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We define a class of almost generalized cyclic (ψ, φ)-weak contractive mappings and discuss
the existence and uniqueness of fixed points for such mappings. We present some examples to
illustrate our results. Moreover, we state some applications of ourmain results in nonlinear integral
equations.

1. Introduction

Fixed point theory is a crucial tool in the analysis of nonlinear problems. Banach contraction
mapping principle [1] is the most known result in this direction: A self-mapping T : X → X

on a complete metric space (X, d) has a unique fixed point if there exists k ∈ [0, 1) such
that d(Tx, Ty) ≤ kd(x, y) for all x, y ∈ X. In this theorem, a self-mapping T is necessarily
continuous. Due to its importance to fixed point theory in nonlinear analysis, desired Banach
fixed point theorem have been heavily investigated by many authors (see, e.g., [2–15]). One
of the remarkable generalizations of the banach contraction mapping principle was reported
by Kirk et al. [16] via cyclic contraction. A mapping T : A ∪ B → A ∪ B is called cyclic if
T(A) ⊆ B and T(B) ⊆ A, whereA,B are nonempty subsets of a metric space (X, d). Moreover,
T is called cyclic contraction if there exists k ∈ (0, 1) such that d(Tx, Ty) ≤ kd(x, y) for all
x ∈ A and y ∈ B. Notice that although a contraction is continuous, cyclic contraction need
not to be. This is one of the important gains of this theorem. In this paper, the authors also
introduced the following notion.
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Definition 1.1 (see [16]). Let X be a nonempty set, p be a positive integer, and T : X → X be
a mapping. X =

⋃p

i=1Ai is said to be a cyclic representation of X with respect to T if

(i) Ai, i = 1, 2, . . . , p are nonempty closed sets,

(ii) T(A1) ⊆ A2, . . . , T(Ap−1) ⊆ Ap, T(Ap) ⊆ A1.

Following the paper in [16], a number of fixed point theorems on cyclic representation
of X with respect to a self-mapping T have appeared (see, e.g., [17–26]).

The concept of almost contractions were introduced by Berinde [27, 28]. It was shown
in [27] that any strict contraction, the Kannan [12] and Zamfirescu [29] mappings, as well
as a large class of quasicontractions, are all almost contractions. Almost contractions and
its generalizations were further considered in several works like [7, 30–37]. Recently, Ćirić
et al. [7] proved some fixed point results in ordered metric spaces using almost generalized
contractive condition, which is given in the following definition.

Definition 1.2. Let T : X → X be a self-mapping on a metric space (X, d). It is said to satisfy
almost generalized contractive condition if there exists k ∈ (0, 1) and L ≥ 0 such that

d
(
Tx, Ty

) ≤ kmax

{

d
(
x, y

)
, d(x, Tx), d

(
y, Ty

)
,
d
(
x, Ty

)
+ d

(
y, Tx

)

2

}

+ Lmin
{
d(x, Tx), d

(
y, Ty

)
, d

(
x, Ty

)
, d

(
y, Tx

)}
,

(1.1)

for all x, y ∈ X.

In this paper, we introduce a class of almost generalized cyclic (ψ, ϕ)-weak contractive
mappings and we investigate the existence and uniqueness of fixed points for almost
generalized cyclic (ψ, ϕ)-weak contractive type mappings. Our main result generalizes and
improves some well-known theorems in the literature (see, e.g., [16, 18, 19, 24, 26]). We state
some examples to illustrate our results. Furthermore, we apply our main result to analyze the
existence and uniqueness of solutions for a class of nonlinear integral equations.

2. Main Result

We start this section by defining two classes of real valued functions. Let Φ be the set of
functions ϕ : [0,∞) → [0,∞) satisfying the following conditions:

(Φ1) ϕ is lower semicontinuous;

(Φ2) ϕ−1({0}) = {0}.

