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Thematrix expression and relationships among several definitions of Boolean derivatives are given
by using the Cheng product. We introduce several definitions of Boolean derivatives. By using the
Cheng product, the matrix expressions of Boolean derivative are given, respectively. Furthermore,
the relationships among different definitions are presented. The logical calculation is converted
into matrix product. This helps to extend the application of Boolean derivative. At last, an example
is given to illustrate the main results.

1. Introduction

Boolean algebra was first proposed by George Bole in 1847. It is basic to many aspects of
computing. Boolean calculus was first put forward by Daniell in [1]. From then on, great
interest has been drawn, and many papers have come out; see [2–5] and references therein.
Some forty years after the Boolean calculus was proposed, Boolean derivative was introduced
in [6, 7] and applied to switching theory. From then on, Boolean derivative has developed
quickly and has been applied in many fields; see [4, 8–13] and references therein. The
application of Boolean derivative contains analysis of random Boolean networks [10], design
of discrete event systems [11], and cellular automata [12]. Especially, Boolean derivative is
widely used in damage spreading and Lyapunov exponents [13] in cellular automata.

Recently, the semitensor product or Cheng product of matrices is proposed and it is
successfully applied to express and analyze the Boolean networks. The biggest advantage
using this new tool is that it can convert a logical system into a classic discrete dynamical
system [14]. After the conversation, the calculation can be easily achieved by the Matlab
toolbox. However, the logical calculation is hard to realize before this new tool comes
out. It has been applied to present many properties of Boolean networks, such as the
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controllability and observability [15, 16], stabilization [17], and realization of Boolean
networks [18].

There are several definitions of Boolean derivatives. In this paper, the definitions can
be found in [19–21].

The Cheng product is the main tool in the present paper. We considered several
definitions of Boolean derivatives. By using the Cheng product, formulas for calculating
the Boolean derivatives are provided, and the relationships among different definitions of
Boolean derivatives are given.

The rest of the paper is organized as follows. Section 2 introduces some fundamental
definitions and some notations used in the paper. In Section 3, several definitions of Boolean
derivatives are given, and the relationships among them are presented by using the Cheng
product. In Section 4, an example is given to illustrate the main results.

2. Preliminary

The semitensor product, that is, Cheng product is the crucial tool in the present paper. The
matrix product is assumed to be the semitensor product in the following discussion. In most
cases, the symbol � is omitted. A review of basic concepts and notations will be given [14] as
follows.

(1) D2 := {0, 1}.
(2) Δn := {δ1

n, . . . , δ
n
n}, where δk

n denotes the kth column of the identity matrix In.

(3) Let Mn×s denote the set of n × s matrices. Assume a matrix M = [δj1
n , δ

j2
n , . . . , δ

js
n ] ∈

Mn×s, that is, its columns, Col(M) ⊂ Δn.M is called a logical matrix. We denote it as
M = δn[j1, j2, . . . , js] for simplification. The set of n ×m logical matrices is denoted
by Ln×m.

(4) Let X be a row vector of dimension np, and let Y = [y1, y2, . . . , yp]
T be a column

vector of dimension p. Then, we splitX into p equal-size blocks asX1, . . . , Xp, which
are 1 × n rows. Define the semitensor product, denoted by �, as

X � Y =
p∑

i=1

Xiyi ∈ Rn,

YT
� XT =

p∑

i=1

yi

(
Xi
)T ∈ Rn.

(2.1)

(5) LetM ∈ Mm×n andN ∈ Mp×q. If n is a factor of p or p is a factor of n, thenC = M�N
is called the semitensor product of M and N, where C consists of m × q blocks as
C = (Cij), and

Cij = Mi
� Nj, i = 1, 2, . . . , m, j = 1, 2, . . . , q, (2.2)

where Mi = Rowi(M) denotes the ith row of the matrix M, and Nj = Colj(N)
denotes the jth column of the matrix N.
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(6) To use a matrix expression, we identify 1 ∼ δ1
2, 0 ∼ δ2

2. Using this transformation, a
logical function f : Dk → D becomes a function f : Δk

2 → Δ2.

(7) Consider a fundamental unary logical function: Negation, ¬P and five fundamental
binary logical functions: Disjunction, P ∨ Q; Conjunction, P ∧ Q; Conditional,
P → Q; Biconditional, P ↔ Q; Exclusive OR, P∨Q. Their structure matrices are
as follows:

M¬ = δ2[2, 1]; M∨ = δ2[1, 1, 1, 2]; M∧ = δ2[1, 2, 2, 2];

M→ = δ2[1, 2, 1, 1]; M↔ = δ2[1, 2, 2, 1]; M⊕ := M∨ = δ2[2, 1, 1, 2].

