {, (X).
m=1
At the nth-order of approximations, we have
$(X2) =~ ¢y (X,2) + Y ¢, (X, 2),
" (33)

(X)) =G (X) + Y {, (X).
m=1

As shown later in the following section, the unknown
terms ¢,,(X, z) and {,,,(X) are governed by the linear PDEs
(34)-(36).

3.3. High-Order Deformation Equations. High-order defor-
mation equations for the unknown ¢,,(X, z), ,,(X) can be
derived directly from the zeroth-order deformation equa-
tions. Firstly, substituting the homotopy-Maclaurin series
(29) and (30) into the governing equation (25) and the
boundary condition in finite water depth (26) and then
equating the like-power of the embedding parameter g, we
have

k2 az(/)m (X> Z) az(pm (X) Z) _
+ =
ox? 0z2

0¢,, (X,z)
0z B

0, (-h<z<0),

0, (z=-h),

where m > 1.

Note that, (X, z; q) at the unknown surface z = 1(X; q)
may be expressed in terms of the Taylor expansion at z =
0 instead of z = #(X;q). The detailed derivation of the

expansion of ®(X, z;q) at the unknown surface is given in
Appendices (A.1)-(A.5). Upon the substitution of appropriate
series (A.5) and (30) into the boundary conditions (27) and
(28), we have two linear boundary conditions on z = 0 as
follows:

31 (¢m)|z=() = COA(I:n—l + Xmsm—l _Em’ (35)

d'¢,, &%,
gZ (Cm) = COAin—l + Xm ( dX41 + dX21 + Cm—l ’
(36)

where

B 0, m<1 (37)
Am =11 ms 1.

The detailed derivation of the above equations and the
expression for ¢,, and {,, are given in Appendix A. It should
be noted that (27) and (28) holds on the unknown boundary
z = 1(X; q), while (35) and (36) hold on z = 0. Furthermore,
the original nonlinear DPEs (1)-(5) are transferred into an
infinite number of linear decoupled high-order deformation
equations (34)-(36). Namely, given ¢,,_; and {,,_;, ¢,, and
(,, can be obtained easily by means of the inverse operators
of the right-hand sides of (35) and (36), respectively, and a
computer algebra system such as Mathematica. The resulting
expressions for ¢,, and {,, are presented to the second order
in the coming subsection.

3.4. First-Order and Second-Order Approximations. Substi-
tuting initial approximations (16) and (17) into (36), we can
get {;(X) using the inverse linear operator &, in (36) as
follows:

G (X) = }L [4dgc0 + 5003,1 + kzcoag)ltanh2 (hk)]

— ey 1 cos (X) (38)

1
+ 5 [%03,1 - kzcoag,ltanh2 (hk)] cos (2X).

But now the coefficient &, in the initial approximation
of ¢(X,z) in (16) is still unknown. So we introduce an
additional equation to relate the solutions with the wave
height:

¢y (mm) = (nm) = H, (39)

in which m is an even integer, » is an odd integer, and H is
the wave height to the first order based on the HAM. The
relation (39) for the wave height and its vertical displacement
can determine the solution of a, ;.

Further, in the analogous manner as for the first-order
approximation, by using the inverse linear operator Z; in
(35), it is easy to get the solution of ¢,(X,z), especially



by means of the symbolic computation software such as
Mathematica:

7
206,
cosh[k(h+2)] .
—_— X

cosh (kiy ")

Xo,1 =

¢ (X2) =0y,
(40)
) —H? + H*K*tanh? (hk)
16gkwc, [2 tanh (hk) — tanh (2hk)]

cosh 2k (h+2)] .
cosh (2kh) sin (2X).

We find the common solution ¢, (X, z) has one unknown
coefficient «; ; which can be determined by avoiding the
“secular” term sin(X) in ¢, (X, z). We note that all subsequent
functions occur recursively. Utilizing the linear equations
(35) and (36) to continue with the first-order approximations
we have

0§ (X) = By + Py cos (X) + B, , cos (2X)
+ 8,3 c08 (3X) + f3, 4 cos (4X),

¢, (X, z) = %1 cosh (kh) n (X)
cosh [2k (h + 2)] .
062,2 C()Sh—(Zkh) S (ZX) (41)
h [3k (h
%23 Cosco[sil (;k;)Z)] sin (3X)
h [4k (h
%24 COsco[si (ELkZ)Z)] sin (4X)
cosh [5k (h + 2)] sin (5X),

%25 cosh (5kh)

where a; ; is the jth unknown coefficient of ¢;(X,z) and
ﬁ,-,j is the jth unknown coefficient of {;(X). The detailed
expressions of these coefficients for ¢, and , are given in
Appendix B.