We denote by Ψ the set of all continuous functions ψ : [0,∞) → [0,∞).
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Definition 2.1. Let (X, d) be a metric space. Let p be a positive integer and let A1, A2, . . . , Ap

be nonempty subsets of X and Y =
⋃p

i=1Ai. Let T : Y → Y be a mapping such that

(I) Y =
⋃p

i=1Ai is a cyclic representation of Y with respect to T ,

(II) there exist L ≥ 0, ψ ∈ Ψ and ϕ ∈ Φ such that

ψ
(
d
(
Tx, Ty

)) ≤ ψ
(
MT

(
x, y

)) − ϕ(MT

(
x, y

))

+ Lmin
{
d(x, Tx), d

(
y, Ty

)
, d

(
x, Ty

)
, d

(
y, Tx

)}
,

(2.1)

for all (x, y) ∈ Ai ×Ai+1, i = 1, 2, . . . , p (with Ap+1 = A1), where

MT

(
x, y

)
:= max

{

d
(
x, y

)
, d(Tx, x), d

(
Ty, y

)
,
d
(
x, Ty

)
+ d

(
y, Tx

)

2

}

. (2.2)

Then T is called an almost generalized cyclic (ψ, ϕ)-weak contractive mapping.

Remark 2.2. Taking in the above definition, p = 1, A1 = X, ψ(t) = t, and ϕ(t) = (1 − k)t,
where k ∈ (0, 1) is a constant, we obtain an almost generalized contractive condition. Then
any almost generalized contractive mapping is an almost generalized cyclic (ψ, ϕ)-weak
contractive mapping.

Our main result is the following.

Theorem 2.3. Let {Ai}pi=1 be nonempty closed subsets of a complete metric space (X, d) and Y =
⋃p

i=1Ai. Let T : Y → Y be an almost generalized cyclic (ψ, ϕ)-weak contractive mapping. Then T has
a unique fixed point that belongs to

⋂p

i=1Ai.

Proof. Let x0 ∈ A1 (such a point exists since A1 /= ∅). Define the sequence {xn} in X by

xn+1 = Txn, n = 0, 1, 2, . . . . (2.3)

We will prove that

lim
n→∞

d(xn, xn+1) = 0. (2.4)

If for some k, we have xk+1 = xk, then (2.4) follows immediately. So, we can suppose that
d(xn, xn+1) > 0 for all n. From the condition (I), we observe that for all n, there exists i =
i(n) ∈ {1, 2, . . . , p} such that (xn, xn+1) ∈ Ai ×Ai+1. Then, from the condition (II), we have

ψ(d(xn, xn+1)) ≤ ψ(MT (xn−1, xn)) − ϕ(MT (xn−1, xn)), n = 1, 2, . . . . (2.5)
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On the other hand, we have

MT (xn−1, xn)

= max
{

d(xn−1, xn), d(Txn−1, xn−1), d(Txn, xn),
d(xn−1, Txn) + d(xn, Txn−1)

2

}

= max
{

d(xn−1, xn), d(xn, xn−1), d(xn+1, xn),
d(xn−1, xn+1)

2

}

= max
{

d(xn−1, xn), d(xn+1, xn),
d(xn−1, xn+1)

2

}

= max{d(xn−1, xn), d(xn+1, xn)}.

(2.6)

Suppose thatMT (xn−1, xn) = d(xn+1, xn). Using (2.5), we obtain

ψ(d(xn, xn+1)) ≤ ψ(d(xn, xn+1)) − ϕ(d(xn, xn+1)), (2.7)

which implies that ϕ(d(xn, xn+1)) = 0. From condition (Φ2), we get that d(xn, xn+1) = 0, a
contradiction with our assumption d(xn, xn+1) > 0 for all n. Thus, we have MT (xn−1, xn) =
d(xn−1, xn), which implies that {d(xn, xn+1)} is a decreasing sequence of positive numbers.
Then there exists r ≥ 0 such that

lim
n→∞

d(xn, xn+1) = r. (2.8)

Letting n → ∞ in (2.5), using (2.8), the continuity of ψ and the lower semicontinuity of ϕ,
we obtain

ψ(r) ≤ ψ(r) − ϕ(r), (2.9)

which implies that ϕ(r) = 0, that is, r = 0. Thus, we proved (2.4).
Now, we will prove that {xn} is a Cauchy sequence in (X, d). Suppose that {xn} is not

a Cauchy sequence. Then there exists ε > 0 for which we can find two sequences of positive
integers {m(k)} and {n(k)} such that for all positive integers k,

n(k) > m(k) > k, d
(
xm(k), xn(k)

) ≥ ε, d
(
xm(k), xn(k)−1

)
< ε. (2.10)

Using (2.10) and the triangular inequality, we get

ε ≤ d
(
xn(k), xm(k)

)

≤ d
(
xm(k), xn(k)−1

)
+ d

(
xn(k)−1, xn(k)

)

< ε + d
(
xn(k), xn(k)−1

)
.

