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A class of discrete-time system modelling a network with two neurons is considered. First, we
investigate the global stability of the given system. Next, we study the local stability by techniques
developed by Kuznetsov to discrete-time systems. It is found that Neimark-Sacker bifurcation (or
Hopf bifurcation for map) will occur when the bifurcation parameter exceeds a critical value.
A formula determining the direction and stability of Neimark-Sacker bifurcation by applying
normal form theory and center manifold theorem is given. Finally, some numerical simulations
for justifying the theoretical results are also provided.

1. Introduction

Since one of the models with electric circuit implementation was proposed by Hopfield [1],
the dynamical behaviors (including stability, instability, periodic oscillatory, bifurcation, and
chaos) of the continuous-time neural networks have received increasing interest due to their
promising potential applications in many fields, such as signal processing, pattern recog-
nition, optimization, and associative memories (see [2–5]).

For computer simulation, experimental or computational purposes, it is common to
discrete the continuous-time neural networks. Certainly, the discrete-time analog inherits the
dynamical characteristics of the continuous-time neural networks under mild or no restric-
tion on the discretional step size and also remains functionally similar to the continuous-
time system and any physical or biological reality that the continuous-time system has.
We refer to [6, 7] for related discussions on the importance and the need for discrete-time
analog to reflect the dynamics of their continuous-time counterparts. Recently, Zhao et al.
[8] discussed the stability and Hopf bifurcation on discrete-time Hopfield neural networks



2 Abstract and Applied Analysis

with delay. Yu and Cao [9] studied the stability and Hopf bifurcation on a four-neuron BAM
neural network with time delays. Xiao and Cao [10] considered the stability and pitchfork
bifurcation, flip bifurcation, and Neimark-Sacker bifurcation. Yuan et al. [11] investigated the
stability and Neimark-Sacker bifurcation of a discrete-time neural network. Yuan et al. [12]
made a discussion on the stability and Neimark-Sacker bifurcation on a discrete-time neural
network. For more knowledge about neural networks, one can see [13–18].

It will be pointed that two neurons have the same transfer function f in [11] and two
neurons have different transfer functions f in [12] (i.e., the transfer function of the first neu-
ron is f1 and the transfer function of the second neuron is f2). In this paper, we assume that
there are same transfer function f1 in the first equation and there are same transfer function
f2 in the second equation, then we obtain the following discrete-time neural network model
with self-connection in the form:

x1(n + 1) = βx1(n) + a11f1(x1(n)) + a12f1(x2(n)),

x2(n + 1) = βx2(n) + a21f2(x1(n)) + a22f2(x2(n)),
(1.1)

where xi (i = 1, 2) denotes the activity of the ith neuron, β ∈ (0, 1) is internal delay of neurons,
the constants aij (i, j = 1, 2) denote the connection weights, fi : R → R is a continuous trans-
fer function, and fi(0) = 0 (i = 1, 2).

The discrete-time system (1.1) can be regarded as a discrete analogy of the differential
system

ẋ1(t) = −μx1(t) +w11f1(x1(t)) +w12f1(x2(t)),

ẋ2(t) = −μx2(t) +w21f2(x1(t)) +w22f2(x2(t)),
(1.2)

or the system with a piecewise constant arguments:

ẋ1(t) = −μx1(t) +w11f1(x1([t])) +w12f1(x2([t])),

ẋ2(t) = −μx2(t) +w21f2(x1([t])) +w22f2(x2([t])),
(1.3)

where μ > 0 and [·] denotes the greatest integer function. For the method of discrete analogy,
we refer to [19–21]. The motivation of this research is system (1.1)which includes the discrete
version of system (1.2) and (1.3). On the other hand, the wide application of differential equa-
tions with piecewise constant argument in certain biomedical models [22] andmuch progress
have been made in the study of system with the piecewise arguments since the pioneering
work of Cooke and Wiener [23] and Shah and Wiener [24].

In this paper, we investigate the nonlinear dynamical behavior of a discrete-time
system of two neurons, namely, (1.1), and prove that Neimark-Sacker bifurcationwill occur in
the discrete-time system. Using techniques developed by Kuznetsov to discrete-time systems
[25], we obtain the stability of the bifurcating periodic solution and the direction of Neimark-
Sacker bifurcation.

