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The theory of approximate solution lacks development in the area of nonlinear q-difference equa-
tions. One of the difficulties in developing a theory of series solutions for the homogeneous equa-
tions on time scales is that formulas for multiplication of two q-polynomials are not easily found. In
this paper, the formula for the multiplication of two q-polynomials is presented. By applying the
obtained results, we extend the use of the variational iteration method to nonlinear q-difference
equations. The numerical results reveal that the proposed method is very effective and can be
applied to other nonlinear q-difference equations.

1. Introduction

A time scale is a nonempty closed subset of real numbers. Recently, much research activity has
focused on the theory and application of the q-calculus. For example, the q-calculus has being
given a financial meaning by Muttel [1] and is applied to pricing the financial derivatives.
Many real world problems are now formulated as q-difference equations. Nonlinear q-differ-
ence equations, as well as their analytic and numerical solutions, play an important role in
various fields of science and engineering, especially in nonlinear physical science, since their
solutions can provide more inside into the physical aspects of the problems.

Solutions of linear differential equations on time scales have been studies and pub-
lished during the past two decades. One area lacking in development is the theory of approx-
imate solutions on nonlinear q-difference equations. Recent developments in the theory of
approximate solution have aroused further interest in the discussion of nonlinear q-difference
equations.

One of the difficulties in developing a theory of series solutions for linear or nonlinear
homogeneous equations on time scales is that formulas for multiplication of two generalized
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polynomials are not easily found. Haile and Hall [2] provided an exact formula for the
multiplication of two generalized polynomials if the time scale had constant graininess. Using
the obtained results, the series solutions for linear dynamic equations were proposed on the
time scales R and T = hZ (difference equations with step size h). For generalized time scales,
Mozyrska and Pawtuszewicz [3] presented the formula for the multiplication of the general-
ized polynomials of degree one and degree n ∈ N.

The variational iterationmethod proposed byHe [4] has been proved bymany authors
to be a powerful mathematical tool for analysing the nonlinear problems on R (the set of real
numbers). The advantages of this method include (i) that it can be applied directly to all
types of difference equations, and (ii) that it reduces the size of computational work while
maintaining the high accuracy of the numerical solution. For the nonlinear q-difference
equations, the approximate solution obtained by using the variational iteration method may
not yet been found.

In this paper, we presented a formula for the multiplication of two q-polynomials. The
obtained results can be used to find a series solution of the q-difference equations. The aim is
to extend the use of the variational iteration method to strongly nonlinear q-difference equa-
tions. Precisely, the equation is described as

xΔΔ(t) +
(
2γ + εγ1x(t)

)
xΔ(t) + Ω2x(t) + x2(t) = 0, (1.1)

where xΔ = Δx/Δt is the q-derivative as defined in Definition 2.1. In future studies, we
intend to extend the use of the variational iterationmethod to the other nonlinear q-difference
equations.

This paper is organized as follows: in Section 2 basic ideas on q-calculus are intro-
duced; in Section 3, the multiplication of two q-polynomials is demonstrated; in Section 4, the
variational iteration method is applied to find an approximate solution of strongly nonlinear
damped q-difference equations; in Section 5, the numerical results and the approximate
solutions, which were very close, are presented; finally, a concise conclusion is provided in
Section 6.

2. Introduction to q-Calculus

Let 0 < q < 1 and use the notations

qN =
{
qn | n ∈ N

}
, qN = qN ∪ {0}, (2.1)

where N denotes the set of positive integers.
Let a and q be real numbers such that 0 < q < 1. The q-shift factorial [5] is defined by

(
a; q
)
0 = 1,

(
a; q
)
n =

n−1∏

k=0

(
1 − aqk

)
, n = 1, 2, . . . , n. (2.2)
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Definition 2.1. Assume that f : qN → R is a function and t ∈ qN. The q-derivative [6] at t is
defined by

fΔ(t) =
f
(
qt
) − f(t)

(
q − 1

)
t

,

fΔ(0) = lim
n→∞

f
(
qn
) − f(0)
qn

.