(2.11)
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Thus, we have

ε ≤ d(xn(k), xm(k)
)
< ε + d

(
xn(k), xn(k)−1

)
. (2.12)

Letting k → ∞ in the above inequality and using (2.4), we obtain

lim
k→∞

d
(
xn(k), xm(k)

)
= ε+. (2.13)

On the other hand, for all k, there exists j(k) ∈ {1, . . . , p} such that n(k) −m(k) + j(k) ≡ 1[p].
Then xm(k)−j(k) (for k large enough, m(k) > j(k)) and xn(k) lie in different adjacently labelled
sets Ai and Ai+1 for certain i ∈ {1, . . . , p}. Using (II), we obtain

ψ
(
d
(
Txm(k)−j(k), Txn(k)

)) ≤ ψ
(
MT

(
xm(k)−j(k), xn(k)

)) − ϕ(MT

(
xm(k)−j(k), xn(k)

))

+ Lmin
{
d
(
xm(k)−j(k), xm(k)−j(k)+1

)
, d

(
xn(k), xn(k)+1

)
,

d
(
xm(k)−j(k), xn(k)+1

)
, d

(
xn(k), xm(k)−j(k)+1

)}

(2.14)

for all k, that is,

ψ
(
d
(
xm(k)−j(k)+1, xn(k)+1

)) ≤ ψ
(
MT

(
xm(k)−j(k), xn(k)

)) − ϕ(MT

(
xm(k)−j(k), xn(k)

))

+ Lmin
{
d
(
xm(k)−j(k), xm(k)−j(k)+1

)
, d

(
xn(k), xn(k)+1

)
,

d
(
xm(k)−j(k), xn(k)+1

)
, d

(
xn(k), xm(k)−j(k)+1

)}
,

(2.15)

for all k. Now, we have

MT

(
xm(k)−j(k), xn(k)

)

= max

{

d
(
xm(k)−j(k), xn(k)

)
, d

(
xm(k)−j(k)+1, xm(k)−j(k)

)
, d

(
xn(k)+1, xn(k)

)
,

d
(
xm(k)−j(k), xn(k)+1

)
+ d

(
xn(k), xm(k)−j(k)+1

)

2

}

(2.16)

for all k. Using the triangular inequality, we get

∣
∣d
(
xm(k)−j(k), xn(k)

) − d(xn(k), xm(k)
)∣
∣

≤ d(xm(k)−j(k), xm(k)
)

≤
j(k)−1∑

l=0

d
(
xm(k)−j(k)+l, xm(k)−j(k)+l+1

)

≤
p−1∑

l=0

d
(
xm(k)−j(k)+l, xm(k)−j(k)+l+1

) −→ 0, as k −→ ∞ (from (2.4)),

(2.17)
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which implies from (2.13) that

lim
k→∞

d
(
xm(k)−j(k), xn(k)

)
= ε. (2.18)

Using (2.4), we have

lim
k→∞

d
(
xm(k)−j(k)+1, xm(k)−j(k)

)
= 0, (2.19)

lim
k→∞

d
(
xn(k)+1, xn(k)

)
= 0. (2.20)

Again, using the triangular inequality, we get

∣
∣d
(
xm(k)−j(k), xn(k)+1

) − d(xm(k)−j(k), xn(k)
)∣
∣ ≤ d(xn(k), xn(k)+1

)
. (2.21)

Letting k → ∞ in the above inequality, using (2.20) and (2.18), we get

lim
k→∞

d
(
xm(k)−j(k), xn(k)+1

)
= ε. (2.22)

Similarly, we have

∣
∣d
(
xn(k), xm(k)−j(k)+1

) − d(xm(k)−j(k), xn(k)
)∣
∣ ≤ d(xm(k)−j(k), xm(k)−j(k)+1

)
. (2.23)

Letting k → ∞, using (2.4) and (2.18), we obtain

lim
k→∞

d
(
xn(k), xm(k)−j(k)+1

)
= ε. (2.24)

Similarly, we have

lim
k→∞

d
(
xm(k)−j(k)+1, xn(k)+1

)
= ε. (2.25)

Now, it follows from (2.18)–(2.24) that

lim
k→∞

MT

(
xm(k)−j(k), xn(k)

)
= max

{
ε, 0, 0,

ε + ε
2

}
= ε,

lim
k→∞

min
{
d
(
xm(k)−j(k), xm(k)−j(k)+1

)
, d

(
xn(k), xn(k)+1

)
, d

(
xm(k)−j(k), xn(k)+1

)
,

d
(
xn(k), xm(k)−j(k)+1

)}
= min{0, 0, ε, ε} = 0.

