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A nonlinear generalization of the Camassa-Holm equation is investigated. By making use of the
pseudoparabolic regularization technique, its local well posedness in Sobolev space HS(R) with
s > 3/2 is established via a limiting procedure. Provided that the initial value u0 satisfies the sign
condition and u0 ∈ Hs(R) (s > 3/2), it is shown that there exists a unique global solution for the
equation in space C([0,∞);Hs(R)) ∩ C1([0,∞);Hs−1(R)).

1. Introduction

Camassa and Holm [1] employed the Hamiltonian method to derive a completely integrable
shallow water wave model

ut − utxx + 2kux + 3uux = 2uxuxx + uuxxx, (1.1)

which was alternatively established as a water wave equation in [2–4]. Equation (1.1) also
models wave current interaction [5], while Dai [6] derived it as a model in elasticity (see
[7]). In addition, it was pointed out in Lakshmanan [8] that the Camassa-Holm equation
(1.1) could be relevant to the modeling of tsunami waves (see Constantin and Johnson [9]).

After the birth of the Camassa-Holm equation (1.1), many works have been carried
out to probe its dynamic properties. For k = 0, (1.1) has travelling wave solutions of the
form ce−|x−ct|, called peakons, which describes an essential feature of the travelling waves
of largest amplitude (see [10–14]). For k > 0, its solitary waves are stable solitons [15]. It
is shown in [16–18] that the inverse spectral or scattering approach is a powerful tool to
handle the Camassa-Holm equation and analyze its dynamics. It is worthwhile to mention
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that (1.1) gives rise to geodesic flow of a certain invariant metric on the Bott-Virasoro group
[19–21], and this geometric illustration leads to a proof that the least action principle holds.
Xin and Zhang [22] proved the global existence of the weak solution in the energy space
H1(R) without any sign conditions on the initial value, and the uniqueness of this weak
solution is obtained under some assumptions on the solution [23]. Coclite et al. [24] extended
the analysis presented in [22, 23] and obtained many useful dynamic properties to other
partial differential equations (see [25–28] for an alternative approach). Li and Olver [29]
established the local well posedness in the Sobolev space Hs(R) with s > 3/2 for (1.1) and
gave conditions on the initial data that lead to finite time blowup of certain solutions. It is
shown in Constantin and Escher [30] that the blowup occurs in the form of breaking waves,
namely, the solution remains bounded but its slope becomes unbounded in finite time. For
other methods to handle the problems relating to various dynamic properties of the Camassa-
Holm equation and other shallow water equations, the reader is referred to [31–39] and the
references therein.

Motivated by the work in Hakkaev and Kirchev [33] to investigate the generalization
forms of the Camassa-Holm equation with high-order nonlinear terms, we study the
following generalized Camassa-Holm equation:

ut − utxx + kumux + (m + 3)um+1ux = (m + 2)umuxuxx + um+1uxxx, (1.2)

where m ≥ 0 is a natural number and k ≥ 0. Obviously, (1.2) reduces to (1.1) if we set m = 0.
As the Camassa-Holm equation (1.1) has been discussed by many mathematicians, we let the
natural number m ≥ 1 in this paper.

The objective of this paper is to study (1.2). Its local well posedness of solutions
in the Sobolev space Hs(R) with s > 3/2 is developed by using the pseudoparabolic
regularization method. Provided that (1 − ∂2x)u0 + k/2(m + 1) ≥ 0 and u0 ∈ Hs (s >
3/2), the existence and uniqueness of the global solutions are established in space
C([0,∞);Hs(R))

⋂
C1([0,∞);Hs−1(R)). It should be mentioned that the existence and

uniqueness of global strong solutions for the nonlinear generalized Camassa-Holm models
like (1.2) have never been investigated in the literatures.