The organization of this paper is as follows. In Section 2, we will discuss the stability of
the trivial solutions and the existence of Neimark-Sacker bifurcation. In Section 3, a formula
for determining the direction of Neimark-Sacker bifurcation and the stability of bifurcating
periodic solution will be given by using the normal form method and the center manifold
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theory for discrete-time system developed by Kuznetsov [25]. In Section 4, numerical sim-
ulations aimed at justifying the theoretical analysis will be reported.

2. Stability and Existence of Neimark-Sacker Bifurcation

In this section, we discuss the global and local stability of the equilibrium (0, 0) of system
(1.1). In order to prove our results, we need the following hypothesis:

(H1) fi : R → R is globally Lipschitz with Lipschitz constant Li > 0, (i = 1, 2), that is,

∣
∣fi(u) − fi(v)

∣
∣ ≤ Li|u − v| for u, v ∈ R. (2.1)

Theorem 2.1. Let Δ = (|a11|L1 + |a22|L2)
2 + 4|a12||a21|L1L2. Suppose that hypothesis (H1) and the

inequality

∣
∣
∣2β + |a11|L1 + |a22|L2 ±

√
Δ
∣
∣
∣ < 2 (2.2)

are satisfied, then (x1(n), x2(n)) → (0, 0) as n → ∞.

Proof. It follows from system (1.1) that

(|x1(n + 1)|
|x2(n + 1)|

)

≤
(
β + |a11|L1 |a12|L1

|a21|L2 β + |a22|L2

)(|x1(n)|
|x2(n)|

)

. (2.3)

Set

M =
(
β + |a11|L1 |a12|L1

|a21|L2 β + |a22|L2

)

. (2.4)

Clearly, the eigenvalues of M are given by

λ1,2 =
2β + |a11|L1 + |a22|L2 ±

√
Δ

2
, (2.5)

which implies that |λ1,2| < 1. Thus the eigenvalues of M are inside the unit circle and
(x1(n), x2(n)) → (0, 0) as n → ∞.

Next, we will analyze the local stability of the equilibrium (0, 0). For most of models
in the literature, including the ones [20, 26, 27], the transfer function f is f(u) = tanh(cu).
However, we only make the following assumption on functions fi:

(H2) fi ∈ C1(R) and fi(0) = 0 (i = 1, 2).
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For the sake of simplicity and the need of discussion, we define the following para-
meters:

P1 = β + a11f
′
1(0),

P2 = β + a22f
′
2(0),

D = −4a12a21f
′
1(0)f

′
2(0).

(2.6)

Theorem 2.2. The zero solution of (1.1) is asymptotically stable if (H2) is satisfied and (P1, P2, D) ∈
X0, where

X0 = X1 ∩X2 ∪X3,

X1 =
{

(P1, P2, D) ∈ R3, D > 4(P1 + P2 − P1P2 − 1), P1 + P2 < 2, (P1 − P2)2 ≥ D
}

,

X2 =
{

(P1, P2, D) ∈ R3, D > −4(P1 + P2 + P1P2 + 1), P1 + P2 > −2, (P1 − P2)2 ≥ D
}

,

X3 =
{

(P1, P2, D) ∈ R3, D < 4(1 − P1P2), (P1 − P2)2 < D
}

.

(2.7)

Proof. Under (H2), using Taylor expansion, we can expand the right-hand side of system
(1, 1) into first-, second-, third-, and other higher-order terms about the equilibrium (0, 0), and
we have

(
x1(n + 1)
x2(n + 1)

)

=
(
β + a11f

′
1(0) a12f

′
1(0)

a21f
′
2(0) β + a22f

′
2(0)

)(
x1(n)
x2(n)

)

+
(
F1(x,D)
F2(x,D)

)

, (2.8)

where x = (x1, x2)
T ∈ R2, and

F1(x,D) =
a11f

′′
1 (0)
2

x2
1(n) +

a12f
′′
1 (0)
2

x2
2(n) +

a11f
′′′
1 (0)
6

x3
1(n) +

a12f
′′′
1 (0)
6

x3
2(n) + · · · ,

F2(x,D) =
a21f

′′
2 (0)
2

x2
1(n) +

a22f
′′
2 (0)
2

x2
2(n) +

a21f
′′′
2 (0)
6

x3
1(n) +

a22f
′′′
2 (0)
6

x3
2(n) + · · · .

