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This paper is concerned with stabilization of impulsive stochastic delay differential systems. Based
on the Razumikhin techniques and Lyapunov functions, several criteria on pth moment and almost
sure exponential stability are established. Our results show that stochastic functional differential
systems may be exponentially stabilized by impulses.

1. Introduction

In the past decades, many authors have obtained various results of deterministic functional
differential systems (see [1-6] and the references therein). But it is well known that there
are many stochastic factors in the realistic environment, and it is necessary to consider
stochastic models. In fact, stochastic functional differential systems (SFDSs) have received
more attention in recent years. The properties of SFDSs including stability have been
studied in [7-10], which can be widely used in science and engineering (see [11] and the
references therein). Furthermore, besides stochastic effects, impulsive effects likewise exist
in many evolution processes in which system states change abruptly at certain moments of
time, involving such fields as medicine and biology, economics, mechanics, electronics, and
telecommunications, and so forth. The impulsive control theory comes to play an important
role in science and industry [12]. So the stability investigation of impulsive stochastic
differential systems (ISDSs) and impulsive stochastic functional differential systems (ISFDSs)
is interesting to many authors [13-20].

Recently, the Razumikhin-type asymptotical stability theorems for ISFESs were
established [21, 22]. However, little work has been done on generally exponential stability
of ISFESs [23, 24]. In this paper, stability criteria for impulsive stochastic function differential
systems are investigated by Razumikhin technique and Lyapunov functions. It is shown that
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an unstable stochastic delay system can be successfully stabilized by impulses and the results
can be easily applied.

2. Preliminaries

Throughout this paper, unless otherwise specified, let (Q, ¥, {¥};o, P) be a complete
probability space with a filtration {¥},,, satisfying the usual conditions (i.e., it is right
continuous and ¥, contains all P-null sets). w(t) = (w1 (t),ws(t),...,wa(t))" means a d-
dimensional Brownian motion defined on this probability space. R denotes the set of real
numbers, R, is the set of nonnegative real numbers, and R" denotes the n-dimensional real
space equipped with Euclidean norm | - |. If A is a vector or matrix, its transpose is denoted
by AT and its operator norm is denoted by || A|| = sup{|Ax]| : |x| = 1}. Moreover, let 7 > 0 and
denote by C([-T,0]; R.) the family of continuous functions from [-7,0] to R,. Let N denote
the set of positive integers, thatis, N = {1,2,...}.

For —oo < a < b < +oo, a function from [a, b] to R" is called piecewise continuous, if the
function has at most a finite number of jump discontinuities on (a, b], which is continuous
from the right for all points in [a,b). Given T > 0, PC([-7,0]; R") denotes the family of
piecewise continuous functions from [-7,0] to R”. A norm on PC([-7,0]; R") is defined as
Ipll = Sup_ .o ()| for ¢ € PC([~,0]; R?).

For p > 0 and t > 0, let PCZ{([—T,O],'R") denote the family of all -
measurable PC([-,0]; R")-value random variables ¢ such that sup_,_,  E|p(0)[F < oo
and PC;[([—T,O];R") denote the family of PC([-T,0]; R")-value random variables that are
bounded and ¥;-measurable.

In this paper, we consider the following ISFDS:

dx(t) = f(xg, t)dt + g(x, t)dw(t), t#b, t>t,
Ax(t) = I <xt;,tk>, keN, (2.1)

xto = é/

where the initial value ¢ € PC;IU ([-7,0]; R"), x(t) = (x1(£),.. Lxa(M)T, x s regarded as a
PC([-T,0]; R")-value process and x;(0) = x(t + 0), 6 € [-7,0]. Similarly, x; is defined by
x-(0) = x(t+0), 0 € [-1,0) and x4 (0) = lim,_,;+x(s). Both f : PC%([—T,O];R”) x R, —
R" and g : PC;[([—T,O],’R") x R, — R™ are Borel measurable, and I : PCé’ct([—T, 0]; R") x
R, — R"represents the impulsive perturbation of x at time t;. The fixed moments of impulse
times ty satisfy 0 < fo < t; < -+ <t <---, tx — oo (ask — o0), Ax(tx) = x(tx) — x(t).
Moreover, f, g, and I are assumed to satisfy necessary assumptions so that, for any initial
data ¢ € PC;;‘ ([-7,0]; R"), system (2.1) has a unique global solution, denoted by x(t; ¢y, {)
(e.g., see [25] for existence and uniqueness results for general impulsive hybrid stochastic
delay systems including (2.1)). For the purpose of stability in this note, we also assume the
f(0,t) =0, g(t,0) =0and Ix(0,t) = 0 for all t > ¢y, k € N, then system (2.1) admits a trivial
solution.