2. Main Results

The space of all infinitely differentiable functions φ(t, x)with compact support in [0,+∞)×R
is denoted by C∞

0 . Lp = Lp(R)(1 ≤ p < +∞) is the space of all measurable functions h such
that ‖h‖pLp =

∫

R |h(t, x)|pdx < ∞. We define L∞ = L∞(R) with the standard norm ‖h‖L∞ =
infm(e)=0supx∈R\e|h(t, x)|. For any real number s, Hs = Hs(R) denotes the Sobolev space with
the norm defined by

‖h‖Hs =
(∫

R

(
1 + |ξ|2

)s∣∣
∣ĥ(t, ξ)

∣
∣
∣
2
dξ

)1/2

< ∞, (2.1)

where ĥ(t, ξ) =
∫

R e
−ixξh(t, x)dx.

For T > 0 and nonnegative number s, C([0, T);Hs(R)) denotes the Frechet space of all
continuous Hs-valued functions on [0, T). We set Λ = (1 − ∂2x)

1/2. For simplicity, throughout
this paper, we let c denote any positive constant which is independent of parameter ε.
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We consider the Cauchy problem of (1.2), which has the equivalent form

ut − utxx = − k

m + 1

(
um+1

)

x
− m + 3
m + 2

(
um+2

)

x
+

1
m + 2

∂3x

(
um+2

)

− (m + 1)∂x
(
umu2

x

)
+ umuxuxx, k ≥ 0, m ≥ 1,

u(0, x) = u0(x).

(2.2)

Now, we give our main results for problem (2.2).

Theorem 2.1. Suppose that the initial function u0(x) belongs to the Sobolev space Hs(R) with s >
3/2. Then there is a T > 0, which depends on ‖u0‖Hs , such that there exists a unique solution u(t, x)
of the problem (2.2) and

u(t, x) ∈ C([0, T];Hs(R))
⋂

C1
(
[0, T];Hs−1(R)

)
. (2.3)

Theorem 2.2. Let u0(x) ∈ Hs, s > 3/2 and (1 − ∂2x)u0 + k/2(m + 1) ≥ 0 for all x ∈ R. Then
problem (2.2) has a unique solution satisfying that

u(t, x) ∈ C([0,∞);Hs(R))
⋂

C1
(
[0,∞);Hs−1(R)

)
. (2.4)

3. Local Well-Posedness

In order to prove Theorem 2.1, we consider the associated regularized problem

ut − utxx + εutxxxx = − k

m + 1

(
um+1

)

x
− m + 3
m + 2

(
um+2

)

x
+

1
m + 2

∂3x

(
um+2

)

− (m + 1)∂x
(
umu2

x

)
+ umuxuxx,

u(0, x) = u0(x),

(3.1)

where the parameter ε satisfies 0 < ε < 1/4.

Lemma 3.1. Let r and q be real numbers such that −r < q ≤ r. Then

‖uv‖Hq ≤ c‖u‖Hr‖v‖Hq , if r >
1
2
,

‖uv‖Hr+q−1/2 ≤ c‖u‖Hr‖v‖Hq , if r <
1
2
.

(3.2)

This lemma can be found in [34, 40].

Lemma 3.2. Let u0(x) ∈ Hs(R) with s > 3/2. Then the Cauchy problem (3.1) has a unique solution
u(t, x) ∈ C([0, T];Hs(R)) where T > 0 depends on ‖u0‖Hs(R). If s ≥ 2, the solution u ∈
C([0,+∞);Hs) exists for all time.
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Proof. Assuming that D = (1 − ∂2x + ε∂4x)
−1, we know thatD : Hs → Hs+4 is a bounded linear

operator. Applying the operatorD on both sides of the first equation of system (3.1) and then
integrating the resultant equation with respect to t over the interval (0, t) lead to

u(t, x) = u0(x) +
∫ t

0
D

[

− k

m + 1

(
um+1

)

x
− m + 3
m + 2

(
um+2

)

x
+

1
m + 2

∂3x

(
um+2

)

−(m + 1)∂x
(
umu2

x

)
+ umuxuxx

]

dt.