(2.9)

The associated characteristic equation of its linearized system is

λ2 − (P1 + P2)λ + P1P2 +
1
4
D = 0. (2.10)

In order to make the equilibrium (0, 0) be locally asymptotically stable, it is necessary and
sufficient that all the roots of (2.10) are inside the unit circle. Hence, we will discuss the
following two cases.
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Case 1 ((P1 − P2)
2 ≥ D). In this case, the roots of (2.10) are given by

λ1,2 =
1
2

[

P1 + P2 ±
√

(P1 − P2)2 −D

]

. (2.11)

Obviously, we obtained that the modulus of eigenvalues λ1,2 are less than 1 if and only
if (P1, P2, D) ∈ X1

⋃
X2, where

X1 =
{

(P1, P2, D) ∈ R3, D > 4(P1 + P2 − P1P2 − 1), P1 + P2 < 2, (P1 − P2)2 ≥ D
}

,

X2 =
{

(P1, P2, D) ∈ R3, D > −4(P1 + P2 + P1P2 + 1), P1 + P2 > −2, (P1 − P2)2 ≥ D
}

.

(2.12)

Thus, we obtain that the eigenvalues λ1,2 are inside the unit circle when (P1, P2, D) ∈ X1
⋃
X2

is satisfied.
Case 2 ((P1 − P2)

2 < D). In this case, the characteristic equation of (2.10) has a pair of
conjugate complex roots:

λ1,2 =
1
2

[

P1 + P2 ± i
√

D − (P1 − P2)2
]

. (2.13)

It is easy to verify that |λ1,2| < 1 if and only if (P1, P2, D) ∈ X3.
Combining case 1 with case 2 yields that the the eigenvalues λ1,2 are inside the unit

circle for (P1, P2, D) ∈ X0 = X1
⋃
X2

⋃
X3 and the zero solution of (1.1) is asymptotically

stable.
In what follows, we will choose D as the bifurcation parameter to study the Neimark-

Sacker bifurcation at (0, 0). For (P1 − P2)
2 < D, we denote

λ(D) =
1
2

[

P1 + P2 + i
√

D − (P1 − P2)2
]

. (2.14)

Then the eigenvalues of (2.10) are conjugate complex λ(D) and λ(D). The modulus of eigen-
value is |λ(D)| = (1/2)

√

D + 4P1P2. Clearly, |λ(D)| = 1 if and only if

D = D∗ = 4(1 − P1P2). (2.15)

When the parameter D passes through such critical value of D∗ = 4(1 − P1P2), a Neimark-
Sacker bifurcation may be expected. Obviously, we have

|λ(D)| < 1 for (P1 − P2)2 < D < D∗. (2.16)

Since themodulus of eigenvalue |λ(D∗)| = 1, we know thatD∗ is a critical valuewhich destroi-
es the stability of (0, 0). The following lemma is helpful to study bifurcation of (0, 0).
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Lemma 2.3. If (H2) and 0 < P1 + P2 < 2 are satisfied, then

(i) ((d/dD)|λ(D)|)D=D∗ > 0,

(ii) λk(D∗)/= 1, for k = 1, 2, 3, 4,

where λ(D) and D = D∗ are given by (2.14) and (2.15), respectively.

Proof. Under the assumption 0 < P1 + P2 < 2, we have

(
d

dD
|λ(D)|

)

D=D∗
=

1
8
> 0, (2.17)

which implies (i) holds. On the other hand, λk(D∗) = 1 for some k ∈ {1, 2, 3, 4} if and only if
the argument λ(D∗) ∈ {0,±π/2,±2π/3, π}. Since |λ(D∗)| = 1, Reλ(D∗) > 0), Imλ(D∗) > 0,
it follows that argλ(D∗)�∈{0,±π/2,±2π/3, π}. Hence the condition (ii) of Lemma 2.3 is also
satisfied. The proof is complete.