Definition 2.1. The trivial solution of system (2.1) is said to be pth (p > 0) moment
exponentially stable if there is a pair of positive constants A, C such that

Elx(t;to, &) < CllgIPe™ ™), >k, (2.2)
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forall ¢ € PC;’( ([-7,0]; R™). When p = 2, it is usually said to be exponentially stable in mean
to
square. It follows from (2.2) that

lim sup% log E|x(t; to, &P < —A. (2.3)

t— oo

The left-hand side of (2.3) is called the pth moment Lyapunov exponent of the solution.

Definition 2.2. The trivial solution of system (2.1) is said to be almost exponentially stable if
there is a pair of positive constants A, C such that for t > ¢

lx(t; b, &)P < C|i¢lle™* ), as., (2.4)
forall ¢ € PC; ([-7,0]; R"). It follows from (2.4) that
to

1

lim suplL log|x(t;to, &) < —A. (2.5)

t— oo

The left-hand side of (2.5) is called the Lyapunov exponent of the solution.

Definition 2.3. Let C>!(R" x [ty, o0); R;) denote the family of all nonnegative functions V (x, t)
on R" x [ty — T, 00) that are continuously twice differential in x and once in t. If V € C>}(R" x
[to, 0); R.), define the operator £V : PC([-7,0]; R") x [to,0) — R for system (2.1) by

LV (xy,t) = Vi(x, ) + Vi (x, 1) f (x4, £) + %trace gT(xt, B) Vax (x, 1) g (x4, t)], (2.6)

where Vi(x,t) = 0V(x,t)/ot, Vi(x,t) = (0V(x,t)/0x1,...,0V(x,t)/0x,), Vir(x,t) =
(0*V (x,t)/0x;0x;)

nxmn*

3. Main Results

In this section, we will establish some criteria on the pth moment exponential stability
and almost exponential stability for system (2.1) by using the Razumikhin technique and
Lyapunov functions. We begin with the following lemma, which concerns with the continuity
of EV(x(t),t).

Lemma 3.1. Let V(x,t) € C>'(R" x [ty, 0); R;), and let x(t) be a solution of system (2.1). If there
exists ¢ > 0 such that V(x,t) < c|x|P, then EV (x(t),t) is continuous on [ti_1,tr), k € N.

Proof. By the Ito6 formula,

V(x(t),t) = V(x(tx-1),tk-1) + t LV (xg,8)ds + It Vi(x(s),s)g(xs,8)dw(s) (3.1)

b1 k-1
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for all t € [tx_1,tx), where k € N. Since x;,, € PC%’C ([-7,0]; R"), we can find an integer I,
-1
such that ||x;, , || <l a.s. For any integer [ > Iy, define the stopping time

pr=1inf{t € [ti, ti) « [x(B)] > 1}, (3.2)

where inf() = oo as usual. Since x(f) is continuous on [fx_1,tx), |x(t)] is also continuous on
[tk-1,tk). Clearly, p — oo a.s. as ] — oo. Moreover, it has EV (x(fx-1),tx) < clo, following
from xy, , € PC'; ([-7,0]; R™). It then follows from the definition of p; above that

1

EV(x(£),£) = EV(x(ti1), trr) + EUtl ,EV(xS,s)ds], (33)

tr-1

where t; = t A p;. So, letting | — oo, by the dominated convergence theorem and Fubini’s
theorem, we have

EV(x(t),t) = EV(x(tx-1),tk-1) + E[It _EV(xs,s)ds:I

t it (3.4)

= EV(x(tin), i) + f E[£V (x,,5)ds,

tre1

for t € [tx_1,tx). This implies that EV (x(f), t) is continuous on [tx_1, tx), k € N. O