(3.3)

Suppose that both u and v are in the closed ball BM0(0) of radiusM0 about the zero function in
C([0, T];Hs(R)) and A is the operator in the right-hand side of (3.3). For any fixed t ∈ [0, T],
we get the following:

∥
∥
∥
∥
∥

∫ t

0
D

[

− k

m + 1

(
um+1

)

x
− m + 3
m + 2

(
um+2

)

x
+

1
m + 2

∂3x

(
um+2

)

−(m + 1)∂x
(
umu2

x

)
+ umuxuxx

]

dt

−
∫ t

0
D

[

− k

m + 1

(
vm+1

)

x
− m + 3
m + 2

(
vm+2

)

x
+

1
m + 2

∂3x

(
vm+2

)

−(m + 1)∂x
(
vmv2

x

)
+ vmvxvxx

]

dt

∥
∥
∥
∥
Hs

≤ TC1

(

sup
0≤t≤T

∥
∥
∥um+1 − vm+1

∥
∥
∥
Hs

+ sup
0≤t≤T

∥
∥
∥um+2 − vm+2

∥
∥
∥
Hs

+ sup
0≤t≤T

∥
∥
∥D∂x

[
umu2

x − vmv2
x

]∥
∥
∥
Hs

+ sup
0≤t≤T

‖D[umuxuxx − vmvxvxx]‖Hs

)

,

(3.4)

where C1 may depend on ε. The algebraic property of Hs0(R) with s0 > 1/2 derives

∥
∥
∥um+2 − vm+2

∥
∥
∥
Hs

=
∥
∥
∥(u − v)

(
um+1 + umv + · · · + uvm + vm+1

)∥
∥
∥
Hs

≤ ‖(u − v)‖Hs

m+1∑

j=0
‖u‖m+1−j

Hs ‖v‖jHs

≤ Mm+1
0 ‖(u − v)‖Hs,

(3.5)

∥
∥
∥um+1 − vm+1

∥
∥
∥
Hs

≤ Mm
0 ‖(u − v)‖Hs,

∥
∥
∥D∂x

(
umu2

x − vmv2
x

)∥
∥
∥
Hs

≤
∥
∥
∥D∂x

[
um

(
u2
x − v2

x

)]∥
∥
∥
Hs

+
∥
∥
∥D∂x

[
v2
x(u

m − vm)
]∥
∥
∥
Hs

≤ C
(∥
∥
∥um

(
u2
x − v2

x

)∥
∥
∥
Hs−1

+
∥
∥
∥v2

x(u
m − vm)

∥
∥
∥
Hs−1

)

≤ CMm+1
0 ‖u − v‖Hs.

(3.6)



Abstract and Applied Analysis 5

Using the first inequality of Lemma 3.1, we have

‖D[umuxuxx − vmvxvxx]‖Hs =
∥
∥
∥
∥
1
2
D

[
um

(
u2
x

)

x
− vm

(
v2
x

)

x

]∥∥
∥
∥
Hs

≤ 1
2

(∥
∥
∥D

[
um

(
u2
x − v2

x

)

x

]∥
∥
∥
Hs

+
∥
∥
∥D

[(
v2
x

)

x
(um − vm)

]∥
∥
∥
Hs

)

≤ C
(∥
∥
∥um

(
u2
x − v2

x

)

x

∥
∥
∥
Hs−2

+
∥
∥
∥
(
v2
x

)

x
(um − vm)

∥
∥
∥
Hs−2

)

≤ C
(
‖um‖Hs

∥
∥
∥u2

x − v2
x

∥
∥
∥
Hs−1

+
∥
∥
∥v2

x

∥
∥
∥
Hs−1

‖um − vm‖Hs

)

≤ CMm+1
0 ‖u − v‖Hs,

(3.7)

where C may depend on ε. From (3.5)–(3.7), we obtain that

‖Au −Av‖Hs ≤ θ‖u − v‖Hs, (3.8)

where θ = TC2(Mm
0 + Mm+1

0 ) and C2 is independent of 0 < t < T . Choosing T sufficiently
small such that θ < 1, we know that A is a contraction. Applying the above inequality yields
that

‖Au‖Hs ≤ ‖u0‖Hs + θ‖u‖Hs. (3.9)

Choosing T sufficiently small such that θM0 + ‖u0‖Hs < M0, we deduce that A maps BM0(0)
to itself. It follows from the contraction-mapping principle that the mapping A has a unique
fixed-point u in BM0(0).