By Lemma 2.2 in [28], we obtain the following results.

Theorem 2.4. Suppose that (H2) and 0 < P1 + P2 < 2 are satisfied, then one has the following.

(i) If (P1 − P2)
2 < D < D∗, then the equilibrium (0, 0) is asymptotically stable.

(ii) If D > D∗, then the equilibrium (0, 0) is unstable.

(iii) The Neimark-Sacker bifurcation occurs atD = D∗. That is, system (1.1) has a unique close
invariant curve bifurcating from the equilibrium (0, 0).

Proof. Obviously, we have |λ| < 1 for (P1 −P2)
2 < D < D∗ and |λ| > 1 forD > D∗, which means

(i) and (ii) are true. The conclusions in Lemma 2.3 indicate the transversality condition for the
Neimark-Sacker bifurcation is satisfied, so the Neimark-Sacker bifurcation occurs at D = D∗.
Conclusion (iii) follows.

3. Direction and Stability of Neimark-Sacker Bifurcation

In the above section, we have shown that Neimark-Sacker bifurcation occurs at some value
D = D∗ for system (1.1) under condition (H2) and (P1 − P2)

2 < D, 0 < P1 + P2 < 2. In this sec-
tion, by employing the normal form method and the center manifold theory for discrete-time
system developed by Kuznetsov [25], we will study the direction and stability of Neimark-
Sacker bifurcation. In what follows, we make the following further assumption:

(H3) f ∈ C3(R).
Now system (1.1) can be rewritten as

(
x1(n + 1)
x2(n + 1)

)

�−→ A(D)
(
x1(n)
x2(n)

)

+
(
F1(x,D)
F2(x,D)

)

, (3.1)
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where x = (x1, x2)
T ∈ R2 and

A(D) =
(
β + a11f

′
1(0) a12f

′
1(0)

a21f
′
2(0) β + a22f

′
2(0)

)

,

F1(x,D) =
a11f

′′
1 (0)
2

x2
1(n) +

a12f
′′
1 (0)
2

x2
2(n) +

a11f
′′′
1 (0)
6

x3
1(n) +

a12f
′′′
1 (0)
6

x3
2(n) + · · · ,

F2(x,D) =
a21f

′′
2 (0)
2

x2
1(n) +

a22f
′′
2 (0)
2

x2
2(n) +

a21f
′′′
2 (0)
6

x3
1(n) +

a22f
′′′
2 (0)
6

x3
2(n) + · · · .

(3.2)

Denote

A = A(D) =
(
β + a11f

′
1(0) a12f

′
1(0)

a21f
′
2(0) β + a22f

′
2(0)

)

. (3.3)

Suppose that q ∈ C2 is an eigenvector of A(D) corresponding to eigenvalue λ(D) given by
(2.14) and p ∈ C2 is an an eigenvector of AT (D) corresponding to eigenvalue λ(D). Then

A(D)q(D) = λ(D)q(D), AT (D)q(D) = λ(D)q(D). (3.4)

By direct calculation, we obtain that

q ∼
(

1,−2βf
′(0)
r

)T

, p ∼
(

1,−2
r

)T

, (3.5)

where

r = −1
2

[

P1 + P2 ±
√

D − (P1 − P2)2i
]

− (

β + a22f
′
2(0)

) def= A1 + iA2. (3.6)

For the eigenvector q, to normalize p, let

p =
|r|2

|r|2 + a12a21f
′
1(0)f

′
2(0)

(

1,−2
r

)T

. (3.7)

We have 〈q, p〉 = 1, where 〈·〉 means the standard scalar product in C2 : 〈q, p〉 = p1q1 + p2q2.
Any vector x ∈ R2 can be represented for D near D∗ as

x = zq(D) + zq(D). (3.8)

For some complex z, obviously,

z =
〈

p(D), x
〉

. (3.9)
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Thus, system (3.1) can be transformed for D near D∗ into the following form:

ż = λ(D)z + g(z, z,D), (3.10)

where λ(D) that can be written as λ(D) = (1 + ϕ(D))eiθ(D)(ϕ(D) is a smooth function with
ϕ(D∗) = 0) and

g(z, z,D) =
∑

k+l≥2

1
k!l!

gkl(D)zkzl. (3.11)

We know that Fi (i = 1, 2) in (3.1) can be expanded as

F1(ξ,D) =
a11f

′′
1 (0)
2

ξ21 +
a12f

′′
1 (0)
2

ξ22 +
a11f

′′′
1 (0)
6

ξ31 +
a12f

′′′
1 (0)
6

ξ32 + · · · ,

F2(ξ,D) =
a21f

′′
2 (0)
2

ξ21 +
a22f

′′
2 (0)
2

ξ22 +
a21f

′′′
2 (0)
6

ξ31 +
a22f

′′′
2 (0)
6

ξ32 + · · · .
(3.12)

It follows that

B1
(

x, y
)

=
2∑

j,k

∂2F1(ξ,D∗)
∂ξj∂ξk

∣
∣
∣
∣
∣
∣
ξ=0

xjxk = a11f
′′
1 (0)x1y1 + a12f

′′
1 (0)x2y2, (3.13)

B2
(

x, y
)

=
2∑

j,k

∂2F2(ξ,D∗)
∂ξj∂ξk

∣
∣
∣
∣
∣
∣
ξ=0

xjxk = a21f
′′
2 (0)x1y + a22f

′′
2 (0)x2y2, (3.14)

C1
(

x, y, u
)

=
2∑

j,k,l

∂3F1(ξ,D∗)
∂ξj∂ξk∂ξl

∣
∣
∣
∣
∣
∣
ξ=0

xjxkul

=
(

a11f
′′′
1 (0)x1y1u1 + a12f

′′′
1 (0)

)

x2y2u2,

(3.15)

C2
(

x, y, u
)

=
2∑

j,k,l

∂3F2(ξ,D∗)
∂ξj∂ξk∂ξl

∣
∣
∣
∣
∣
∣
ξ=0

xjxkul

=
(

a21f
′′′
1 (0)x1y1u1 + a22f

′′′
1 (0)

)

x2y2u2.

(3.16)

By (3.11)–(3.16) and the following formulas:

g20(D∗) =
〈

p, B
(

q, q
)〉

, g11(D∗) =
〈

p, B
(

q, q
)〉

,

g02(D∗) =
〈

p, B
(

q, q
)〉

, g21(D∗) =
〈

p, B
(

q, q, q
)〉

,
(3.17)
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we obtain

g11(D∗) = g02(D∗) = g20(D∗)

=
r2

r2 + a12a21f
′
1(0)f

′
2(0)

(

a11f
′′
1 (0) + a12f

′′
1 (0)

)

+
r2

r2 + a12a21f
′
1(0)f

′
2(0)

× a12f
′
1

r
× (

a21f
′′
2 (0) + a22f

′′
2 (0)

)

=
r2
(

a11f
′′
1 (0) + a12f

′′
1 (0)

)

+ ra21f
′
1(0)

(

a21f
′′
2 (0) + a22f

′′
2 (0)

)

r2 + a11a12f
′
1(0)f

′
2(0)

=
Q1 + iQ2

T1 + iT2
=

(Q1T1 +Q2T2) + i(Q2T1 −Q1T2)
T2
1 + T2

2

,

(3.18)

where

T1 = A2
1 −A2

2 + a12a21f
′
1(0)f

′
2(0), T2 = 2A1A2,

Q1 =
(

A2
1 −A2

2

)(

a11f
′′
1 (0) + a12f

′′
1 (0)

)

+A1a12f
′
1(0)

(

a21f
′′
2 (0) + a22f

′′
2 (0)

)

,

Q2 = 2A1A2
(

a11f
′′
1 (0) + a12f

′′
1 (0)

)

+A2a12f
′
1(0)

(

a21f
′′
2 (0) + a22f

′′
2 (0)

)

,

A1 =
1
2
(P1 + P2) −

(

β + a22f
′
2(0)

)

, A2 =
1
2

√

D − (P1 − P2)2i.