In order to obtain higher-order functions ¢,,(X, z) and
(,,(X), we need only to continue this approach. In principle,
we can acquire infinite-order solutions for our physical
model. It is also worthwhile to mention that these solutions
will retain model parameters and the convergence control
parameter ¢,.

3.5. Optimal Convergence-Control Parameter. If we fix all
model parameters in our approximate series solutions, there
is still an unknown convergence control parameter ¢, in
them, which is used to guarantee the convergence of our
approximation solutions. According to Liao [12], it is the
convergence control parameter ¢, that essentially differs the
HAM from all other analytic methods. And the optimal value
of ¢, is determined by the minimum of the total squared-

residual ", of our nonlinear problem, defined by

e =ef 4 el (42)
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FIGURE 1: Residual squares of log,e versus ¢,. Solid line: first-
order approximation; dashed line: third-order approximation;
dash-dotted line: fifth-order approximation; dash-dot-dotted line:
seventh-order approximation.
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FIGURE 2: Comparison of our present 3rd-order surface elevation
¢ with those obtained by the perturbation method. Solid line:
perturbation-series solution; dashed line: homotopy-series solution.

where
¢ AN ’
=1 M;(/Vl [¢(X,2),C(X)]|xiax) > )
¢ 1 5 ’
= T Mi:o(/l/2 [¢(X.2), 0 ()] xoiax) >

where ? and ef” are two residual square errors of boundary
conditions (27) and (28), respectively. M is the number of the
discrete points, and AX = /M. In this paper, we choose M =
10.
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FIGURE 3: PE. for (44) versus the water depth h for different plate
thicknesses d. Solid line: d = 0.001; dashed line: d = 0.005; dash-
dot-dotted line: d = 0.01.
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FIGURE 4: PE. for (44) versus the water depth A for different Young’s
moduli of the plate E. Solid line: E = 10%; dashed line: E = 10°;
dash-dot-dotted line: E = 10'.

Theorem 2.1 given by Liao in [I12] can guarantee the
rationality of (42). So we obtain the optimal convergence
control parameter ¢, by the minimum of the squared-residual
e,Tn, generally corresponding to de! /dc, = 0.

4. Results and Analysis

In order to show the convergence of the analytical series solu-
tion to our problems by means of the HAM, we consider the
casesof k = m/5m™, d = 0.01m, p, = 900kgm™, v = 0.33,
E=10"Nm™>2 h=5m,H = 0.1m, and w/w, = 1.01 and

TaBLE 1: The total residual square error &, for different approxima-
tion order m with ¢, = —0.18.

£T

m
3.497 x 107
3.404 x 107
3.700 x 107°
7.910 x 107°
4.803 x 1078

5.382 x 1071

T E

take these data hereinafter for computation unless otherwise
stated. The total residual square error €’ at several orders
of approximation versus the convergence-control parameter
¢ is shown in Figure L. It is found that 53;1 at every order
has the smallest values which corresponds to the optimal ¢,.
For example, as m = 7, the optimal ¢, = —0.18, and the
smallest value of 87T = 7910 x 107°. So, let the optimal
convergence-control parameter ¢, = —0.18, the total residual
square error &' decreases quickly as the order m increases, as
shown in Table 1. It is also found that £1T5 is down to 5.382 x
107" at the 15th-order of approximation, which indicates the
convergence of our series solutions. In this way, we ensure
that all our solutions are highly accurate.

Also, we compare our HAM solutions of waves propagat-
ing beneath an elastic plate floating on a fluid of finite depth
with those results obtained by perturbation techniques, as
shown in Figure 2. It should be noted that the perturbation-
series solution is derived by substituting the series expansions
(4.5) and (4.6) in [9] into the nonlinear PDEs (8)-(12), and
equating power of small parameter € leads to a succession
of linear PDEs, and then the linear PDEs can be solved by
the separation of variables. In Figure 2. It is seen that our
homotopy-series approximation of the surface elevation (
agrees well with the perturbation-series approximation, and
only slight derivations occur at the trough of the wave profile
as in Figure 2, which further indicates the validity of our
present theory about nonlinear hydroelastic waves beneath
a floating ice sheet.