(2.26)

Letting k → ∞ in (2.15), using (2.25), (2.26), the continuity of ψ and the lower semi-
continuity of ϕ, we obtain

ψ(ε) ≤ ψ(ε) − ϕ(ε), (2.27)
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which implies that ϕ(ε) = 0, that is, ε = 0, a contradiction with ε > 0. Then we deduce that
{xn} is a Cauchy sequence in the metric space (X, d).

Since (X, d) is complete, there exists x∗ ∈ X such that

lim
n→∞

xn = x∗. (2.28)

We will prove that

x∗ ∈
p⋂

i=1

Ai. (2.29)

From condition (I), and since x0 ∈ A1, we have {xnp}n≥0 ⊆ A1. Since A1 is closed, from (2.28),
we get that x∗ ∈ A1. Again, from the condition (I), we have {xnp+1}n≥0 ⊆ A2. Since A2 is
closed, from (2.28), we get that x∗ ∈ A2. Continuing this process, we obtain (2.29).

Now, we will prove that x∗ is a fixed point of T . Indeed, from (2.29), since for all n,
there exists i(n) ∈ {1, 2, . . . , p} such that xn ∈ Ai(n), Applying (II) with x = x∗ and y = xn, we
obtain

ψ(d(Tx∗, xn+1)) = ψ(d(Tx∗, Txn))

≤ ψ(MT (x∗, xn)) − ϕ(MT (x∗, xn))

+ Lmin{d(x∗, Tx∗), d(xn, xn+1), d(x∗, xn+1), d(xn, Tx∗)},
(2.30)

for all n. On the other hand, we have

MT (x∗, xn) = max
{

d(x∗, xn), d(x∗, Tx∗), d(xn, xn+1),
d(x∗, xn+1) + d(xn, Tx∗)

2

}

. (2.31)

Using (2.28), we obtain that

lim
n→∞

MT (x∗, xn) = d(x∗, Tx∗),

lim
n→∞

min{d(x∗, Tx∗), d(xn, xn+1), d(x∗, xn+1), d(xn, Tx∗)} = 0.
(2.32)

Letting n → ∞ in (2.30), using (2.32), the continuity of ψ and the lower semicontinuity of ϕ,
we get

ψ(d(x∗, Tx∗)) ≤ ψ(d(x∗, Tx∗)) − ϕ(d(x∗, Tx∗)), (2.33)

which implies that d(x∗, Tx∗) = 0, that is, x∗ is a fixed point of T .
Finally, we prove that x∗ is the unique fixed point of T . Assume that y∗ is another fixed

point of T , that is, Ty∗ = y∗. From the condition (I), this implies that y∗ ∈ ⋂p

i=1Ai. Then we
can apply (II) for x = x∗ and y = y∗. We obtain

ψ
(
d
(
x∗, y∗)) ≤ ψ(MT

(
x∗, y∗)) − ϕ(MT

(
x∗, y∗)). (2.34)
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Since x∗ and y∗ are fixed points of T , we can show easily that MT (x∗, y∗) = d(x∗, y∗). Then
we get

ψ
(
d
(
x∗, y∗)) ≤ ψ(d(x∗, y∗)) − ϕ(d(x∗, y∗)), (2.35)

which implies that d(x∗, y∗) = 0, that is, x∗ = y∗. Thus, we proved the uniqueness of the fixed
point.

3. Consequences

In this section, we derive some fixed point theorems from our main result given by Theorem
2.3.

If we take p = 1 and A1 = X in Theorem 2.3, then we get immediately the following
fixed point theorem.

Corollary 3.1. Let (X, d) be a complete metric space and T : X → X satisfies the following condition:
there exist L ≥ 0, ψ ∈ Ψ and ϕ ∈ Φ such that

ψ
(
d
(
Tx, Ty

)) ≤ ψ
(
MT

(
x, y

)) − ϕ(MT

(
x, y

))

+ Lmin
{
d(x, Tx), d

(
y, Ty

)
, d

(
x, Ty

)
, d

(
y, Tx

)}
,

(3.1)

for all x, y ∈ X. Then T has a unique fixed point.