(3.19)

Noting that e−iθ(D
∗) = λ(D∗), we can compute the coefficient a(D∗) which determines the

direction of the appearance of the invariant curve in system (1.1) exhibiting the Neimark-
Sacker bifurcation:

a(D∗) = Re

[

e−iθ(D
∗)g21
2

]

− Re

[(

1 − 2eiθ(D
∗))e−iθ(D

∗)

2
(

1 − eiθ(D∗)
) g20g11

]

− 1
2
∣
∣g11

∣
∣
2 − 1

4
∣
∣g02

∣
∣
2
.

(3.20)

We calculate every term, respectively,

(i)

Re

[

e−iθ(D
∗)g21
2

]

=
1

4
(

M2
1 +M2

2

)

×
[

(P1 + P2)(B1M1 + B2M2)

× (B2M1 + B1M2)
√

D∗ − (P1 − P2)2
]

,

(3.21)
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where

B1 = a11f
′′′
1 (0)

(

A4
1 −A4

2

)

+ a12f
′′′
1 (0)

(

a21f
′
2(0)

)3
A1

+ a12f
′
1(0)

[

a21f
′′′
1 (0)

(

A2
1 +A2

2

)

A1 + a22f
′′′
2 (0)

(

a21f
′
2(0)

)3
]

,

B2 = 2a11f
′′′
1 (0)A1A2

(

A2
1 +A2

2

)

+ a12f
′′′
1 (0)

(

a21f
′
2(0)

)3
A2

+ a12a21f
′′′
1 (0)A1

(

A2
1 +A2

2

)

,

M1 =
(

A2
1 +A2

2

)[

A2
1 −A2

2 + a12a21f
′
1(0)f

′
2(0)

]

,

M2 = 2A1A2

(

A2
1 +A2

2

)

,

(3.22)

(ii)

Re

[(

1 − 2eiθ(D
∗))e−2iθ(D

∗)

2
(

1 − eiθ(D∗)
) g20g11

]

=
K1

K2
, (3.23)

where

K1 =
[

(Q1T1 +Q2T2)2 − (Q2T1 −Q1T2)2
]

×
[

(1 − P1 − P2)
(

2P 2
1 + 2P 2

2 −D∗
)

− 2(P1 + P2)
(

D∗ − (P1 − P2)2
)]

+ 2(Q1T1 +Q2T2)(Q2T1 −Q1T2)

×
[(

2P 2
1 + 2P 2

2 −D∗
)√

D∗ − (P1 − P2)2 + 2(1 − P1 − P2)

×(P1 + P2)
√

D∗ − (P1 − P2)2
]

,

K2 = 4
(

T2
1 + T2

2

)2[

(2 − P1 − P2)2 +D∗ − (

P1 − p2
)2
]

,

(3.24)

(iii)

1
2
∣
∣g11

∣
∣
2 − 1

4
∣
∣g02

∣
∣
2 =

1
4
∣
∣g11

∣
∣
2 =

1
4

∣
∣
∣
∣
∣

(Q1T1 +Q2T2) + i(Q2T1 −Q1T2)
(

T2
1 + T2

1

)

∣
∣
∣
∣
∣

2

=
(Q1T1 +Q2T2)2 + (Q2T1 −Q1T2)2

4
(

T2
1 + T2

1

)2
.

(3.25)
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Figure 1: The equilibrium (0, 0) is asymptotically stable. The initial value and parameter D are (2, 3) and
38/15, respectively.

Thus

a(D∗) =
1

4
(

M2
1 +M2

2

) (P1 + P2)(B1M1 + B2M2)(B2M1 + B1M2)

×
√

D∗ − (P1 − P2)2 +
K1

K2
+
(Q1T1 +Q2T2)2 + (Q2T1 −Q1T2)2

4
(

T2
1 + T2

1

)2
.