Theorem 3.2. Let V € C*}(R" x [ty — T,00); R,) and u : [ty,00) — R, be a piecewise continuous
function. Suppose there exist some positive constants p, c¢1, ¢, and A such that

(i) forall (x,t) € R" x [ty — T, 00),
alxlP <V(x,t) < cofx|”, (3.5)
(ii) for all k € N, and ¢ € PCE, ([-7,0]; R"),
EV(¢(07) +I(tx, p), tk) <dEV($(07), 1), (3.6)

where 0 < di < exp{-A(tis1 — t) — f::l u(s)ds},
(iii) forall t > to, t#tx, k € N and ¢ € PCE ([-7,0];R"),

E[£2V (9, t)] <u(t)EV(§(0),t) (3.7)
whenever

EV(§,t+6) <gEV($(0),t), 0€[-7,0], (3.8)

where q > maxien {d e’} v exp{ftto1 u(s)ds}.
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Then the trivial solution of system (2.1) is pth moment exponentially stable and its pth
moment Lyapunov exponent is not greater than —\.

Proof. Given any initial data ¢ € chct ([-7,0]; R™), the global solution x(¢; ty, &) = x(t) of (2.1)
0

is written as x(t) in this proof. Without loss of generality, assume that the initial date ¢ is

nontrivial so that x(t) is not a trivial solution. Choose M such that

cze)‘(tl_tU)Jrﬁ& u®Mds o < coge ), (3.9)

Then it follows from condition (i) and (3.9) that

EV (x(t),t) < e8Il < M|g|IPe ™), t € [t — 7, ko). (3.10)

In the following, we will show that

EV (x(t),t) < M||g|Pe )t e [ty tk), k € N. (3.11)

In order to do so, we first prove that

EV(x(t),t) < M|[g|[Pe™* ), t e [to,t). (3.12)

If (3.12) is not true, then there exist some t € [ty, t;) such that EV (x(t),t) > M||&|[Pe*(1~10), Set
t* = inf(t € [to,t1) : EV(x(t),t) > M||¢|[Pe~*"170)}. Then t* € (to, 1) and also, by the continuity
of EV(x(t),t)) (see Lemma 3.1),

EV(x(t),t) < EV(x(t*),t*) = M||g|Pe 2@~ t e[ty —1,L,). (3.13)

In view of (3.10), define t, = sup{t € [ty — 7,t*) : EV(x(f),t) < c2||¢||P}. Then t. € [to,t*) and,
by the continuity of EV (x(t),t),

EV(x(t),t) > EV(x(t), t) = c2|i€]IF, e (k] (3.14)
Now in view of (3.9), (3.13), and (3.14), one has, for t € [t,,t*] and 6 € [-T,0],
EV(x(t+0),t+0) < M||g|Pe 7 < gEV (x(t.), t.) < GEV (x (1), t). (3.15)
By the Razumikhin-type condition (iii),
E[2V(x;, t)] Su(t)EV(x(t),t), Vte [t 7] (3.16)

Applying It6 formula and by (3.16), one obtains that

EV(x(t"),t") < EV(x(t), t) + J‘t* u(s)EV(x(s), s)ds. (3.17)
t
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Finally, by (3.9), (3.13), (3.14), and the Gronwall inequality,

* t
EV(x(t), ') S EV(x(t), t)el 9% < cy|jg el O

(3.18)
< M[ig[Pe70) = EV (x(#), 1),
which is a contradiction. So inequality (3.12) holds and (3.11) is true for k = 1.
Now assume that
EV(x(t),t) < M|[g|[Pe*®) Vte [t te), k€N, (3.19)
for all k < m, where k,m € N. We proceed to show that
EV (x(t),t) < M||g|Pe 1=t Vit € [t, tme)- (3.20)

Suppose (3.20) is not true, set t = inf{t € [ty tmi1) @ EV(x(t),t) > M]|g||Pe AEmt)} By
condition (ii) and (3.20), we know

EV(x(tm), tm) < dmEV (x(t,,), ty) < dmM|E[[Pe™ 1m0 < M||g[|P e tmat0), (3.21)