We define quantities which measure how much energy
there is in the wave propagating beneath an infinite elastic
plate. Let P.E. be the mean potential density per unit length
in the X-axis [27]. In terms of the wave surface elevation
function, the energy density can be written as

PE - L rﬂ (X)dx (44)
E=os .

Different from all research objectives in [7-9], we firstly
consider in this paper the effect of water depth on nonlinear
hydroelastic waves beneath a floating elastic plate in detail.
The energy of hydroelastic waves for different Young’s moduli
of the plate E and different plate thicknesses /1 in various water
depths are as shown in Figures 3 and 4 and Tables 2 and 3,
respectively. We find that, when water depth & is about more
than 2, the hydroelastic waves traveling beneath the thickest
plate always contain the largest wave energy in different water



0.02

FIGURE 5: Variation of the plate deflection {(X) near the crest versus
X for different Young’s moduli of the plate E. Solid line: E = 10%
dashed line: E = 10%; dash-dot-dotted line: E = 10'°.
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FIGURE 6: Variation of the plate deflection {(X) near the trough
versus X for different Young’s moduli of the plate E. Solid line:
E = 10%; dashed line: E = 10°; dash-dot-dotted line: E = 10'°.

depths. And with an increasing Young’s modulus of the plate,
the wave energy becomes large too.

The effect of Young’s modulus E of the plate on the wave
elevation {(X) under a floating elastic plate is studied. Figures
5 and 6 show the differences in {(X) for E = 10%, 10°,
and 10" According to Figures 5 and 6, respectively, we can
see that the nonlinear hydroelastic response of the waves
becomes flatter at the crest and steeper at the trough due to
the larger value of Young’s modulus E. Finally, we consider
the impact the plate thickness d by increasing d from 0.001
to 0.01. In Figures 7 and 8, we show several displacements
{(X) with d = 0.001, d = 0.005, and d = 0.01, respectively. It
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FIGURE 7: Variation of the plate deflection {(X) near the crest versus
X for different plate thicknesses d. Solid line: d = 0.001; dashed line:
d = 0.005; dash-dot-dotted line: d = 0.01.
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FIGURE 8: Variation of the plate deflection {(X) near the trough
versus X for different plate thicknesses d. Solid line: d = 0.001;
dashed line: d = 0.005; dash-dot-dotted line: d = 0.01.

indicates that the results are very similar to the effects due to
different Young’s moduli E of the plate.

5. Conclusions

In this paper, the nonlinear hydroelastic waves propagating
beneath a two-dimensional infinite elastic plate floating on
a fluid of finite depth are investigated analytically by the
HAM. Mathematically, for a train of nonlinear hydroelastic
waves traveling at a constant velocity in a fluid of finite or
infinite depth, the PDEs in [7-9] were obtained by simply
eliminating the time-dependent terms from the kinematic
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TABLE 2: PE. for (44) with different plate thicknesses and various
water depths h.

L PE. PE. PE.

(d = 0.001) (d = 0.005) (d =0.01)
1 0.00067245 0.00100093 0.00040836

0.00031356 0.00055509 0.00069567

0.00030650 0.00053375 0.00074396
10 0.00030590 0.00053158 0.00074694
15 0.00030592 0.00053159 0.00074694
20 0.00030595 0.00053159 0.00074696
30 0.00030600 0.00053159 0.00074696
0 0.00030600 0.00053159 0.00074696

TaBLE 3: P.E. for (44) with different values of Young’s modulus of the
plate E and various water depths h.

PE. PE. PE.

(E=10% (E =10°) (E =10")
1 0.00076484 0.0009946 0.00040836

0.00038884 0.00054698 0.00069567

0.00030138 0.00047932 0.00074396
10 0.00028886 0.00046970 0.00074694
15 0.00028884 0.00046969 0.00074694
20 0.00028884 0.00046969 0.00074696
30 0.00028884 0.00046969 0.00074696
00 0.00028884 0.00046969 0.00074696

and dynamic boundary conditions on the unknown free
surface in the frame of reference moving with the wave.
Here, for a general case it should be noted that we construct
the PDEs by directly applying the traveling-wave method to
transfer the temporal differentiation into the spatial one in a
fixed Cartesian coordinate oxz. Furthermore, the convergent
homotopy-series solutions for the PDES are derived by the
HAM with the optimal convergence control parameter.