(3.26)

Theorem 3.1. Suppose that condition (H3) holds and fi(0) = 0, (P1 − P2)
2 < D, 0 < P1 + P2 < 2,

then the direction of the Neimark-Sacker bifurcation and stability of bifurcating periodic solution can
be determined by the sign of a(D∗). In fact, if a(D∗) < 0(>0), then the Neimark-Sacker bifurcation is
supercritical (subcritical) and the bifurcating periodic solution is asymptotically stable (unstable),
where D∗ is given by (2.15).

Remark 3.2. This method is introduced by Kuznetsov in [25].

4. Numerical Examples

In this section, we give numerical simulations to support our theoretical analysis. Let β =
1/2, a11 = 1, a12 = −1, a22 = −1, f1(u) = sinu, and f2(u) = arctan(u/3) in system (1.1);
namely, system (1.1) has the following form:

x1(n + 1) =
1
2
x1(n) + sin(x1(n)) − sin(x2(n)),

x2(n + 1) =
1
2
x2(n) + a21 arctan

x1(n)
3

− arctan
x2(n)
3

.

(4.1)
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Figure 2: The equilibrium (0, 0) is asymptotically stable. The initial value and parameter D are (2, 3) and
38/15, respectively.
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Figure 3: The equilibrium (0, 0) is asymptotically stable. The initial value and parameter D are (2, 3) and
38/15, respectively.

By the simple calculation, we obtain

f ′
1(0) = 1, f ′′

1 (0) = 0, f ′′′
1 (0) = −1, f ′

2(0) =
1
3
, f ′′

2 (0) = − 2
27

, f ′′′
2 (0) = 0,

P1 = β + a11f
′
1(0) = −3

2
, P2 = β + a22f

′
2(0) =

1
6
, D∗ = 4(1 − P1P2) = 5.

(4.2)
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Figure 4: The equilibrium (0, 0) is asymptotically stable. The initial value and parameter D are (2, 3) and
38/15, respectively.
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Figure 5: An invariant closed circle bifurcates from equilibrium (0, 0). The initial value and parameter D
are (2, 3) and 14/3, respectively.

Choose a21 = 0.4 so thatD = 38/15 < D∗ = 3, (P1, P2, D) ∈ X0. By Theorem 2.4, we know that
the origin is asymptotically stable. The corresponding waveform and phase plots are shown
in Figures 1, 2, 3, and 4. Choose a21 = 4, then D = 14/3 > D∗ = 3. By Theorem 2.4, we know
that a Neimark-Sacker bifurcation occurs when D = D∗ = 3. By a series of complicated
computation, we obtain g20 = g11 = g02 = 0, a(D∗) ≈ −1.214 < 0. By Theorem 3.1, we know
that the periodic solution is stable. The corresponding phase plot is shown in Figures 5, 6, 7,
and 8.

5. Conclusions

The discrete-time delay system of neural networks provides some dynamical behaviors
which enrich the theory of continuous system and have potential applications in neural net-
works. Although the system discussed in this paper is quite simple, it is potentially useful
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Figure 6: An invariant closed circle bifurcates from equilibrium (0, 0). The initial value and parameter D
are (2, 3) and 14/3, respectively.

2

0.5

0

−0.5

−1

−2

1.5

1

−1.5

−2.5

2.5

20.50−0.5−1−2 1.51−1.5

x
2(
n
)

x1(n)

Figure 7: An invariant closed circle bifurcates from equilibrium (0, 0). The initial value and parameter D
are (2, 3) and 14/3, respectively.

applications as the complexity which has been carried over to the other models with delay. By
choosing a proper bifurcation parameter, we have shown that a Neimark-Sacker bifurcation
occurs when this parameter passes through a critical value. We have also determined the
direction of the Neimark-Sacker bifurcation and the stability of periodic solutions by apply-
ing the normal form theory and the center manifold reduction. Our simulation results have
verified and demonstrated the correctness of the theoretical results. Our work is a excellent
complementary to the known results [11, 12] in the literatures.
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[16] J. Lü and G. Chen, “A time-varying complex dynamical network model and its controlled syn-
chronization criteria,” IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 841–846, 2005.
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