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Under some weaker conditions, we prove the strong convergence of the sequence generated
by a modified regularization method of finding a zero for a maximal monotone operator in a
Hilbert space. In addition, an example is also given in order to illustrate the effectiveness of
our generalizations. The results presented in this paper can be viewed as the improvement,
supplement, and extension of the corresponding results.

1. Introduction

Let H be a real Hilbert space and C a nonempty closed convex subset of H, and let F : H →
H be a nonlinear operator. The variational inequality problem is formulated as finding a point
x∗ ∈ C such that

〈Fx∗, v − x∗〉 ≥ 0, ∀v ∈ C. (1.1)

In 1964, Stampacchia [1] introduced and studied variational inequality initially. It is
now well known that variational inequalities cover as diverse disciplines as partial differ-
ential equations, optimal control, optimization, mathematical programming, mechanics, and
finance, see [1–5].

Let T be an operator with domainD(T) and range R(T) inH. A multivalued operator
T : H → 2H is called monotone if

〈
u − v, x − y

〉 ≥ 0, (1.2)
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for any u ∈ Tx, v ∈ Ty, and maximal monotone if it is monotone and its graph

G(T) =
{(

x, y
)
: x ∈ D(T), y ∈ Tx

}
(1.3)

is not properly contained in the graph of any other monotone operator.
One of the major problems in the theory of monotone operators is to find a point in the

zero set, which can be formulated as finding a point x so that x ∈ T−1(0), where T−1(0) denotes
the zero set of the operator T . A variety of problems, including convex programming and
variational inequalities, can be formulated as finding a zero of maximal monotone operators.
A classical way to solve such problem is Rockafellar’s proximal point algorithm [6], which
generates an iterative sequence as

xn+1 = JTc (xn + en), (1.4)

where, for c > 0, JTc denotes the resolvent of T given by JTc = (I + cT)−1, with I being the
identity map on the space H. If T−1(0)/= ∅, it is known that the sequence generated by (1.4)
converges weakly to some point in T−1(0).

Motivated by Lehdili andMoudafi’s prox-Tikhonov method [7], Xu [8] considered the
following regularization iterative form: for a fixed point u ∈ H,

xn+1 = JTcn((1 − tn)xn + tnu + en), n ≥ 0, (1.5)

where tn ∈ (0, 1) and {en} is a sequence of errors. Then, the iterative sequence converges
strongly to PT−1(0)u, provided that

(C1) limn→∞tn = 0,

(C2)
∑∞

n=0 |tn+1 − tn| < ∞,

(C3) 0 < c ≤ cn ≤ c,

(C4)
∑∞

n=0 |cn+1 − cn| < ∞,

(C5)
∑∞

n=0 tn = ∞,
∑∞

n=0 ‖en‖ < ∞.

Recently, Song and Yang [9] removed some strict restrictions in Xu [8]. Under condi-
tions (C1), (C2), (C4) (or

∑∞
n=0 |1 − (cn/cn+1)| < +∞), (C5), and (C3′)

(C3′) 0 < lim infn→∞ cn,

they proved that the sequence generated by (1.5) converges strongly to PT−1(0)u.
Very recently, under conditions (C1), (C3) (or C3′), (C5), and (C4′)

(C4′) limn→∞ |1 − (cn/cn+1)| = 0.

Wang [10] proved the strong convergence of the sequence generated by (1.5). It is easy to see
that conditions (C3′) and (C4′) are strictly weaker than conditions (C3) and (C4), respectively.

We remind the reader of the following fact: in order to guarantee the strong
convergence of the iterative sequence {xn}, there is at least one parameter sequence
converging to zero (i.e., tn → 0) in the result of Xu [8], Song and Yang [9], and Wang [10].
So the above results bring us to the following natural questions.
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Question 1. Can we obtain the strong convergence theorem without the parameter sequence
{tn} converging to zero?

Question 2. Canwe get that the sequence {xn} converges strongly to x∗ ∈ T−1(0), which solves
uniquely some variational inequalities?