An immediate consequence of Corollary 3.1 is the following fixed point theorem (see
Remark 2.2).

Corollary 3.2. Let (X, d) be a complete metric space and T : X → X satisfies the following condition:
there exist L ≥ 0 and k ∈ (0, 1) such that

d
(
Tx, Ty

) ≤ kMT

(
x, y

)
+ Lmin

{
d(x, Tx), d

(
y, Ty

)
, d

(
x, Ty

)
, d

(
y, Tx

)}
, (3.2)

for all x, y ∈ X. Then T has a unique fixed point.

Remark 3.3. Taking L = 0 in Corollary 3.1, we obtain Theorem 2.2 in [8]. Moreover, in
Corollary 3.1, it is not supposed that ψ is nondecreasing and ψ−1({0}) = {0}, as in [8].

Taking ψ(t) = t, ϕ(t) = (1−k)t, with k ∈ (0, 1), in Theorem 2.3, we derive the following
result.
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Corollary 3.4. Let {Ai}pi=1 be nonempty closed subsets of a complete metric space (X, d) and suppose
that T :

⋃p

i=1Ai →
⋃p

i=1Ai satisfies the following conditions (where Ap+1 = A1):

(i) T(Ai) ⊆ Ai+1 for 1 ≤ i ≤ p;

(ii) there exists a constant k ∈ (0, 1) such that

d
(
Tx, Ty

) ≤ kmax

{

d
(
x, y

)
, d(Tx, x), d

(
Ty, y

)
,
d
(
x, Ty

)
+ d

(
y, Tx

)

2

}

+ Lmin
{
d(x, Tx), d

(
y, Ty

)
, d

(
x, Ty

)
, d

(
y, Tx

)}
,

(3.3)

for all (x, y) ∈ (Ai,Ai+1), for 1 ≤ i ≤ p.

Then T has a unique fixed point that belongs to
⋂p

i=1Ai.

The following fixed point theorems established in [16, 25] are immediate consequences
of the above result.

Corollary 3.5. Let {Ai}pi=1 be nonempty closed subsets of a complete metric space (X, d) and suppose
that T :

⋃p

i=1Ai →
⋃p

i=1Ai satisfies the following conditions (where Ap+1 = A1):

(i) T(Ai) ⊆ Ai+1 for 1 ≤ i ≤ p;

(ii) there exists a constant k ∈ (0, 1) such that

d
(
Tx, Ty

) ≤ kd(x, y), (3.4)

for all (x, y) ∈ (Ai,Ai+1), for 1 ≤ i ≤ p.

Then T has a unique fixed point that belongs to
⋂p

i=1Ai.

Corollary 3.6. Let {Ai}pi=1 be nonempty closed subsets of a complete metric space (X, d) and suppose
that T :

⋃p

i=1Ai →
⋃p

i=1Ai satisfies the following conditions (where Ap+1 = A1):

(i) T(Ai) ⊆ Ai+1 for 1 ≤ i ≤ p;

(ii) there exists a constant k ∈ (0, 1) such that

d
(
Tx, Ty

) ≤ k

2
[
d
(
x, Ty

)
+ d

(
y, Tx

)]
, (3.5)

for all (x, y) ∈ (Ai,Ai+1), for 1 ≤ i ≤ p.

Then T has a unique fixed point that belongs to
⋂p

i=1Ai.
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Corollary 3.7. Let {Ai}pi=1 be nonempty closed subsets of a complete metric space (X, d) and suppose
that T :

⋃p

i=1Ai →
⋃p

i=1Ai satisfies the following conditions (where Ap+1 = A1):

(i) T(Ai) ⊆ Ai+1 for 1 ≤ i ≤ p;

(ii) there exists a constant k ∈ (0, 1) such that

d
(
Tx, Ty

) ≤ kmax
{
d(x, Tx), d

(
y, Ty

)}
, (3.6)

for all (x, y) ∈ (Ai,Ai+1), for 1 ≤ i ≤ p.

Then T has a unique fixed point that belongs to
⋂p

i=1Ai.