(2.3)

(8) Given a logical function f(x1, x2, . . . , xn), there exists a unique 2 × 2n matrix Mf ,
called the structure matrix, such that

f(x1, x2, . . . , xn) = Mfx, (2.4)

where x = �
n
i=1xi ∈ Δ2n .

(9) Let x ∈ Rt and A is a given matrix, then xA = (It ⊗A)x.

3. Main Results

In this section, we will introduce several different definitions of Boolean derivatives. Using
the Cheng product, we successfully convert the logical expression into the matrix expression.
In addition, the relationships among different definitions of Boolean derivatives are obtained.

In the following, we will introduce some definitions of Boolean derivatives for the
logical function f(x1, x2, . . . , xn).

Definition 3.1 (see [19]). One gets that

∂f

∂xj
= f
(
x1, . . . , xj , . . . , xn

) ⊕ f
(
x1, . . . , xj ⊕ 1, . . . , xn

)
, (3.1)

where P ⊕Q denotes the “Exclusive OR” in logical calculation.
This definition has been proposed for a long time, and it can also be described as

∂f /∂xj = f(x1, . . . , xj−1, 0, xj+1, . . . , xn) ⊕ f(x1, . . . , xj−1, 1, xj+1, . . . , xn).

Definition 3.2 (see [21]). Let b be an n-variable vector and b = ei1 ⊕ ei2 ⊕ · · · ⊕ eik , i1, . . . , ik ∈
{1, 2, . . . , n}, i1 < i2 < · · · < ik, e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , and en =
(0, 0, . . . , 0, 1), define

∂bf(x) = f(x) ⊕ f(x ⊕ b)

= f(x1, . . . , xi1 , . . . , xik , . . . , xn) ⊕ f(x1, . . . , xi1 ⊕ 1, . . . , xik ⊕ 1, . . . , xn).
(3.2)

Remark 3.3. It is clear that Definition 3.2 is a generalization of Definition 3.1. If k = 1, that is,
b = ei1 , Definition 3.2 then degenerates to Definition 3.1.
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Definition 3.4 (see [19]). Therefore,

∂f

∂+xj
=
(
xj ⊕ f(x)

) ∂f
∂xj

,

∂f

∂−xj
=
(
xj ⊕ f(x)

) ∂f
∂xj

.
(3.3)

Remark 3.5. The present Definition 3.4 is called the directional Boolean derivative sometimes.
This is meaningful. It considered the change in the arguments increase, decrease, or remain
constant.

Let f(x) = f(x1, . . . , xn) = Mfx. Then, according to the definitions of the Boolean
derivatives, we obtain the following representations:

∂f

∂xj
= f
(
x1, . . . , xj , . . . , xn

) ⊕ f
(
x1, . . . , xj ⊕ 1, . . . , xn

)

= Mfx ⊕Mfx1 · · ·M¬xj · · ·xn

= M⊕MfxMfx1 · · ·M¬xj · · ·xn

= M⊕MfxMf(I2j−1 ⊗M¬)x

= M⊕Mf

[
I2n ⊗

(
Mf(I2j−1 ⊗M¬)

)]
Φnx,

∂bf = f(x) ⊕ f(x ⊕ b)

= f(x1, . . . , xi1 , . . . , xik , . . . , xn) ⊕ f(x1, . . . , xi1 ⊕ 1, . . . , xik ⊕ 1, . . . , xn)

= Mfx ⊕Mfx1 · · ·M¬xi1 · · ·M¬xik · · ·xn

= M⊕MfxMf(I2i1−1 ⊗M¬)(I2i2−1 ⊗M¬) · · · (I2ik−1 ⊗M¬)x1 · · ·xn

= M⊕MfxMf

ik∏

i=i1

(I2i−1 ⊗M¬)x

= M⊕Mf

[
I2n ⊗

(
Mf

ik∏

i=i1

(I2i−1 ⊗M¬)

)]
Φnx,

(3.4)

where Φn is the power-reducing matrix defined in [14].
In the following, we will discuss the relationships among the different definitions of

Boolean derivatives by using the Cheng product.
First, we give a Lemma that will be used in the proof of Theorem 3.7.
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Lemma 3.6. Assume that a, b ∈ Δ2, then (a ⊕ b) ∨ (a ⊕ b) = δ1
2 .