In this work, motivated by the above results, we consider the following modified
regularization method for the proximal point algorithm: for an arbitrary x0 ∈ H,

zn = (I − tnF)xn + tnu + en,

xn+1 = JTcnzn, n ≥ 0,
(1.6)

where F is a k-Lipschitzian and η-strongly monotone operator on H and u is a fixed point in
H. Without the parameter sequence {tn} converging to zero, we prove that the sequence {xn}
generated by the iterative algorithm (1.6) converges strongly to x∗ ∈ T−1(0), which solves
uniquely the variational inequality 〈Fx∗ − u, x∗ − p〉 ≤ 0, for all p ∈ T−1(0). In addition, an
example is also given in order to illustrate the effectiveness of our generalizations. The results
presented in this paper can be viewed as the improvement, supplement, and extension of the
results obtained in [6–10].

2. Preliminaries

LetH be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. For the sequence {xn} in
H, we write xn ⇀ x to indicate that the sequence {xn} converges weakly to x. xn → xmeans
that {xn} converges strongly to x.

A mapping F : H → H is called k-Lipschitzian if there exists a positive constant k
such that

∥∥Fx − Fy
∥∥ ≤ k

∥∥x − y
∥∥, ∀x, y ∈ H. (2.1)

F is said to be η-strongly monotone if there exists a positive constant η such that

〈
Fx − Fy, x − y

〉 ≥ η
∥
∥x − y

∥∥2
, ∀x, y ∈ H. (2.2)

Let A be a strongly positive bounded linear operator on H, that is, there exists a
constant γ̃ > 0 such that

〈Ax, x〉 ≥ γ̃‖x‖2, ∀x ∈ H. (2.3)

A typical problem is that of minimizing a quadratic function over the set of the fixed points
of a nonexpansive mapping on a real Hilbert space H:

min
x∈Fix(W)

{
1
2
〈Ax, x〉 − 〈x, b〉

}
, (2.4)

where b is a given point in H and Fix(W) is the set of the fixed points of nonexpansive
mapping W .
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Remark 2.1 (see [11]). From the definition of A, we note that a strongly positive bounded
linear operator A is a ‖A‖-Lipschitzian and γ̃-strongly monotone operator.

Let T be a maximal monotone operator on a real Hilbert space H such that S :=
T−1(0)/= ∅. For c > 0, we use JTc to denote the resolvent of T , that is,

JTc = (I + cT)−1. (2.5)

It is well known that JTc is firmly nonexpansive and consequently nonexpansive; moreover,
S = Fix(JTc ) = {x ∈ H : x = JTc x}.

The following lemma is known as the resolvent identity of maximal monotone
operators.

Lemma 2.2 (see [8]). Let c, t > 0. Then, for any x ∈ H,

JTc x = JTt

(
t

c
x +

(
1 − t

c

)
JTc x

)
. (2.6)

In order to prove our main results, we need the following lemmas.

Lemma 2.3 (see [11]). Let F be a k-Lipschitzian and η-strongly monotone operator on a Hilbert
space H with 0 < η ≤ k and 0 < t < η/k2. Then, S = (I − tF) : H → H is a contraction with

contraction coefficient τt =
√
1 − t(2η − tk2).

Lemma 2.4 (see [12]). T is firmly nonexpansive if and only if 2T − I is nonexpansive.

Lemma 2.5 (see [13]). Let H be a Hilbert space, C a closed convex subset of H, and T : C → C
a nonexpansive mapping with Fix(T)/= ∅; if {xn} is a sequence in C weakly converging to x and if
{(I − T)xn} converges strongly to y, then (I − T)x = y.

Lemma 2.6 (see [14]). Let {xn} and {zn} be bounded sequences in Banach space E and {γn} a
sequence in [0, 1] which satisfies the following condition:

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1. (2.7)

Suppose that xn+1 = γnxn + (1 − γn)zn, n ≥ 0, and lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0.
Then, limn→∞‖zn − xn‖ = 0.