Corollary 3.8. Let {Ai}pi=1 be nonempty closed subsets of a complete metric space (X, d) and suppose
that T :

⋃p

i=1Ai →
⋃p

i=1Ai satisfies the following conditions (where Ap+1 = A1):

(i) T(Ai) ⊆ Ai+1 for 1 ≤ i ≤ p;

(ii) there exist a1, a2, a3, a4 > 0 with a1 + a2 + a3 + a4 < 1 such that

d
(
Tx, Ty

) ≤ a1d
(
x, y

)
+ a2d(Tx, x) + a3d

(
Ty, y

)
+ a4

[
d
(
x, Ty

)
+ d

(
y, Tx

)

2

]

, (3.7)

for all (x, y) ∈ (Ai,Ai+1), for 1 ≤ i ≤ p.

Then T has a unique fixed point that belongs to
⋂p

i=1Ai.

Remark 3.9. Taking p = 1 and A1 = X, we get

(i) from Corollary 3.5, the Banach contraction principle [1];

(ii) from Corollary 3.6, Kannan’s fixed point theorem [12];

(iii) from Corollary 3.7, Bianchini’s fixed point theorem [2] (see also [3]);

(iv) from Corollary 3.8, Hardy and Rogers fixed point theorem [9].

Now, we derive a fixed point result for cyclic mappings satisfying a contractive
condition of integral type.

Denote by Λ the set of functions α : [0,∞) → [0,∞) satisfying the following hy-
potheses:

(Λ1) α is a Lebesgue integrable mapping on each compact subset of [0,∞);

(Λ2) for any ε > 0, we have
∫ε
0 α(s) ds > 0.
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We have the following result.

Corollary 3.10. Let {Ai}pi=1 be nonempty closed subsets of a complete metric space (X, d) and suppose
T :

⋃p

i=1Ai →
⋃p

i=1Ai satisfies the following conditions (where Ap+1 = A1):

(i) T(Ai) ⊆ Ai+1 for 1 ≤ i ≤ p;
(ii) there exist L ≥ 0, α, β ∈ Λ such that

∫d(Tx,Ty)

0
α(s)ds ≤

∫MT (x,y)

0
α(s) ds −

∫MT (x,y)

0
β(s) ds

+ Lmin
{
d(x, Tx), d

(
y, Ty

)
, d

(
x, Ty

)
, d

(
y, Tx

)}
,

(3.8)

for all (x, y) ∈ (Ai,Ai+1), for 1 ≤ i ≤ p.
Then T has a unique fixed point that belongs to

⋂p

i=1Ai.

Proof. It follows immediately from Theorem 2.3 by observing that the functions ψ(t) =
∫ t
0 α(s)ds and ϕ(t) =

∫ t
0 β(s)ds belong to Ψ.

Taking L = 0 in Corollary 3.10, we obtain the following result.

Corollary 3.11. Let {Ai}pi=1 be nonempty closed subsets of a complete metric space (X, d) and suppose
T :

⋃p

i=1Ai →
⋃p

i=1Ai satisfies the following conditions (where Ap+1 = A1):

(i) T(Ai) ⊆ Ai+1 for 1 ≤ i ≤ p;
(ii) there exist α, β ∈ Λ such that

∫d(Tx,Ty)

0
α(s)ds ≤

∫MT (x,y)

0
α(s)ds −

∫MT (x,y)

0
β(s)ds, (3.9)

for all (x, y) ∈ (Ai,Ai+1), for 1 ≤ i ≤ p.
Then T has a unique fixed point that belongs to

⋂p

i=1Ai.

4. Some Examples

In this section, we give some examples to illustrate our obtained results.

Example 4.1. Let X = [0, 1] be endowed with the standard metric d(x, y) = |x − y| for all
x, y ∈ X. Consider the closed subsets A1 and A2 defined by A1 = [0, 1/4] and A2 = [1/4, 1].
Define the mapping T : X → X by

Tx =

⎧
⎪⎨

⎪⎩

1
4

ifx ∈ [0, 1),

0 ifx = 1.
(4.1)

Clearly, we have T(A1) ⊂ A2 and T(A2) ⊂ A1.
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Now, let (x, y) ∈ A1 ×A2. We distinguish two cases.

Case 1. If y = 1. In this case, we have

d
(
Tx, Ty

)
=
∣
∣Tx − Ty∣∣

=
∣
∣
∣
∣
1
4
− 0

∣
∣
∣
∣

=
1
4
=

1
2
· 1
2

≤ 1
2
d
(
y, Ty

)

≤ 1
2
MT

(
x, y

)

= MT

(
x, y

) − 1
2
MT

(
x, y

)
.