Physically, we study the effect of the water depth on the
nonlinear hydroelastic waves under an elastic plate in detail.
It is found that, in different water depths, the wave energy
density (P.E.) tends to become larger with an increasing
thickness of the sheet. The same conclusions are obtained in
various water depths by means of different values of Young’s
modulus of the plate. Additionally, the influences of Young’s
modulus and the thickness of the plate on the wave elevation
{(X) are investigated, respectively. As Young’s modulus of
the plate increases, the wave elevation becomes lower. And
the increasing thickness of the plate flattens the crest and
sharpens the trough of the wave profile. The results obtained
here demonstrate that Young’s modulus and the thickness of
the sheet have important effects on the energy and the profile
of nonlinear hydroelastic waves under an ice sheet floating on
a fluid of finite depth.

9
Appendices
A. The Detailed Derivation of (35) and (36)
and the Expressions for ¢, and (,,
Let
o0 \"  +o0 )
o' = <Z<ﬁ-q’> =Yt (A1)
i=1 i=n
For any z, we have a Maclaurin series as follows:
+00 1 an(/)
X,z)= ) ——= 2" A2
b (X, 2) ZO o | (A2)
For z = 5(X; q), it follows from (A.1) and (A.2) that
+00 1 an(p +00 .
X, — _ m . 1
$ (X11) ZO( e 0) (;un,lq )
(A3)
+00 )
= Zvjm,iql’
i=0
where
i 1 an¢
= — . A4
woi= 2 (5] ) (A4)
Thus we have, for z = 1(X; q),
+00 +00 /+00 )
O (X,m39) = Y ¢, (Xm)q" =) ( wm,iq’)q'"
m=0 m=0 \n=0
(A.5)
+00
=2 ond"
m=0
where
P = ZV/m—i,i' (A6)
i=0

Substituting the series expansions (A.1) and (A.5) into
the boundary conditions (27) and (28) and then equating
the like-power of the embedding parameter g, we have two
linear boundary conditions (35) and (36), respectively. And
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the explicit expressions for A S S,,» and Acmfl in these

m—-1>
two conditions are given by

m—1>

o
A(fnfl = w2 dX2 +g§0m

< (49 o — 49,
_wz<dx ax2 TP Tax

n=0

d
lm—l d§0 ng o o

Dk*d*¢,,_, . m,w? d*¢,,
p dx* p dx*°’

2
-3 [(G) e

(A7)

where

m
P = ZVm—i,i’
i=0

(A.8)

i 1 an+1¢m_i
Yim-ii = Z; ( ozl

n=0"""

> ‘un,i'
z=0

B. Expressions of the Coefficients

Bao = [H2 + gH’¢, + 16dgw’c

16w?c,
+ 16dg2w2cg - 4Hwcyo,
+ H*K*tanh® (hk) + gH K ¢,tanh® (hk)

_4Hk2wcooc1)1tanh2 (hk)] ,
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Br1 = ([H3p + 32ngpw2c0 tanh (hk)
+ 32Dng5w2c§ tanh (hk)
+ 329 Hkpw' ¢} tanh (hk)
~ 32dgHkpaw’c} tanh (hk)
B 64gkpw3c§ocL1 tanh (hk)
~ 16gHkpw’¢, tanh (2hk)
- 16Dng5w2c§ tanh (2hk)
— 16g*Hkpw’ ¢, tanh (2hk)
+ 16dgHkpw"c, tanh (2hk)
+ 32gkpw3c§oc1,1 tanh (2hk)
+ H’k p tanh (hk) tanh (2hk)
— H’Kk* ptanh’ (hk) tanh (2hk)
~H’K’ ptanh® (k)| )

-1
>

X ([3ngpw2c0 (2 tanh (hk) — tanh (2hk))])

1 dH®* gH* DH**
ﬁ2,2 = —* 2 + 2
13 52 208w 13pw

2 H
T
16w, 4w 52
gH*k’tanh® (hk) ~ DH?k®tanh? (hk)
208w? 13pw?
_ H?K*tanh’ (hk)
16w,

HK’a, ;tanh’ (hk)
+

4w

H2
" 8gk (2 tanh (k) — tanh (2/K))

- H’ktanh? (hk)
84 (2 tanh (hk) — tanh (2hk))’

B, = (H® - H’k*tanh® (hk)
— H’K? tanh (hk) tanh (2hk)
+H’k*tanh’ (hk) tanh (2hk))