Lemma 2.7 (see [15, 16]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1 − λn)sn + λnδn + γn, n ≥ 0, (2.8)

where {λn}, {δn}, and {γn} satisfy the following conditions: (i) {λn} ⊂ [0, 1] and
∑∞

n=0 λn = ∞, (ii)
lim supn→∞δn ≤ 0 or

∑∞
n=0 λnδn < ∞, and (iii) γn ≥ 0 (n ≥ 0),

∑∞
n=0 γn < ∞. Then, limn→∞sn = 0.
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3. Main Results

Let F be a k-Lipschitzian and η-strongly monotone operator on H with 0 < η ≤ k and JTc the

resolvent of T . Let t ∈ (0, η/k2) and τt =
√
1 − t(2η − tk2) ∈ (0, 1), and consider a mapping Vt

on H defined by

Vtx = JTc [(I − tF)x + tu], x ∈ H, (3.1)

where c > 0 is a fixed constant and u ∈ H is a fixed point. It is easy to see that Vt is a
contraction. Indeed, from Lemma 2.3, we have

∥
∥Vtx − Vty

∥
∥ =

∥
∥∥JTc [(I − tF)x + tu] − JTc

[
(I − tF)y + tu

]∥∥∥

≤ ∥∥(I − tF)x − (I − tF)y
∥∥

≤ τt
∥∥x − y

∥∥,

(3.2)

for all x, y ∈ H. Hence, it has a unique fixed point, denoted by vt, which uniquely solves the
fixed point equation

vt = JTc [(I − tF)vt + tu], vt ∈ H. (3.3)

Theorem 3.1. For any c > 0 and u ∈ H, let the net {vt} be generated by (3.3). Then, as t → 0, the
net {vt} converges strongly to v∗ of S, which solves uniquely the variational inequality

〈
Fv∗ − u, v∗ − p

〉 ≤ 0, ∀ p ∈ S. (3.4)

Proof. We first show the uniqueness of a solution of the variational inequality (3.4), which is
indeed a consequence of the strong monotonicity of F. Suppose v∗ ∈ S and ṽ ∈ S both are
solutions to (3.4); then,

〈Fv∗ − u, v∗ − ṽ〉 ≤ 0, (3.5)

〈Fṽ − u, ṽ − v∗〉 ≤ 0. (3.6)

Adding (3.5) to (3.6), we get

〈Fv∗ − Fṽ, v∗ − ṽ〉 ≤ 0. (3.7)
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The strong monotonicity of F implies that v∗ = ṽ and the uniqueness is proved. Below we
use v∗ ∈ S to denote the unique solution of (3.4). Next, we prove that {vt} is bounded. Taking
p ∈ S, from (3.3) and using Lemma 2.3, we have

∥
∥vt − p

∥
∥ =

∥
∥
∥JTc [(I − tF)vt + tu] − p

∥
∥
∥

≤ ∥
∥(I − tF)vt − (I − tF)p + t

(
u − Fp

)∥∥

≤ τt
∥
∥vt − p

∥
∥ + t

∥
∥u − Fp

∥
∥,

(3.8)

that is,

∥
∥vt − p

∥
∥ ≤ t

1 − τt

∥
∥u − Fp

∥
∥. (3.9)

Observe that

lim
t→ 0+

t

1 − τt
=

1
η
. (3.10)

From t → 0, we may assume, without loss of generality, that t ≤ η/k2 − ε, where ε is
an arbitrarily small positive number. Thus, we have that t/(1 − τt) is continuous, for all
t ∈ [0, η/k2 − ε]. Therefore, we obtain

sup
{

t

1 − τt
: t ∈

(
0,

η

k2
− ε

]}
< +∞. (3.11)

From (3.9) and (3.11), we have {vt} bounded and so is {Fvt}. On the other hand, from (3.3),
we obtain

∥∥∥vt − JTc vt

∥∥∥ =
∥∥∥JTc [(I − tF)vt + tu] − JTc vt

∥∥∥

≤ ‖(I − tF)vt + tu − vt‖
= t‖u − Fvt‖ −→ 0 (t −→ 0).