(2.3)

A q-difference equation is an equation that contains q-derivatives of a function defined
on qN.

Definition 2.2. On the time scale qN, the q-polynomials hk(·, t0) : qN → R are defined recur-
sively as follows:

h0(t, s) = 1, hk+1 =
∫ t

s

hk(τ, s)Δτ. (2.4)

By computing the recurrence relation, the q-polynomials can be represented as

hk(t, s) =
k−1∏

v=0

t − sqv
∑v

j=0 q
j

(2.5)

on qN [6].

Hence, for each fixed s, the delta derivative of hk with respect to t satisfies

h�
k (t, s) = hk−1(t − s), k ≥ 1. (2.6)

Using q-polynomials, Agarwal and Bohner [7] gave a Taylor’s formula for functions
on a general time scale. On qN Taylor’s formula is written follows.

Theorem 2.3. Let n ∈ N. Suppose that f is n times differentiable on qN. Let α, t ∈ qN. Then one has

f(t) =
n−1∑

k=0

hkf
Δk

(α) +
∫ρn−1(t)

α

hn−1(t, σ(τ))fΔn

(τ)Δτ. (2.7)

3. Multiplication of Two q-Polynomials

The purpose of this section is to propose a production rule of two q-polynomials at 0 [8]
which will be used to derive an approximate solution in the following section.
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Theorem 3.1. Let hi(t, 0) and hj(t, 0) be two q-polynomials at zero. One has

hi(t, 0)hj(t, 0) =

(
qi+1; q

)
j

(
q; q
)
j

hi+j(t, 0). (3.1)

Proof. Since

hi+j(t, 0) =
i+j−1∏

ν=0

t
∑ν

μ=0 q
μ
, (3.2)

we have

hi+j(t, 0) =

(
i−1∏

ν=0

t
∑ν

μ=0 q
μ

)(
i+j−1∏

ν=i

t
∑ν

μ=0 q
μ

)

= hi(t, 0)

⎛

⎝
∏j−1

ν=0
∑ν

μ=0 q
μ

∏j−1
ν=0
∑ν

μ=0 q
μ

⎞

⎠tj
(

i+j−1∏

ν=i

1
∑ν

μ=0 q
μ

)

= hi(t, 0)

(
j−1∏

ν=0

t
∑ν

μ=0 q
μ

)⎛

⎝
j−1∏

ν=0

ν∑

μ=0

qμ

⎞

⎠
(

i+j−1∏

ν=i

1
∑ν

μ=0 q
μ

)

= hi(t, 0)hj(t, 0)

⎛

⎝
j−1∏

ν=0

∑ν
μ=0 q

μ

∑ν+i
μ=0 q

μ

⎞

⎠.

(3.3)

This implies that

hi(t, 0)hj(t, 0) =

⎛

⎝
j−1∏

ν=0

∑ν+i
μ=0 q

μ

∑ν
μ=0 q

μ

⎞

⎠hi+j(t, 0) =
j−1∏

ν=0

(
1 − qυ+i+1

)

(
1 − qυ+1

) hi+j(t, 0) =

(
qi+1; q

)
j

(
q; q
)
j

hi+j(t, 0).

(3.4)

Proposition 3.2. Let hi(t, 0) and hj(t, 0) be any two q-polynomials. We have

hi(t, 0)hj(t, 0) = hj(t, 0)hi(t, 0). (3.5)

Proof. By Theorem 3.1, it suffices to show that

(
qi+1; q

)
j

(
q, q
)
j

=

(
qj+1; q

)
i(

q, q
)
i

. (3.6)
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Suppose i > j, one has

(
qi+1; q

)
j

(
q, q
)
j

−
(
qj+1; q

)
i(

q, q
)
i

=

(
1 − qj+1

) · · · (1 − qi+j
)

(
1 − q

) · · · (1 − qi
) −

(
1 − qi+1

) · · · (1 − qi+j
)

(
1 − q

) · · · (1 − qj
)

=

(
1 − qj+1

) · · · (1 − qi+j
)

(
1 − q

) · · · (1 − qi
) −

(
1 − qi+1

) · · · (1 − qi+j
)(
1 − qj+1

) · · · (1 − qi
)

(
1 − q

) · · · (1 − qj
)(
1 − qj+1

) · · · (1 − qi
)

= 0.