Proof. One assumes that

(a ⊕ b) ∨ (a ⊕ b) = MdM⊕abM⊕ab

= MdM⊕M¬abM⊕ab

= MdM⊕M¬(I4 ⊗M⊕)(ab)
2

= MdM⊕M¬(I4 ⊗M⊕)M22
r ab,

(3.5)

where

M4
r =

⎛
⎜⎜⎜⎜⎜⎜⎝

δ1
4 04 · · · 04

04 δ2
4 · · · 04

...
...

. . .
...

04 04 · · · δ4
4

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.6)

is the power-reducing matrix defined in [14].
Throughout directional computation, we get that

(a ⊕ b) ∨ (a ⊕ b) = δ1
2 . (3.7)

This completes the proof.

Next, two Theorems are given to illustrate the relationships among the different
definitions. Theorem 3.7 shows the relationships of Definitions 3.1 and 3.4; Theorem 3.8 states
the relationships between Definitions 3.1 and 3.2.

Theorem 3.7. One gets that

∂f

∂+xj
∨ ∂f

∂−xj
=

∂f

∂xj
. (3.8)

Proof. Therefore,

∂f

∂+xj
∨ ∂f

∂−xj
=
(
xj ⊕ f(x)

) ∂f
∂xj

∨ (xj ⊕ f(x)
) ∂f
∂xj

=
(
xj ⊕ f(x)

) ∨ (xj ⊕ f(x)
) ∂f
∂xj

.

(3.9)
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According to Lemma 3.6, one obtains that

∂f

∂+xj
∨ ∂f

∂−xj
=

∂f

∂xj
. (3.10)

This completes the proof.

Theorem 3.8. Since,

∂

∂x1

(
∂

∂x2

(
· · ·
(
∂f(x)
∂xk

)))

=
⊕

1≤l≤k
j1<···<jl

j1,...,jl∈{i1,i2,...,ik}

∂j1,...,jl f(x)

= M2k−1
⊕

∏

1≤l≤k
j1<···<jl

j1,...,jl∈{i1,i2,...,ik}

MfxMf(I2j1−1 ⊗M¬) · · · (I2jl−1 ⊗M¬)x

= M2k−1
⊕

∏

1≤l≤k
j1<···<jl

j1,...,jl∈{i1,i2,...,ik}

Mf

[
I2n ⊗

(
Mf(I2j1−1 ⊗M¬) · · · (I2jl−1 ⊗M¬)

)]
Φnx.

(3.11)

Proof. We prove the statement by induction on k.

(1) The formula is true for k = 1, 2.
For k = 1, it is obviously true.
For k = 2:

∂

∂x1

(
∂

∂x2

)
=

∂

∂x1

(
f(x) ⊕ f(x ⊕ ei2)

)

= f(x) ⊕ f(x ⊕ ei2) ⊕ f(x ⊕ ei1) ⊕ f(x ⊕ ei2 ⊕ ei1)

= M3
⊕MfxMf(I2i2−1 ⊗M¬)xMf(I2i1−1 ⊗M¬)xMf(I2i1−1M¬)(I2i2−1 ⊗M¬)x.

(3.12)

While,

⊕

1≤l≤k
j1<···<jl

j1,...,jl∈{i1,i2,...,ik}

∂j1,...,jl f(x)

= ∂i1f(x) ⊕ ∂i2f(x) ⊕ ∂i1,i2f(x)

= f(x) ⊕ f(x ⊕ ei1) ⊕ f(x) ⊕ f(x ⊕ ei2) ⊕ f(x) ⊕ f(x ⊕ ei1 ⊕ ei2)

= f(x) ⊕ f(x ⊕ ei1) ⊕ f(x ⊕ ei2) ⊕ f(x ⊕ ei1 ⊕ ei2)

= M3
⊕MfxMf(I2i1−1 ⊗M¬)xMf(I2i1−1 ⊗M¬)xMf(I2i1−1M¬)(I2i2−1 ⊗M¬)x.

(3.13)

Thus, it’s true for k = 1, 2.
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Assume that the statement is true for k = m:

∂

∂x1

(
∂

∂x2

(
· · ·
(
∂f(x)
∂xm

)))

=
⊕

1≤l≤m
j1<···<jl

j1,...,jl∈{i1,i2,...,im}

∂j1,...,jl f(x)

= M2m−1
⊕

∏

1≤l≤m
j1<···<jl

j1,...,jl∈{i1,i2,...,im}

MfxMf(I2j1−1 ⊗M¬) · · · (I2jl−1 ⊗M¬)x

= M2m−1
⊕

∏

1≤l≤m
j1<···<jl

j1,...,jl∈{i1,i2,...,im}

Mf

[
I2n ⊗

(
Mf(I2j1−1 ⊗M¬) · · · (I2jl−1 ⊗M¬)

)]
Φnx.