(3.12)

To prove that vt → v∗, for a given p ∈ S, using Lemma 2.3, we have

∥∥vt − p
∥∥2 =

∥∥∥JTc [(I − tF)vt + tu] − p
∥∥∥
2

≤ ∥∥(I − tF)vt − (I − tF)p + t
(
u − Fp

)∥∥2

≤ τ2t
∥∥vt − p

∥∥2 + t2
∥∥u − Fp

∥∥2 + 2t
〈
(I − tF)vt − (I − tF)p, u − Fp

〉
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≤ τt
∥
∥vt − p

∥
∥2 + t2

∥
∥u − Fp

∥
∥2 + 2t

〈
vt − p, u − Fp

〉
+ 2t2

〈
Fp − Fvt, u − Fp

〉

≤ τt
∥
∥vt − p

∥
∥2 + t2

∥
∥u − Fp

∥
∥2 + 2t

〈
vt − p, u − Fp

〉
+ 2t2k

∥
∥p − vt

∥
∥
∥
∥u − Fp

∥
∥

≤ τt
∥
∥vt − p

∥
∥2 + 2t2M + 2t

〈
vt − p, u − Fp

〉
,

(3.13)

where M = max{‖u − Fp‖2, 2k‖p − vt‖‖u − Fp‖}. Therefore,

∥
∥vt − p

∥
∥2 ≤ 2t2

1 − τt
M +

2t
1 − τt

〈
vt − p, u − Fp

〉
. (3.14)

From τt =
√
1 − t(2η − tk2), we have limt→ 0(t2/(1 − τt)) = 0. Moreover, if vt ⇀ p, we have

limt→ 0((2t/(1 − τt))〈vt − p, u − Fp〉) = 0.
Since {vt} is bounded, we see that if {tn} is a sequence in (0, η/k2−ε] such that tn → 0

and vtn ⇀ ṽ, then, by (3.14), we see that vtn → ṽ. Moreover, by (3.12) and using Lemma 2.5,
we have ṽ ∈ S. We next prove that ṽ solves the variational inequality (3.4). From (3.3) and
p ∈ S, we have

∥∥vt − p
∥∥2 ≤ ∥∥(I − tF)vt + tu − p

∥∥2

=
∥∥vt − p

∥∥2 + t2‖u − Fvt‖2 + 2t
〈
vt − p, u − Fvt

〉
,

(3.15)

that is,

〈
Fvt − u, vt − p

〉 ≤ t

2
‖u − Fvt‖2. (3.16)

Now replacing t in (3.16) with tn and letting n → ∞, we have

〈
Fṽ − u, ṽ − p

〉 ≤ 0. (3.17)

That is, ṽ ∈ S is a solution of (3.4), and hence ṽ = v∗ by uniqueness. In a summary, we have
shown that each cluster point of {vt} (at t → 0) equals v∗. Therefore, vt → v∗ as t → 0.

Setting F = A in Theorem 3.1, we can obtain the following result.

Corollary 3.2. For any c > 0 and u ∈ H, let A be a strongly positive bounded linear operator
with coefficient 0 < γ̃ ≤ ‖A‖. For each t ∈ (0, γ̃/‖A‖2), let the net {vt} be generated by vt =
JTc [(I − tA)vt + tu]. Then, as t → 0, the net {vt} converges strongly to v∗ of S which solves uniquely
the variational inequality

〈
Av∗ − u, v∗ − p

〉 ≤ 0, ∀p ∈ S. (3.18)

Setting F = I and v∗ = PSu in Theorem 3.1, we can obtain the following result.
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Corollary 3.3 (Xu [8, Theorem 3.1]). For any c > 0 and u ∈ H. For each t ∈ (0, 1), let the net {vt}
be generated by vt = JTc [(1 − t)vt + tu]. Then, as t → 0, {vt} converges strongly to the projection of
u onto S; that is, limt→ 0 vt = PSu. Moreover, this limit is attained uniformly for c > 0.