(4.2)

Define the functions ψ, ϕ : [0,∞) → [0,∞) by

ψ(t) = t, ϕ(t) =
t

2
, ∀t ≥ 0. (4.3)

Then we have

ψ
(
d
(
Tx, Ty

)) ≤ ψ(MT

(
x, y

)) − ϕ(MT

(
x, y

))
. (4.4)

Case 2. If y /= 1. In this case, we have d(Tx, Ty) = 0, so inequality (4.4) is satisfied.
Similarly, if (x, y) ∈ A2 ×A1, we can show that (4.4) is satisfied.
Thus, we checked that all conditions of Theorem 2.3 are satisfied (with p = 2). We

deduce that T has a unique fixed point x∗ ∈ A1 ∩A2 = {1/4}.

Example 4.2. Let X = [−π,π] be endowed with the standard metric d(x, y) = |x − y| for all
x, y ∈ X. Consider the closed subsets A1 and A2 defined by A1 = [0, π] and A2 = [−π, 0].
Define the mapping T : X → X by

Tx =

⎧
⎨

⎩

−1
3
x

∣
∣
∣
∣cos

(
1
x

)∣
∣
∣
∣ ifx ∈ [−π, 0) ∪ (0, π],

0 ifx = 0.
(4.5)

Clearly, we have T(A1) ⊂ A2 and T(A2) ⊂ A1.
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Now, let (x, y) ∈ (A1 ×A2)with x /= 0 and y /= 0. We have

d
(
Tx, Ty

)
=
∣
∣Tx − Ty∣∣

=
∣
∣
∣
∣−

1
3
x

∣
∣
∣
∣cos

(
1
x

)∣
∣
∣
∣ +

1
3
y

∣
∣
∣
∣cos

(
1
y

)∣
∣
∣
∣

∣
∣
∣
∣

=
1
3

∣
∣
∣
∣|x|

∣
∣
∣
∣cos

(
1
x

)∣
∣
∣
∣ +

∣
∣y

∣
∣
∣
∣
∣
∣cos

(
1
y

)∣
∣
∣
∣

∣
∣
∣
∣

≤ 1
3
(|x| + ∣

∣y
∣
∣
)
.

(4.6)

On the other hand, we have

|x| = x ≤ x +
1
3
x

∣
∣
∣
∣cos

(
1
x

)∣
∣
∣
∣ =

∣
∣
∣
∣x +

1
3
x

∣
∣
∣
∣cos

(
1
x

)∣
∣
∣
∣

∣
∣
∣
∣ = d(x, Tx),

∣
∣y

∣
∣ = −y ≤ −y +

1
3

∣
∣
∣
∣y cos

(
1
y

)∣
∣
∣
∣ = −y − 1

3
y

∣
∣
∣
∣cos

(
1
y

)∣
∣
∣
∣ ≤

∣
∣
∣
∣y +

1
3
y

∣
∣
∣
∣cos

(
1
y

)∣
∣
∣
∣

∣
∣
∣
∣ = d

(
y, Ty

)
.

(4.7)

Then we have

d
(
Tx, Ty

) ≤ 2
3
max

{
d(x, Tx), d

(
y, Ty

)} ≤ 2
3
MT

(
x, y

)
. (4.8)

Consider the functions ψ, ϕ : [0,∞) → [0,∞) defined by

ψ(t) = t, ϕ(t) =
t

3
, ∀t ≥ 0. (4.9)

We have

ψ
(
d
(
Tx, Ty

)) ≤ ψ(MT

(
x, y

)) − ϕ(MT

(
x, y

))
. (4.10)

Moreover, we can show that the above inequality holds if x = 0 or y = 0.
Now, all conditions of Theorem 2.3 are satisfied (with p = 2), we deduce that T has a

unique fixed point x∗ ∈ A1 ∩A2 = {0}.

5. An Application

In this section, we apply the result given by Theorem 2.3 to study the existence and
uniqueness of solutions to a class of nonlinear integral equations.