For s ≥ 2, using the first equation of system (3.1) derives

d

dt

∫

R

(
u2 + u2

x + εu2
xx

)
dx = 0, (3.10)

from which we have the conservation law

∫

R

(
u2 + u2

x + εu2
xx

)
dx =

∫

R

(
u2
0 + u2

0x + εu2
0xx

)
dx. (3.11)

The proof of the global existence result is a routine argument by using (3.11) (see Xin and
Zhang [22]).

Lemma 3.3 (Kato and Ponce [41]). If r ≥ 0, thenHr
⋂
L∞ is an algebra. Moreover

‖uv‖r ≤ c(‖u‖L∞‖v‖r + ‖u‖r‖v‖L∞), (3.12)

where c is a constant depending only on r.
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Lemma 3.4 (Kato and Ponce [41]). Let r > 0. If u ∈ Hr
⋂
W1,∞ and v ∈ Hr−1 ⋂L∞, then

‖[Λr , u]v‖L2 ≤ c
(
‖∂xu‖L∞

∥
∥
∥Λr−1v

∥
∥
∥
L2

+ ‖Λru‖L2‖v‖L∞

)
. (3.13)

Lemma 3.5. Let s ≥ 2, and the function u(t, x) is a solution of problem (3.1) and the initial data
u0(x) ∈ Hs. Then the following inequality holds:

‖u‖2H1 ≤
∫

R

(
u2 + u2

x + εu2
xx

)
dx

=
∫

R

(
u2
0 + u2

0x + εu20xx
)
dx.

(3.14)

For q ∈ (0, s − 1], there is a constant c independent of ε such that

∫

R

(
Λq+1u

)2
dx ≤

∫

R

[(
Λq+1u0

)2
+ ε(Λqu0xx)

2
]

dx

+ c

∫ t

0
‖u‖2Hq+1

((
‖u‖m−1

L∞ + ‖u‖mL∞

)
‖ux‖L∞ + ‖u‖m−1

L∞ ‖ux‖2L∞

)
dτ.

(3.15)

For q ∈ [0, s − 1], there is a constant c independent of ε such that

(1 − 2ε)‖ut‖Hq ≤ c‖u‖Hq+1

((
‖u‖m−1

L∞ + ‖u‖mL∞

)
‖u‖H1 + ‖u‖mL∞‖ux‖L∞ + ‖‖u‖m−1

L∞ ‖ux‖2L∞

)
.

(3.16)

Proof. The inequality ‖u‖2H1 ≤
∫
R(u

2 + u2
x)dx and (3.11) derives (3.14).

Using ∂2x = −Λ2 + 1 and the Parseval equality gives rise to

∫

R

ΛquΛq∂3x

(
um+2

)
dx = −(m + 2)

∫

R

(
Λq+1u

)
Λq+1

(
um+1ux

)
dx

+ (m + 2)
∫

R

(Λqu)Λq
(
um+1ux

)
dx.

(3.17)

For q ∈ (0, s − 1], applying (Λqu)Λq to both sides of the first equation of system (3.1)
and integrating with respect to x by parts, we have the identity

1
2
d

dt

∫

R

(
(Λqu)2 + (Λqux)

2 + ε(Λquxx)
2
)
dx

= − k

m + 1

∫

R

(Λqu)Λq
(
um+1

)

x
dx − (m + 2)

∫

R

(Λqu)Λq
(
um+1ux

)
dx

−
∫

R

(
Λq+1u

)
Λq+1

(
um+1ux

)
dx + (m + 1)

∫

R

(Λqux)Λq
(
umu2

x

)
dx

+
∫

R

ΛquΛq(umuxuxx)dx.

(3.18)
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We will estimate the terms on the right-hand side of (3.18) separately. For the second term,
by using the Cauchy-Schwartz inequality and Lemmas 3.3 and 3.4, we have

∣
∣
∣
∣

∫

R

(Λqu)Λq
(
um+1ux

)
dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

R

(Λqu)
[
Λq

(
um+1ux

)
− um+1Λqux

]
dx +

∫

R

(Λqu)um+1Λquxdx

∣
∣
∣
∣

≤ c‖u‖Hq

(
(m + 1)‖u‖mL∞‖ux‖L∞‖u‖Hq + ‖ux‖L∞‖u‖mL∞‖u‖Hq

)

+
m + 1
2

‖u‖mL∞‖ux‖L∞‖Λqu‖2L2

≤ c‖u‖2Hq‖u‖mL∞‖ux‖L∞ .