The next result gives a strong convergence theorem on algorithm (1.6) with a weaker
restriction on the sequence {tn}.

Theorem 3.4. Let T be a maximal monotone operator on a Hilbert space H with S/= ∅. Let F be
a k-Lipschitzian and η-strongly monotone operator on H with 0 < η ≤ k. Let {tn} be a sequence in
(0, 1), {cn} a sequence in (0,+∞), and ε an arbitrarily small positive number. Assume that the control
conditions (C1′), (C3′), (C4′), and (C5) hold for {tn}, {cn}, and {en}

(C1′) 0 < tn ≤ η/k2 − ε, for all n ≥ n0 for some integer n0 ≥ 0.

For an arbitrary point x0 ∈ H, let the sequence {xn} be generated by (1.6). Then,

zn −→ x∗ ⇐⇒ tn(u − Fxn) −→ 0 (n −→ ∞), (3.19)

where x∗ ∈ S solves the variational inequality

〈
Fx∗ − u, x∗ − p

〉 ≤ 0, ∀p ∈ S. (3.20)

Proof. On the one hand, suppose that tn(u − Fxn) → 0 (n → ∞). We proceed with the
following steps.

Step 1. We claim that {xn} is bounded. In fact, taking p ∈ S, from (1.6) and (C1′) and using
Lemma 2.3, we have

∥∥xn+1 − p
∥∥ =

∥∥∥JTcnzn − p
∥∥∥

≤ ∥∥(I − tnF)xn + tnu + en − p
∥∥

≤ ∥∥(I − tnF)xn − (I − tnF)p + tn
(
u − Fp

)
+ en

∥
∥

≤ τtn
∥∥xn − p

∥∥ + tn
∥∥u − Fp

∥∥ + ‖en‖

≤ [1 − (1 − τtn)]
∥∥xn − p

∥∥ + (1 − τtn)
tn

1 − τtn

∥∥u − Fp
∥∥ + ‖en‖

≤ max
{∥∥xn − p

∥∥,
tn

1 − τtn

∥∥u − Fp
∥∥
}
+ ‖en‖,

(3.21)

for alln ≥ n0 for some integer n0 ≥ 0, where τtn =
√
1 − tn(2η − tnk2) ∈ (0, 1). By induction, we

have

∥∥xn − p
∥∥ ≤ max

{∥∥x0 − p
∥∥,

∥∥u − Fp
∥∥M1

}
+

n−1∑

j=0

∥∥ej
∥∥, (3.22)
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for all n ≥ n0 for some integer n0 ≥ 0, where M1 = sup{tn/(1 − τtn) : 0 < tn ≤ η/k2 − ε} < +∞.
Therefore, {xn} is bounded. We also obtain that {zn} and {Fxn} are bounded.

Step 2. We claim that limn→∞‖xn+1 − xn‖ = 0. In fact, write Jn = JTcn and Tn = 2Jn − I. Then, Jn
is firmly nonexpansive and Tn is nonexpansive (see Lemma 2.4).

Observe that

xn+1 = Jnzn =
(
I + Tn

2

)
zn

=
1
2
zn +

1
2
Tnzn

=
1
2
xn +

1
2
[tn(u − Fxn) + en + Tnzn]

=
1
2
xn +

1
2
yn,

(3.23)

where yn = tn(u − Fxn) + en + Tnzn. Therefore,

∥∥yn+1 − yn

∥∥ = ‖tn+1(u − Fxn+1) + en+1 + Tn+1zn+1 − tn(u − Fxn) − en − Tnzn‖

≤ ‖tn+1(u − Fxn+1)‖ + ‖tn(u − Fxn)‖ + ‖en+1‖ + ‖en‖ + ‖Tn+1zn+1 − Tnzn‖.
(3.24)