(3.14)

For k = m + 1,

∂

∂x1

(
∂

∂x2

(
· · ·
(
∂f(x)
∂xm+1

)))
=

∂

∂xm+1

(
∂

∂x1

(
· · ·
(
∂f(x)
∂xm

)))

=
(

∂

∂x1

(
· · ·
(
∂f(x)
∂xm

)))
⊕
(

∂

∂x1

(
· · ·
(
∂f(x ⊕ eim+1)

∂xm

)))
.

(3.15)

In addition,

(
∂

∂x1

(
· · ·
(
∂f(x ⊕ eim+1)

∂xm

)))

=
⊕

1≤l≤m
j1<···<jl

j1,...,jl∈{i1,i2,...,im}

∂j1,...,jl f(x ⊕ eim+1)

=
⊕

1≤l≤m
j1<···<jl

j1,...,jl∈{i1,i2,...,im}

f(x ⊕ eim+1) ⊕ f
(
x ⊕ ej1 ⊕ · · · ⊕ ejl ⊕ eim+1

)

= M2m−1
⊕

∏

1≤l≤m
j1<···<jl

j1,...,jl∈{i1,i2,...,im}

{
Mf(I2im+1−1 ⊗M¬)xMf(I2j1−1 ⊗M¬) · · · (I2jl−1 ⊗M¬)(I2im+1−1 ⊗M¬)x

}
.

(3.16)
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Thus,

∂

∂x1

(
∂

∂x2

(
· · ·
(
∂f(x)
∂xm+1

)))

=
∂

∂xm+1

(
∂

∂x1

(
· · ·
(
∂f(x)
∂xm

)))

=
(

∂

∂x1

(
· · ·
(
∂f(x)
∂xm

)))
⊕
(

∂

∂x1

(
· · ·
(
∂f(x ⊕ eim+1)

∂xm

)))

= M2m−1
⊕

∏

1≤l≤m
j1<···<jl

j1,...,jl∈{i1,i2,...,im}

MfxMf(I2j1−1 ⊗M¬) · · · (I2jl−1 ⊗M¬)x

⊕M2m−1
⊕

∏

1≤l≤m
j1<···<jl

j1,...,jl∈{i1,i2,...,im}

{
Mf(I2im+1 ⊗M¬)xMf(I2j1−1 ⊗M¬) · · · (I2jl−1 ⊗M¬)(I2im+1−1 ⊗M¬)x

}

= M
2∗(2m−1)+1
⊕

∏

1≤l≤m+1
j1<···<jl

j1,...,jl∈{i1,i2,...,im+1}

MfxMf(I2j1−1 ⊗M¬) · · · (I2jl−1 ⊗M¬)x

= M2m+1−1
⊕

∏

1≤l≤m+1
j1<···<jl

j1,...,jl∈{i1,i2,...,im+1}

MfxMf(I2j1−1 ⊗M¬) · · · (I2jl−1 ⊗M¬)x

= M2m+1−1
⊕

∏

1≤l≤m+1
j1<···<jl

j1,...,jl∈{i1,i2,...,im+1}

Mf

[
I2n ⊗

(
Mf(I2j1−1 ⊗M¬) · · · (I2jl−1 ⊗M¬)

)]
Φnx.

(3.17)

This completes the proof.

Remark 3.9. By converting the logical calculation into matrix product, it is more convenient
for the calculation of high-dimensional systems.

4. Example

In this part, we will discuss the application of the main results in the present paper. Rule
150 is one of the eight elementary automata rules. It was introduced by Stephen Wolfram in
1983. Vichniac [12] also investigated its property. In the following, we will discuss the rule
150 using the Cheng product method.

In peripheral one dimensional cellular automata, the XOR rule is

xt
i = xt−1

i−1 ⊕ xt−1
i ⊕ xt−1

i+1 . (4.1)
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If we define a Boolean cellular automata withN cells by a global mapping

F : {0, 1}N 
−→ {0, 1}N. (4.2)

A local transition rule f of F is given as follows: it consists of its two neighborhood
and the considered cell itself

f(x1, x2, x3) = x1 ⊕ x2 ⊕ x3, (4.3)

then

f(x1, x2, x3) = M2
⊕x1x2x3 = Mfx, where Mf = M2

⊕, x = x1x2x3. (4.4)

Define the Boolean derivative of F as the N ×N matrix with F ′
ij = ∂xt

i/∂x
t−1
j .