From this, together with EV(x(t),t) being continuous on t € [t t;ns1), we know that te
(tm/ tm+1) and

EV(x(t),t) < Ev<x(2>,2) = M||g|[Pe tmit) Vi e [tm,Z). (3.22)

Define t = sup{t € [to,t] : EV (x(t),t) < dyM||E|[Pe tnt0)}, then t € [t,,, ) and

EV(x(t),t) > EV(x(£),1) = duM|jé[Pe ), vt e (g,Z]. (3.23)

Fort € [t,t] and O € [-7,0], when t + 0 > t,,, then (3.22) and (3.23) imply that

EV(x(t+0),t+6) < MIg|etmim) < Mijg|Pe=tt+e-t)
< MeVgPe ) < Mg e tn ) (3.24)
<QEV (x(1),1).

If t+0 < t,, for some 0 € [-T,0), we assume that, without loss of generality, t + 0 € [t;,;.1) for
somel € N, [ <m -1, then from (3.19) and (3.23),

EV(x(t +0),t +6) < M|jg|[Pe™1710) < M||g||Pet(+0~10)
< Me'T||g[[Pe ) < MeT||g [P e i) (3.25)
<GEV (x(t),1).
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Therefore,

EV(x(t+0),t+0) <gEV(x(t),t), te [g,z], 0 € [-7,0]. (3.26)

Then, it follows from condition (iii) that

E[£V (x,t)] < u(tEV(x(t),t), Vte [g, E]. (3.27)
Combining It6 formula with (3.27), we can check that
_ t
Ev(x<t, t>> <EV(x(t),t) + J u(s)EV (x(s), s)ds. (3.28)
t
Finally, by (3.22), (3.23), and the Gronwall inequality,

EV(x(1),1) < EV(x(t), el “O® < EV (x(1), t)elin” 10

t

1 N (3.29)
 d MIgPe el w0 < By (x(1) 1),

which is a contradiction. So inequality (3.20) holds. By mathematical induction, we obtain
that (3.11) holds for all k € N. Furthermore, from condition (i), we have

Elx(®) < 2—1M||g||Pe-*<‘k-to> < %M||§||”e‘)‘(t‘t”), te [t t), k€N, (3.30)
2 2

which implies

ElllP < SEMIgIPe ), £ 21, (331)
2

that is, system (2.1) is pth moment exponentially stable. The proof is complete. O

Remark 3.3. If u(t) = ¢ > 0, then Theorem 3.1 of [23] follows from Theorem 3.2 immediately.

Theorem 3.4. Let V € C*(R"x[ty—T,0); R;), and let u : [ty,00) — R, be a piecewise continuous
function. Suppose there exist some positive constants p, c¢1, ¢, and A such that

i) for all (x,t) € R" x [ty — 7, 0),

alxlP < V(x,t) < clxfP, (3.32)

(ii) for all k € N and ¢ € PCE ([-7,0]; R"),

EV($(07) + I(te, §)) < pdiEV ($(07), ), (339)

where 0 < p < max{e 1~} and dy > 0 with d = sup, N\ T1'_,di < oo,
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(iii) forall t > to, t#tx, k € N, and ¢ € PC, ([-7,0]; R"),
E[£V($,t)] < u(t)EV((0),t) (3.34)
whenever
EV(¢,t+80) <gEV($(0),t), 6¢€[-,0], (3.35)

where g > (p~ ') v (p~te)d ).

Then the trivial solution of system (2.1) is pth moment exponentially stable and its pth
moment Lyapunov exponent is not greater than —.\.

Proof. Given any initial data ¢ € PC; ([-7,0]; R™), the global solution x(t; ty; ¢) = x(t) of (2.1)
to

is written as x(t) in this proof. Without loss of generality, assume that the initial date ¢ is

nontrivial so that x(t) is not a trivial solution. Choose M such that

t
el(tl—t0)+f,3 u(s)ds

c < M < cpgettih), (3.36)

Then it follows from condition (i) and (3.36) that
EV(x(t),t) < clléllP < Mig|[Pe™ 7, t € [ty - T, to]. (3.37)
In the following, we will show that
EV (x(t),t) < MillgllPe ™, t € [t ti), (338)

where k € N and My is defined as M; = M and My = MITjq<k_1d;. Similarly, as the proof in
Theorem 3.2, one can prove that