It follows from the resolvent identity that

‖Tn+1x − Tnx‖ = 2‖Jn+1x − Jnx‖

= 2
∥∥∥∥Jn

(
cn
cn+1

x +
(
1 − cn

cn+1

)
Jn+1x

)
− Jnx

∥∥∥∥

≤ 2
∣∣∣∣1 −

cn
cn+1

∣∣∣∣‖Jn+1x − x‖

≤
∣∣∣∣1 −

cn
cn+1

∣∣∣∣‖Tn+1x − x‖

(3.25)

for any x ∈ H. From (1.6), we get

‖zn+1 − zn‖ = ‖(I − tn+1F)xn+1 + tn+1u + en+1 − (I − tnF)xn − tnu − en‖

≤ ‖xn+1 − xn‖ + ‖tn+1(u − Fxn+1)‖ + ‖tn(u − Fxn)‖ + ‖en+1‖ + ‖en‖.
(3.26)

By (3.25) and (3.26), we have

‖Tn+1zn+1 − Tnzn‖ ≤ ‖Tn+1zn+1 − Tnzn+1‖ + ‖Tnzn+1 − Tnzn‖

≤
∣∣∣∣1 −

cn
cn+1

∣∣∣∣‖Tn+1zn+1 − zn+1‖ + ‖zn+1 − zn‖
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≤
∣
∣
∣
∣1 −

cn
cn+1

∣
∣
∣
∣‖Tn+1zn+1 − zn+1‖ + ‖xn+1 − xn‖

+ ‖tn+1(u − Fxn+1)‖ + ‖tn(u − Fxn)‖ + ‖en+1‖ + ‖en‖.
(3.27)

Substituting (3.27) into (3.24) at once gives

∥
∥yn+1 − yn

∥
∥ ≤ 2‖tn+1(u − Fxn+1)‖ + 2‖tn(u − Fxn)‖ + 2‖en+1‖

+ 2‖en‖ +
∣
∣
∣
∣1 −

cn
cn+1

∣
∣
∣
∣M2 + ‖xn+1 − xn‖,

(3.28)

that is,

∥∥yn+1 − yn

∥∥ − ‖xn+1 − xn‖ ≤ 2‖tn+1(u − Fxn+1)‖ + 2‖tn(u − Fxn)‖ + 2‖en+1‖

+ 2‖en‖ +
∣∣∣∣1 −

cn
cn+1

∣∣∣∣M2,
(3.29)

where M2 = sup{‖Tn+1zn+1 − zn+1‖, n ≥ 0}. Observing tn(u − Fxn) → 0, en → 0, and |1 −
(cn/cn+1)| → 0 (n → ∞), it follows that

lim sup
n→∞

(∥∥yn+1 − yn

∥∥ − ‖xn+1 − xn‖
) ≤ 0. (3.30)

From (3.23) and using Lemma 2.6, we have limn→∞‖yn − xn‖ = 0. Therefore,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

1
2
∥∥yn − xn

∥∥ = 0. (3.31)

Step 3. We claim that limn→∞‖xn − JTc xn‖ = 0. Since lim infn→∞cn > 0, there exist α > 0 and
a positive integer N such that for all n ≥ N, cn ≥ α. From Lemma 2.2, for each c ∈ (0, α), we
have

∥∥∥Jnxn − JTc xn

∥∥∥ =
∥∥∥∥J

T
c

(
c

cn
xn +

(
1 − c

cn

)
Jnxn

)
− JTc xn

∥∥∥∥

≤
∥∥∥∥
c

cn
xn +

(
1 − c

cn

)
Jnxn − xn

∥∥∥∥

=
∣∣∣∣1 −

c

cn

∣∣∣∣‖Jnxn − xn‖

≤ ‖Jnxn − xn+1‖ + ‖xn+1 − xn‖.