(3.7)

4. Variational Iteration Method

4.1. Basic Ideas of Variational Iteration Method

To clarify the ideas of the variational iteration method, we consider the following nonlinear
equation:

Lx(t) +Nx(t) = g(t), (4.1)

where L is a linear operator, N is a nonlinear operator, and g is an inhomogeneous term.
According to the variational iteration method, we can construct a correction functional as
follows:

xn+1 = xn(t) +
∫ t

0
λ
{
Lxn(s) +Nx̃n(s) − g(s)

}
ds, (4.2)

where λ is a general Lagrange multiplier, u0 is an initial approximation which must be chosen
suitably, and x̃n is considered a restricted variation; that is, δx̃n = 0. To find the optimal value
of λ, we make the above correction functional stationary with respect to xn, noticing that
δxn(0) = 0, and have

δxn+1(t) = δxn(t) + δ

∫ t

0
λLx(s)ds = 0. (4.3)

Having obtained the optimal Lagrange multiplier, the successive approximations xn, n ≥ 0,
of the solution xwill be determined upon the initial function x0. Therefore, the exact solution
is obtained at the limit of the resulting successive approximations.
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4.2. Approximate Solution to Nonlinear Damped q-Equations

In this section, we extend the use of the variational iteration method to strongly nonlinear
damped q-difference equation as follows:

xΔΔ(t) +
(
2γ + εγ1x(t)

)
xΔ(t) + Ω2x(t) + x2(t) = 0, t ∈ qN (4.4)

with x(0) = a and xΔ(0) = b.
First of all, we illustrate the main idea of the variational iteration method. The basic

character of the method is to construct a correction functional for the system (4.4), which
reads

xn+1(t) = xn(t) +
∫ t

t0

λ(s){Lxn(s) +Nx̃n(s)}Δs, (4.5)

where L is a linear operator, N is a nonlinear operator, λ is a Lagrange multiplier which can
be identified optimally by variational theory, xn is the nth approximation, and x̃n denotes a
restricted variation, that is, δx̃n = 0.

In this work, the linear operator L is selected as

Lx = xΔΔ, (4.6)

and the nonlinear operator N is selected as

Nx =
(
2γ + εγ1x

)
xΔ + Ω2x + x2. (4.7)

Making the above correction functional stationary with respect to xn

δxn+1(t) = δxn(t) + δ

∫ t

0
λ(s)

{
uΔΔ
n +Nũn(s)

}
Δs

=
(
1 − λΔ

)
δxn(t) + λ(t)δxΔ(t) +

∫ t

0
λΔΔ(s)δxn(σ(s))Δs,

(4.8)

we, therefore, have the following stationary conditions:

1 − λΔ(t) = 0,

λ(t) = 0,

λΔΔ(s) = 0.

(4.9)

The Lagrange multiplier can be readily identified:

λ(s) = s − t = h1(s) − h1(t). (4.10)
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As a result, we obtain the variational iteration formula:

xn+1(t) = xn(t) +
∫ t

0
(h1(s) − h1(t))

[
xΔΔ
n (s) +

(
2γ + εγ1xn(s)

)
xΔ
n (s)

+Ω2xn(s) + x2
n(s)

]

Δs. (4.11)

According to the initial condition, we begin with the following initial approximation:

x0(t) = a + bh1(t). (4.12)

According to the variational iteration formula, we have

x1(t) = a + bh1(t) +A1h2(t) + B1h3(t) + C1h4(t), (4.13)

where

A1 =
(
2γ + εγ1ab + aΩ2 + a2

)
(1 −H(1, 1)),

B1 =
(
εγ1b

2 + Ω2b + 2(ab)
)
[H(1, 1) −H(2, 1)],

C1 = b2H(1, 1)[H(1, 2) −H(1, 3)],

(4.14)

and H(i, j) = (qi+1; q)j/(q; q)j .