EV (x(t),t) < M||g|Pe *B70) ¢ e [ty, 1). (3.39)

Now assume that

EV(x(t),t) < M[gPe™ "), Vt € [y, t), k€N, (3.40)

for all k < m, where k,m € N. We proceed to show that

EV (x(t),t) < My ||é[[PeEm170) Wt € [y, i) (3.41)
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Suppose (3.41) is not true, set t = inf{t € [ty tme1) : EV(x(t),t) > Mg||g|[Petnt)}. By
condition (ii),

EV(x(tm), tm) < pdmEV (x(t5,), tn) < pMua [|E]|Pe (1)

< My [|g[[Pe7Em0), 42

From this, together with EV (x(t),t) being continuous on t € [t,, tns1), we know that te
(tm, tme1) and

EV(x(t),t) < Ev(x@,i) = Myt ||&[Pe ™t h) | vt e [tm,i). (3.43)

Define t = sup{t € [to,t] : EV(x(t),t) < pM11||¢||Pe 1 En0) )}, then t € [t,,, t) and

EV(x(t),t) > EV(x(£),£) = pMya|[g][Pe ), vt e (;,z]. (3.44)

Forte [t, t] and 0 € [-7,0], when f + 0 > t,,, then (3.44) implies that

EV(x(t+0),t+0) < My ||&|[feEmato)
= p_le_/\(tmﬂ—tm)EV(x(é),t) (345)
<qEV (x(t),1).

If t+6 < t,, for some 0 € [-7,0), we assume that, without loss of generality, t + 6 € [t;,t.1) for
somel € N, | <m -1, then from (3.41) and (3.44), we obtain

EV(x(t+0),t+6) < Mp|g[[Pe™ ") < My ||g|[Pe+0)
M
< My eV||g|[Pe 1) < p"le”M—mEV(x(E)/i) (3.46)
m+1

= p A EV (x(t),t) < gEV (x(1), 1)
Therefore,

EV(x(t+0),t+0) < gEV(x(t),t), te [g,i], 0 e [-7,0]. (3.47)

The rest of the proof is similar to that of Theorem 3.2 and omitted here. O

Remark 3.5. Let u and 6 be positive constants. Assume that the conditions of Theorem 3.4
hold, function u : [fy,00) — R, satisfies f:+6 u(s)ds < ud and sup,{tx — txi-1} = 6 <
—(Inp/(X +u)). Then Theorem 3.1 of [24] follows immediately.

Remark 3.6. It is not strictly required by condition (ii) of Theorem 3.4 that each impulse
contributes to stabilize the system, as long as the overall contribution of the impulses are
stabilizing. Without these di (i.e., dx = 1), it is required that each impulse is a stabilizing
factor (p < 1), which is more restrictive.
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Remark 3.7. 1t is clear that Theorems 3.2 and 3.4 allow the continuous dynamics of system
(2.1) to be unstable, since the function u(t), which characterizes the changing rate of V' (x(t),t)
at t, is assumed to be nonnegative. Theorems 3.2 and 3.4 show that an unstable stochastic
delay system can be successfully stabilized by impulses.

The following theorems show that the trivial solutions of system (2.1) are also almost
surely exponentially stable, under some additional conditions.

Assumption 3.8. Suppose the impulsive instances t; satisfy

sup{tx —tx-1} < oo, inf {tx —tx1} > 0. (3.48)
keN keN

Assumption 3.9. Assume that there is a constant L > 0 such that, for all (¢,t) €
PC ([-7,0];R") x [t, ),

E[lf(.0)"+|g(¢. '] <L suP0E|¢(6)|. (3.49)

-7<0<

Lemma 3.10 (see [23]). Let p > 1, and let Assumptions 3.8 and 3.9 hold. Then (3.31) implies that,
forall t > to,

|x(t;¢,t0)| < Ce VP ER||IP as., (3.50)

where C is a positive constant. In other words, under Assumptions 3.8 and 3.9, the pth moment
exponential stability implies the almost exponential stability for system (2.1).