According to the definition of Boolean derivative, it is easy to see that F ′
ij = 0 for

j < i − 1 and i + 1 < j.
When i − 1 ≤ j ≤ i + 1, from the definition and the matrix expression of Boolean

derivative, one can see that

∂f

∂xt−1
j

= M⊕Mfx
t−1
i−1x

t−1
i xt−1

i+1Mf(I2j−1 ⊗M¬)xt−1
i−1x

t−1
i xt−1

i+1

= M3
⊕
(
I8 ⊗M2

⊕
(
Ij−1 ⊗M¬

))
M8

rx
t−1
i−1x

t−1
i xt−1

i+1 .

(4.5)

Throughout the directional computation, we can get the following Jacobian matrix:

F ′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 · · · 0 1
1 1 1 0 · · · 0 0
0 1 1 1 · · · 0 0
...

...
. . . . . . . . .

...
...

· · · · · · · · · · · · 1 1 1
1 · · · · · · · · · · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.6)

From the Jacobian matrix, one can see that the new value of the cell is determined by
its two neighbors and the cell itself. In the Jacobian matrix, the 1′s shows us that the rule 150
is linearly dependent of the augments, respectively.

5. Discussion

Boolean derivative is an important topic in the research of Boolean function. It has wide
applications in different fields. There are several different definitions about the Boolean
derivatives. Each definition has its ownmeaning and application in respective domain. In this
paper, we introduce several definitions of Boolean derivatives. Furthermore, the relationships
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among them are presented. We show the meanings of them, and the matrix expressions of
them are also given.

Throughout the paper, the main tool used is the semitensor product, that is, Cheng
product. It is a very useful tool. It generalizes the matrix product. In classic matrix product, it
is necessary to guarantee that the number of columns of the left matrix matches the number
of rows of the right matrix. However, it is not necessary in Cheng product. Cheng product
has most of the properties of matrix product, and it has many other new advantages. Cheng
product has been now used in many research. In this paper, Cheng product is applied in
obtaining the relationship among different definitions. The calculation of logic variables
has been converted into matrix product. It is interesting and meaningful. Using the results
obtained, the application of Boolean derivative in cryptography and other fields might be
extended.

6. Conclusion

In this paper, firstly we have introduced several definitions of Boolean derivatives. Then, we
have given formulas to calculate Boolean derivatives by using the semitensor product, that
is, Cheng product. We have also investigated the relationship among different definitions of
Boolean derivatives. At last, an application is presented to illustrate the main results.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant
61174039 and by the Fundamental Research Funds for the Central Universities of China. The
authors would like to thank the editor and the reviewers for their constructive comments and
suggestions to improve the quality of the paper.

References

[1] P. J. Daniell, “The modular difference of classes,” Bulletin of the American Mathematical Society, vol. 23,
no. 10, pp. 446–450, 1917.

[2] B. Beauzamy, “The complexity of retina operators,” Journal of Applied Mathematics, vol. 2, no. 1, pp.
23–50, 2002.

[3] R. Bruni, “On the orthogonalization of arbitrary Boolean formulae,” Journal of Applied Mathematics and
Decision Sciences, no. 2, pp. 61–74, 2005.

[4] S. Yanushkevich, Logic Differential Calculus in Multi-Valued Logic Design, Technical University of
Szczecin, Szczecin, Poland, 1998.

[5] K. Tsubone, Y. Tarutani, H. Wakana, S. Adachi, and K. Tanabe, “Logic operation of hts sfq logic
family,” IEEE Transactions on Applied Superconductivity, vol. 19, pp. 3758–3765, 2009.

[6] S. Akers, “On a theory of boolean functions,” Journal of the Society for Industrial and Applied Mathemat-
ics, vol. 7, pp. 487–498, 1959.

[7] D. Huffman, “Solvability criterion for simultaneous logical equations,” MIT Research Lab of
Electronics, Quarterly Progress Report No. 48, 87-88, 1958.

[8] F. M. Brown, Boolean Reasoning: the Logic of Boolean Equations, Dover Publications, New York, NY, USA,
2nd edition, 2003.

[9] C. Posthoff and B. Steinbach, Logic Functions and Equations: Binary Models for Computer Science,
Springer, Dordrecht, The Netherlands, 2004.
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