X (2336gkw2c0 (2 tanh (hk) — tanh (2hk)))71,

B2,4 =0,
(B.1)
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ayy = ([H(-13H? (1 +29K) po’
— gk (gHK*p - 208 (DK'w" - dpa®) i} )
x tanh (2hk)
+ H*Kp tanh® (hk)
x (13 (1 +2gk*) * + g’k tanh (2hk) )
+ H’k*p tanh’ (hk)
x (-29°k — 13 (-1 + g) ’ tanh (2hk) )
+ k tanh (k)
x (416gw" (-DK" + dpw®) ¢ + H’kp
x (2g°k +13 (-1 + g) &’ tanh (2hk))
+Hkp (2g°k +13 (-1 + g)
xw” tanh (2hk))))])
x ([ -4160°c)
x (dg’k* + w’ gkpw
x (gH*K* (=1 + tanh® (hk))
x (25 + 27k*tanh? (hk))
—gk tanh (hk) — dg’k*tanh® (hk)))

-1
>

x (2tanh (hk) - tanh (2hk)) |)

1
%22 = T4 ok tanh (hk) + 2gk tanh (2hK)

y gH2k2+2DH2k4 dH*w Hay,
8w 13pw 26 2

_ gHK'a;;  2DH’K°tanh’ (hk)
4 13pw

+ L dH?K2w tanh? (k)
26
+ %szal,ltanhz (hk)

+ ngzocutanh2 (hk)

~ H’kw tanh® (k)
8g tanh (hk) — 4g tanh (2hk)

1

N H*w
8gk tanh (hk) — 4gk tanh (2hk)

H? tanh (2hk) (1 + k” tanh” (k) )
"~ 16w tanh (hk) — 8w tanh (2hk)

dgH?k (1 - k*tanh” (hk) )
" 8w tanh (hk) — 4w tanh (2hk)

+ (dgH?k tanh (hk) tanh (2hk)
X (—1 + k’tanh® (hk)))
x (4w tanh (hk) — 2w tanh (2hk)) ™"

—H’ tanh (2hk) (-1 + k*tanh® (k) )
16wg, tanh (hk) — 8wg, tanh (2hk)

H? tanh (k) (1 - K*tanh” (hk) tanh (2hk) )
" 8wc, tanh (hk) — 4wc, tanh (2hk)

H* (1 - k*tanh* (hk) )
" 128w3¢ tanh (hk) — 64w*c? tanh (2hk)

H*k tanh (hk) tanh (2hk) (-1 + k*tanh* (hk))
64w’c} tanh (hk) — 32w’c} tanh (2hk)

>

X3
B 1
 —9gk tanh (hk) + 3gk tanh (3hk)

X

[(gH*K" oy tanh? (k)
—9gH2k4(x1’1tanh4 (hk)) X (4160)260)_1
+(~gH’K* - gH* Koy, + gH’K"tanh? (hk)
+9gH2k2061’1tanh2 (hk))
X (416(0260)_1

5H’k tanh (hk)tanh (2hk)(1 - k*tanh® (hk))
2 (32wc, tanh (hk) — 16wc, tanh (2hk))

H’k (1 - K’tanh’ (hk) )
) (16wc, tanh (hk) — 8w, tanh (2hk))

+ (H’ktanh (hk) (- tanh (kk) — tanh (2hk)
+k*tanh® (hk)tanh (2hk)) )

x (2 (32gwe, tanh (hk)—16gwe, tanh (2hk))) ™
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+ (H’k tanh (hk) (- tanh (hk) — tanh (2hk)
+Kk*tanh” (hk)tanh (2hk) ))
x (2 (16gwe, tanh (hk)—8gwe, tanh (2hk))) ™
+(3H%) (4 (16gkwc,tanh (hk)
~8gkwe,tanh (2kk))) '],

*4

1
a —16gk tanh (hk) + 4gk tanh (4hk)

H*k (1 + k*tanh* (hk) — 2k*tanh® (hk))
4 (832w’¢} tanh (hk) — 416w3cZ tanh (2hk))

H’k tanh (hk)tanh (2hk)(~1+k’tanh® (hk))
2 (8w, tanh (hk) — 4wc, tanh (2hk))

x (H*k tanh (hk) tanh (2hk)
x (=1 - K'tanh" (hk) + 2k*tanh’ (hk)) )
x (4 (104w’ c] tanh (hk)

-1

—52w’c; tanh (2hK))) |,

a,s =0.
(B.2)
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