(3.32)

Observe that

‖Jnxn − xn+1‖ ≤ ‖xn − zn‖ ≤ ‖tn(u − Fxn)‖ + ‖en‖ −→ 0. (3.33)
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Thus, it follows from (3.32), (3.33), and Step 2 that

lim
n→∞

∥
∥
∥Jnxn − JTc xn

∥
∥
∥ = 0. (3.34)

Since ‖xn − JTc xn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Jnxn‖ + ‖Jnxn − JTc xn‖, then

lim
n→∞

∥
∥
∥xn − JTc xn

∥
∥
∥ = 0. (3.35)

Step 4.We claim that lim supn→∞〈xn−x∗, u−Fx∗〉 ≤ 0, where x∗ = limt→ 0 vt and vt is defined
by (3.3). Since xn is bounded, there exists a subsequence {xnk} of {xn} which converges
weakly to ω. From Step 3, we obtain JTc xn ⇀ ω. From Lemma 2.5, we have ω ∈ S. Hence,
by Theorem 3.1, we have

lim sup
n→∞

〈xn − x∗, u − Fx∗〉 = lim
k→∞

〈xnk − x∗, u − Fx∗〉 = 〈ω − x∗, u − Fx∗〉 ≤ 0. (3.36)

Step 5. We claim that {zn} converges strongly to x∗ ∈ S. From (1.6), for an appropriate con-
stant γ > 0, we have

‖xn+1 − x∗‖2 = ‖Jnzn − x∗‖2

≤ ‖zn − x∗‖2

= ‖(I − tnF)xn + tnu + en − x∗‖2

≤ ‖(I − tnF)xn + tnu − x∗‖2 + γ‖en‖

≤ ‖(I − tnF)xn − (I − tnF)x∗ + tn(u − Fx∗)‖2 + γ‖en‖

≤ τ2tn‖xn − x∗‖2 + t2n‖u − Fx∗‖2 + 2tn〈(I − tnF)xn − (I − tnF)x∗, u − Fx∗〉 + γ‖en‖

≤ τtn‖xn − x∗‖2 + t2n‖u − Fx∗‖2 + 2tn〈xn − x∗ − tnFxn + tnu, u − Fx∗〉

+ 2t2n〈Fx∗ − u, u − Fx∗〉 + γ‖en‖

≤ τtn‖xn − x∗‖2 + 2tn〈xn − x∗, u − Fx∗〉 + 2tn‖tn(u − Fxn)‖‖u − Fx∗‖ + γ‖en‖

≤ [1 − (1 − τtn)]‖xn − x∗‖2

+ (1 − τtn)[2M1〈xn − x∗, u − Fx∗〉 + 2M1‖tn(u − Fxn)‖‖u − Fx∗‖] + γ‖en‖,
(3.37)

for all n ≥ n0 for some integer n0 ≥ 0. For every n ≥ n0, put μn = 1 − τtn and δn = 2M1〈xn −
x∗, u − Fx∗〉 + 2M1‖tn(u − Fxn)‖‖u − Fx∗‖. It follows that

‖xn+1 − x∗‖2 ≤ (
1 − μn

)‖xn − x∗‖2 + μnδn + γ‖en‖, ∀n ≥ n0. (3.38)



12 Journal of Applied Mathematics

It is easy to see that
∑∞

n=1 μn = ∞ and lim supn→∞δn ≤ 0. Hence, by Lemma 2.7, the sequence
{xn} converges strongly to x∗ ∈ S. Observe that

‖zn − x∗‖ = ‖(I − tnF)xn + tnu + en − x∗‖
≤ ‖xn − x∗‖ + ‖tn(u − Fxn)‖ + ‖en‖.

(3.39)

Thus, it follows that the sequence {zn} converges strongly to x∗ ∈ S.
On the other hand, suppose that zn → x∗ ∈ S as n → ∞. From (1.6), we have

‖xn+1 − x∗‖ = ‖Jnzn − x∗‖ ≤ ‖zn − x∗‖ −→ 0. (3.40)

Therefore,

‖tn(u − Fxn)‖ = ‖zn − xn − en‖
≤ ‖zn − xn‖ + ‖en‖
≤ ‖zn − x∗‖ + ‖xn − x∗‖ + ‖en‖ −→ 0.

(3.41)

Setting F = I and x∗ = PSu in Theorem 3.4, we can obtain the following result.