We consider the nonlinear integral equation

u(t) =
∫1

0
k(t, s, u(s))ds, ∀t ∈ [0, 1], (5.1)

where k : [0, 1] × [0, 1] × R → R is a continuous function.
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Let X = C([0, 1]) be the set of real continuous functions on [0, 1]. We endow X with
the following standard metric:

d∞(u, v) = max
t∈[0,1]

|u(t) − v(t)|, ∀u, v ∈ X. (5.2)

It is well known that (X, d∞) is a complete metric space. Let (α, β) ∈ X2, let (α0, β0) ∈ R
2 such

that

α0 ≤ α ≤ β ≤ β0. (5.3)

We suppose that for all t ∈ [0, 1], we have

α(t) ≤
∫1

0
k
(
t, s, β(s)

)
ds, (5.4)

β(t) ≥
∫1

0
k(t, s, α(s))ds. (5.5)

We suppose that for all t, s ∈ [0, 1], k(t, s, ·) is a decreasing function, that is,

x, y ∈ R, x ≥ y =⇒ k(t, s, x) ≤ k(t, s, y). (5.6)

Finally, we suppose that for all t, s ∈ [0, 1], for all x, y ∈ R with x ≤ β0 and y ≥ α0 or x ≥ α0
and y ≤ β0,

∣
∣k(t, s, x) − k(t, s, y)∣∣ ≤ ξ(∣∣x − y∣∣), (5.7)

where ξ : [0,∞) → [0,∞) is continuous nondecreasing and ϕ : t �→ t − ξ(t) belongs to Φ.
Now, define the set

W =
{
u ∈ C([0, 1]) : α ≤ u ≤ β}. (5.8)

We have the following result.

Theorem 5.1. Under the assumptions (5.3)–(5.7), Problem (5.1) has one and only one solution u∗ ∈
W.

Proof. Define the closed subsets of X, A1, and A2 by

A1 =
{
u ∈ X : u ≤ β},

A2 = {u ∈ X : u ≥ α}.
(5.9)
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Define the mapping T : X → X by

Tu(t) =
∫1

0
k(t, s, u(s))ds, ∀t ∈ [0, 1]. (5.10)

We will prove that

T(A1) ⊆ A2, T(A2) ⊆ A1. (5.11)

Let u ∈ A1, that is,

u(s) ≤ β(s), ∀s ∈ [0, 1]. (5.12)

Using condition (5.6), we obtain that

k(t, s, u(s)) ≥ k(t, s, β(s)), ∀t, s ∈ [0, 1]. (5.13)

The above inequality with condition (5.4) imply that

∫1

0
k(t, s, u(s))ds ≥

∫1

0
k
(
t, s, β(s)

)
ds ≥ α(t), (5.14)

for all t ∈ [0, 1]. Then we have Tu ∈ A2.
Similarly, let u ∈ A2, that is,

u(s) ≥ α(s), ∀s ∈ [0, 1]. (5.15)

Using condition (5.6), we obtain that

k(t, s, u(s)) ≤ k(t, s, α(s)), ∀t, s ∈ [0, 1]. (5.16)

The above inequality with condition (5.5) imply that

∫1

0
k(t, s, u(s))ds ≤

∫1

0
k(t, s, α(s))ds ≤ β(t), (5.17)

for all t ∈ [0, 1]. Then we have Tu ∈ A1. Finally, we deduce that (5.11) holds.
Now, let (u, v) ∈ A1 ×A2, that is, for all t ∈ [0, 1],

u(t) ≤ β(t), v(t) ≥ α(t). (5.18)

This implies from condition (5.3) that for all t ∈ [0, 1],

u(t) ≤ β0, v(t) ≥ α0. (5.19)
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Now, using condition (5.7), we can write that for all t ∈ [0, 1], we have

|Tu − Tv|(t) ≤
∫1

0
|k(t, s, u(s)) − k(t, s, v(s))|ds

≤
∫1

0
ξ(|u(s) − v(s)|)ds

≤ ξ(d∞(u, v))
(
since ξ is nondecreasing

)

≤ ξ(MT (u, v)).

(5.20)

This implies that

d∞(Tu, Tv) ≤ ξ(MT (u, v)) =MT (u, v) − ϕ(MT (u, v)). (5.21)

Using the same technique, we can show that the above inequality holds also if we take (u, v) ∈
A2 ×A1.

Now, all the conditions of Theorem 2.3 are satisfied (with ψ(t) = t and L = 0), we
deduce that T has a unique fixed point u∗ ∈ A1 ∩ A2 = W, that is, u∗ ∈ W is the unique
solution to (5.1).
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