5. Numerical Method

By Definition 2.1, the derivative of x(t) at 0 is defined as

xΔ(0) = lim
n→∞

x
(
qn
) − x(0)
qn

, if q < 1. (5.1)

Let N0 > 0 be a nonnegative integer. To obtain an approximation for the derivative of
x(t) at t = 0, we use

x
(
qN0
)
= x(0) + qN0xΔ(0) +

q2N0

2
xΔ2

(0) + · · · . (5.2)

Rearrangement leads to

xΔ(0) ≈ x
(
qN0
) − x(0)
qN0

− qN0

2
xΔ2

(0)

=
x
(
qN0
) − x(0)
qN0

+O
(
qN0
)
,

(5.3)

where the dominant term in the truncation error is O(qN0).
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Since xΔ(0) = b, we have

x
(
qN0
) − x(0)
qN0

= b (5.4)

which yields

x
(
qN0
)
= x(0) + qN0b = a + qN0b. (5.5)

Set t0 = 0 and t1 = qN0 and define

ti = qN0−(i−1), ∀i = 2, . . . ,N0 + 1. (5.6)

Then the interval [0, q] is partitioned into N0 subintervals.
Now we denote

xi = x(ti), ∀i = 0, 1, 2, . . . ,N0 + 1. (5.7)

The Delta-derivative of x(t) at ti can be calculated as

xΔ
i =

xi+1 − xi

ti+1 − ti
= Diti+1 −Diti,

xΔΔ
i =

xΔ
i+1 − xΔ

i

ti+1 − ti
= Aixi+2 − Bixi+1 + Cixi,

(5.8)

where

Ai =
1

(ti+1 − ti)(ti+2 − ti+1)
, Bi =

(ti+2 − ti)

(ti+1 − ti)2(ti+2 − ti+1)
,

Ci =
1

(ti+1 − ti)2
, Di =

1
(ti+1 − ti)

.

(5.9)

Substituting (5.8) into (4.4) yields the following:

Aixi+2 +
(
2γDi − Bi

)
xi+1 +

(
Ω + Ci − 2γDi

)
xi + εDixixi+1 + (1 − εDi)x2

i = 0. (5.10)

This implies that

xi+2 = − 1
Ai

[(
2γDi − Bi

)
xi+1 +

(
Ω + Ci − 2γDi

)
xi + εγ1Dixixi+1 +

(
1 − εγ1Di

)
x2
i

]
. (5.11)

6. Numerical Results

The theoretical considerations introduced in previous sections are illustrated with examples,
where the approximate solutions are compared with the numerical solutions.



Journal of Applied Mathematics 9

The time scale qN is given as {0.9n | n ∈ N} ∪ {0} = {0.9, 0.81, 0.729, . . . , 0}, where 0 is
the cluster point of qN. For the numerical computations, the interval [0, 0.9] is partitioned into
100 subintervals. The maximum error and the average error are defined as

maximum error = max
{
|xn(t) − x̂(t)| | t ∈ qN, t ≥ 0.9100

}
,

average error =
sum

{
|xn(t) − x̂(t)| | t ∈ qN, t ≥ 0.9100

}

100
,

(6.1)

respectively, where xn is the approximate solution with n iterations and x̂ is the numerical
solution obtained by (5.11).