By using Theorems 3.2 and 3.4 and Lemma 3.10, it is easy to show the following
conclusions.

Theorem 3.11. Suppose that p > 1, Assumptions 3.8 and 3.9 and the same conditions as in
Theorem 3.2 hold. Then the trivial solution of system (2.1) is also almost surely exponentially stable,
with its Lyapunov exponent not greater than —A/p.

Theorem 3.12. Suppose that p > 1, Assumptions 3.8 and 3.9 and the same conditions as in

Theorem 3.4 hold. Then the trivial solution of system (2.1) is also almost surely exponentially stable,
with its Lyapunov exponent not greater than —\/p.

4. An Example

Example 4.1. Consider a scalar ISDDs of the form
dx(t) = x(t)dt + }I\/xz(t) +x2(t-2)dw(t), t#t, t>1, 1)
Ax(tc) = -04x(t;), keN.

It is easy to check that the corresponding system without impulses is not mean square
exponentially stable. In fact, if V(x,t) = x2, then it follows from the It6 formula that
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E[£LV (x(t),x(t — 2),t)] > 2E|x(t)|*> = 2EV(x(t),t). This leads to E|x(t)|> = EV(x(t),t) >
EV(x(0),0)e? = E|x(0)>¢* for all + > 0. But, in the following, we will show that system
(4.1) is mean square exponentially stable and almost exponentially stable.

If V(x(t),t) = x2, then condition (i) of Theorem 3.2 holds with ¢; = ¢, = =
and condition (ii) holds with dx = 0.36. By calculating, we have E[£V (x(t), x(t — 2),t)]
(33/16)EV (x(t),t) + (1/16)EV (x(t — 2),t). By taking g = 5, A = 0.5, and t; — t,1 = 0.3, it
is easy to verify that condition (iii) of Theorem 3.2 is satisfied, which means system (4.1) is
mean square exponentially stable. Applying Theorem 3.11, we can derive that system (4.1) is
almost exponentially stable.

1,p 2,
2),t)] <

Acknowledgments

The authors are grateful to Editor Professor Josef Diblik and anonymous referees for their
helpful comments and suggestions which have improved the quality of this paper. This work
is supported by Natural Science Foundation of China (no. 10771001), Research Fund for
Doctor Station of Ministry of Education of China (no. 20113401110001, no. 20103401120002),
TIAN YUAN Series of Natural Science Foundation of China (no. 11126177), Key Natural
Science Foundation (no. KJ2009A49), Talent Foundation (no. 05025104) of Anhui Province
Education Department, 211 Project of Anhui University (no. KJJQ1101), Anhui Provincial
Nature Science Foundation (no. 090416237, no. 1208085QA15), and Foundation for Young
Talents in College of Anhui Province (no. 20125QRL021).

References

[1] J. Bastinec, J. Diblik, D. Y. Khusainov, and A. Ryvolova, “Exponential stability and estimation of solu-
tions of linear differential systems of neutral type with constant coefficients,” Boundary Value Problems,
vol. 2010, Article ID 956121, 20 pages, 2010.

[2] A.V. Shatyrko, D. Y. Khusainov, J. Diblik, J. Bastinec, and A. Ryvolova, “Estimates of perturbations
of nonlinear indirect interval control system of neutral type,” Journal of Automation and Information
Sciences, vol. 43, no. 1, pp. 13-28, 2011.

[3] S. Peng and L. Yang, “Global exponential stability of impulsive functional differential equations via
Razumikhin technique,” Abstract and Applied Analysis, vol. 2010, Article ID 987372, 11 pages, 2010.

[4] J. Diblik and A. Zafer, “On stability of linear delay differential equations under Perron’s condition,”
Abstract and Applied Analysis, vol. 2011, Article ID 134072, 9 pages, 2011.

[5] J. Diblik, D. Y. Khusainov, I. V. Grytsay, and Z. Smarda, “Stability of nonlinear autonomous quadratic
discrete systems in the critical case,” Discrete Dynamics in Nature and Society, vol. 2010, Article ID
539087, 23 pages, 2010.

[6] J. Diblik, D. Ya. Khusainov, and 1.V. Grytsay, “Stability investigation of nonlinear quadratic discrete
dynamics systems in the critical case,” Journal of Physics: Conference Series, vol. 96, no. 1, Article ID
012042, 2008.