Corollary 3.5. Let T be a maximal monotone operator on a Hilbert space H with S/= ∅. Let {tn} be
a sequence in (0, 1), {cn} a sequence in (0,+∞), and ε an arbitrarily small positive number. Assume
that the control conditions (C1′′), (C3′), (C4′), and (C5) hold for {tn}, {cn}, and {en}.

(C1′′) 0 < tn ≤ 1 − ε, for all n ≥ n0 for some integer n0 ≥ 0.

For an arbitrary point x0 ∈ H, let the sequence {xn} be generated by

zn = (1 − tn)xn + tnu + en,

xn+1 = JTcnzn, n ≥ 0.
(3.42)

Then,

zn −→ PSu ⇐⇒ tn(u − xn) −→ 0 (n −→ ∞). (3.43)

Corollary 3.6 ([Wang [10], Theorem 4]). Let {cn}, {tn}, and {en} satisfy (C1), (C3), (or (C3′)),
(C4′) and (C5). In addition, if S/= ∅, then the sequence generated by (1.5) converges strongly to PSu.

Proof. Since limn→∞tn = 0, it is easy to see that tn ≤ η/k2 − ε, for all n ≥ n0 for some integer
n0 ≥ 0. Without loss of generality, we assume that 0 < tn ≤ η/k2 − ε, for all n ≥ n0 for some
integer n0 ≥ 0. Repeating the same argument as in the proof of Theorem 4 in Wang [10], we
know that {xn} is bounded. Thus, we have that tn(u − xn) → 0. Therefore, all conditions
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of Corollary 3.5 are satisfied. Using Corollary 3.5, we have that {zn} converges strongly to
PSu ∈ S, with zn = (1 − tn)xn + tnu + en. Therefore,

‖xn+1 − PSu‖ ≤ ‖zn − PSu‖ −→ 0. (3.44)

Remark 3.7. Corollary 3.5 is more general than Theorem 4 of Wang [10]. The following
example is given in order to illustrate the effectiveness of our generalizations.

Example 3.8. Let H = R be the set of real numbers, u = 0 and cn = 1/2 for all n ≥ 0. Define
a maximal monotone operator T as follows: Tx = 2x, for all x ∈ R. It is easy to see that
JTcn = (1/2)I and S = {0}. Given sequences {tn} and {en}, tn = 1/2 and en = 0, for all n ≥ 0.
For an arbitrary x0 ∈ R, let {xn} be defined by (3.42), that is,

zn =
1
2
xn,

xn+1 =
1
2
zn =

1
4
xn, n ≥ 0.

(3.45)

Observe that

‖xn+1 − 0‖ =
∥∥∥∥
1
4
xn − 0

∥∥∥∥ =
1
4
‖xn − 0‖. (3.46)

Hence, we have ‖xn+1 − 0‖ = (1/4)n+1‖x0 − 0‖ for all n ≥ 0. This implies that {xn} converges
strongly to 0 = PS0. Thus,

‖tn(u − xn)‖ =
1
2
‖xn‖ −→ 0 (n −→ ∞). (3.47)

Furthermore, it is easy to see that there hold the following:

(B1) 0 < tn = 1/2 ≤ 1 − ε, for alln ≥ n0 for some integer n0 ≥ 0,

(B2)
∑∞

n=0 tn =
∑∞

n=0(1/2) = ∞,

(B3) lim infn→∞cn = 1/2 > 0 and limn→∞|1 − (cn/cn+1)| = 0,

(B4)
∑∞

n=0 ‖en‖ =
∑∞

n=0 0 = 0 < ∞.

Hence there is no doubt that all conditions of Corollary 3.5 are satisfied. Since tn =
1/2 � 0, the condition tn → 0 of Wang [10, Theorem 4] is not satisfied. So, by Corollary 3.5,
we obtain that the sequence {xn} and {zn} converges strongly to zero but Theorem 4 of Wang
[10] cannot be applied to {xn} and {zn} in this example.
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