Example 6.1. Consider the underdamped cases with (i) 2γ = 0.1, γ1 = 0.1, ε = 1, and Ω = 1;
and (ii) 2γ = 0.1, γ1 = 2.5, ε = 1 and Ω = 1. As the initial conditions are given as x(0) = 1 and
xΔ(0) = 0.5, we begin with the initial approximation x0 = 1 + 0.5t. By the variational iteration
formula (4.11), we obtain the first few components of xn(t). In the samemanner the rest of the
components of the iteration formula are obtained using the symbolic toolbox in the Matlab
package.

For Case (i)

The first two components of xn are obtained as

x0 = 1 +
1
2
t,

x1 = 1 + 0.5h1(t, 0) − 1.89h2(t, 0) − 1.2353h3(t, 0) − 0.3463h4(t, 0).
(6.2)

and so on. After 3 iterations, the maximum error is 0.0415 and the average error is 0.00356.

For case (ii)

The first two components of xn are obtained as

x0 = 1 +
1
2
t,

x1 = 1 + 0.5h1(t, 0) − 2.97h2(t, 0) − 1.7213h3(t, 0) − 0.3463h4(t, 0),
(6.3)

and so on. After 3 iterations, the maximum error is 0.0275 and the average error is 0.001167.
The responses of x(t) are shown in Figures 1 and 2 for cases (i) and (ii), respectively.

Example 6.2. In this example, we consider the overdamped cases with (iii) 2γ = 2.5, γ1 = 0.1,
ε = 1, and Ω = 1; and (iv) 2γ = 2.5, γ1 = 2.5, ε = 1, and Ω = 1. As the initial conditions are
given as x(0) = 1 and xΔ(0) = 0.5, we begin with the initial approximation x0 = 1+0.5t. By the
variational iteration formula (4.11), we obtain the first few components of xn(t). In the same
manner the rest of the components of the iteration formula were obtained using the symbolic
toolbox in the Matlab package.
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Figure 1: Time response for xΔΔ + (0.1 + 0.1x)xΔ + x + x2 = 0 with 3 iterations.
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Figure 2: Time response for xΔΔ + (0.1 + 2.5x)xΔ + x + x2 = 0 with 3 iterations.

For Case (iii)

The first two components of xn are obtained as

x0(t) = 1 +
1
2
t,

x1(t) = 1 + 0.5h1(t, 0) − 2.97h2(t, 0) − 1.2353h3(t, 0) − 0.3463h4(t, 0),
(6.4)

and so on. After 3 iterations, the maximum error is 0.01609 and the average error is 0.001227.
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Figure 3: Time response for xΔΔ + (2.5 + 0.1x)xΔ + x + x2 = 0 with 3 iterations.
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Figure 4: Time response for xΔΔ + (2.5 + 2.5x)xΔ + x + x2 = 0 with 7 iterations.

For Case (iv)

The first two components of xn are obtained as

x0 = 1 +
1
2
t,

x1 = 1 + 0.5h1(t, 0) − 4.05h2(t, 0) − 1.7213h3(t, 0) − 0.3463h4(t, 0)
(6.5)

and so on. After 7 iterations, the maximum error is 0.026 and the average error is 0.00105. At
less than 7 iterations, the approximate solution is not close to the numerical solution.

The responses of x(t) are shown in Figures 3 and 4 for cases (iii) and (iv), respectively.

These figures and themaximum/average errors indicate that the approximate solution
is close to the numerical results.
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7. Conclusion

In the area of q-calculus, the formula for the multiplication of two q-polynomials has long
been in need of development. In this paper, we have presented the aforementioned formula,
overcoming the previous difficulties in developing a theory of series solutions for the non-
linear q-difference equations. The goal of this paper was to extend the use of the variational
iteration method to strongly nonlinear damped q-difference equations. The numerical results
have demonstrated that the approximate solution obtained by the variational iteration meth-
od is very accurate. Therefore, the proposed method is very effective and can be applied to
other nonlinear q-equations.
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