[7] J. Luo, “Exponential stability for stochastic neutral partial functional differential equations,” Journal
of Mathematical Analysis and Applications, vol. 355, no. 1, pp. 414-425, 2009.

[8] 1. A. Dzhalladova, J. Bastinec, J. Diblik, and D. Y. Khusainov, “Estimates of exponential stability for
solutions of stochastic control systems with delay,” Abstract and Applied Analysis, vol. 2011, Article ID
920412, 14 pages, 2011.

[9] S. Jankovi¢, ]J. Randjelovi¢, and M. Jovanovi¢, “Razumikhin-type exponential stability criteria of
neutral stochastic functional differential equations,” Journal of Mathematical Analysis and Applications,
vol. 355, no. 2, pp. 811-820, 2009.

[10] Z. Yu, “Almost surely asymptotic stability of exact and numerical solutions for neutral stochastic
pantograph equations,” Abstract and Applied Analysis, vol. 2011, Article ID 143079, 14 pages, 2011.
[11] X. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, UK, 1997.



12 Abstract and Applied Analysis

[12] V.Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6,
World Scientific Publishing, Teaneck, NJ, USA, 1989.

[13] A. Lin and L. Hu, “Existence results for impulsive neutral stochastic functional integro-differential
inclusions with nonlocal initial conditions,” Computers & Mathematics with Applications, vol. 59, no. 1,
pp. 64-73, 2010.

[14] B. Liu, “Stability of solutions for stochastic impulsive systems via comparison approach,” IEEE Trans-
actions on Automatic Control, vol. 53, no. 9, pp. 2128-2133, 2008.

[15] R. Sakthivel and J. Luo, “Asymptotic stability of nonlinear impulsive stochastic differential equa-
tions,” Statistics & Probability Letters, vol. 79, no. 9, pp. 1219-1223, 2009.

[16] Q. Song and Z. Wang, “Stability analysis of impulsive stochastic Cohen-Grossberg neural networks
with mixed time delays,” Physica A, vol. 387, no. 13, pp. 3314-3326, 2008.

[17] X. Wang, Q. Guo, and D. Xu, “Exponential p-stability of impulsive stochastic Cohen-Grossberg neural
networks with mixed delays,” Mathematics and Computers in Simulation, vol. 79, no. 5, pp. 1698-1710,
2009.

[18] H. Wu and J. Sun, “p-moment stability of stochastic differential equations with impulsive jump and
Markovian switching,” Automatica, vol. 42, no. 10, pp. 1753-1759, 2006.

[19] L. Xu and D. Xu, “Mean square exponential stability of impulsive control stochastic system with
time-varying delay,” Physics Letters A, vol. 373, no. 3, pp. 328-333, 2009.

[20] L. Shen and J. Sun, “p-th moment exponential stability of stochastic differential equations with im-
pulse effect,” Science China Information Sciences, vol. 54, no. 8, pp. 1702-1711, 2011.

[21] P. Cheng, E. Deng, and X. Dai, “Razumikhin-type theorems for asymptotic stability of impulsive
stochastic functional differential systems,” Journal of Systems Science and Systems Engineering, vol. 19,
no. 1, pp. 72-84, 2010.

[22] S. Peng and B. Jia, “Some criteria on pth moment stability of impulsive stochastic functional dif-
ferential equations,” Statistics & Probability Letters, vol. 80, no. 13-14, pp. 1085-1092, 2010.

[23] P. Cheng and F. Deng, “Global exponential stability of impulsive stochastic functional differential
systems,” Statistics & Probability Letters, vol. 80, no. 23-24, pp. 1854-1862, 2010.

[24] J. Liu, X. Liu, and W.-C. Xie, “Impulsive stabilization of stochastic functional differential equations,”
Applied Mathematics Letters, vol. 24, no. 3, pp. 264-269, 2011.

[25] J. Liu, X. Liu, and W.-C. Xie, “Existence and uniqueness results for impulsive hybrid stochastic delay
systems,” Communications on Applied Nonlinear Analysis, vol. 17, no. 3, pp. 37-53, 2010.