(3.19)

Similarly, for the first term in (3.18), we have

∣
∣
∣
∣

∫

R

(Λqu)Λq(umux)dx
∣
∣
∣
∣ ≤ c‖u‖2Hq‖u‖m−1

L∞ ‖ux‖L∞ . (3.20)

Using the above estimate to the third term yields that

∣
∣
∣
∣

∫

R

(
Λq+1u

)
Λq+1

(
um+1ux

)
dx

∣
∣
∣
∣ ≤ c‖u‖2Hq+1‖u‖mL∞‖ux‖L∞ . (3.21)

For the fourth term, using the Cauchy-Schwartz inequality and Lemma 3.3, we obtain that

∣
∣
∣
∣

∫

R

(Λqux)Λq
(
umu2

x

)
dx

∣
∣
∣
∣ ≤ ‖Λqux‖L2

∥
∥
∥Λq

(
umu2

x

)∥
∥
∥
L2

≤ c‖u‖Hq+1(‖umux‖L∞‖ux‖Hq + ‖ux‖L∞‖umux‖Hq)

≤ c‖u‖2Hq+1‖ux‖L∞‖u‖mL∞ ,

(3.22)

in which we have used ‖umux‖Hq ≤ c‖(um+1)x‖Hq ≤ c‖u‖mL∞‖u‖Hq+1 .
For the last term in (3.18), using um(u2

x)x = (umu2
x)x − (um)xu

2
x results in

∣
∣
∣
∣

∫

R

(Λqu)Λq(umuxuxx)dx
∣
∣
∣
∣ ≤

∣
∣
∣
∣

∫

R

ΛquxΛq
(
umu2

x

)
dx

∣
∣
∣
∣ +

∫

R

ΛquΛq
[
(um)xu

2
x

]
dx

= K1 +K2.

(3.23)

For K1, it follows from (3.22) that

K1 ≤ c‖u‖2Hq+1‖ux‖L∞‖u‖mL∞ . (3.24)
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For K2, applying Lemma 3.3 derives

K2 ≤ c‖u‖Hq

∥
∥
∥(um)xu

2
x

∥
∥
∥
Hq

≤ c‖u‖Hq

(
‖(um)x‖L∞

∥
∥
∥u2

x

∥
∥
∥
Hq

+ ‖(um)x‖Hq

∥
∥
∥u2

x

∥
∥
∥
L∞

)

≤ c‖u‖2Hq+1

(
‖u‖m−1

L∞ ‖ux‖2L∞

)
.

(3.25)

It follows from (3.19)–(3.25) that there exists a constant c depending only on m such that

1
2
d

dt

∫

R

[
(Λqu)2 + (Λqux)

2 + ε(Λquxx)
2
]
dx ≤ c‖u‖2Hq+1

(
‖ux‖L∞‖u‖mL∞ + ‖u‖m−1

L∞ ‖ux‖2L∞

)
.
(3.26)

Integrating both sides of the above inequality with respect to t results in (3.15).
To estimate the norm of ut, we apply the operator (1 − ∂2x)

−1 to both sides of the first
equation of system (3.1) to obtain the equation

(1 − ε)ut − εutxx =
(
1 − ∂2x

)−1[−εut − kumux − m + 3
m + 2

(
um+2

)

x

+
1

m + 2
∂3x

(
um+2

)
− (m + 1)∂x

(
umu2

x

)
+ umuxuxx

]

.

(3.27)

Applying (Λqut)Λq to both sides of (3.27) for q ∈ [0, s − 1] gives rise to

(1 − ε)
∫

R

(Λqut)
2dx + ε

∫

R

(Λquxt)
2dx

=
∫

R

(Λqut)Λq−2
[

−εut + ∂x

(

− k

m + 1
um+1 − m + 3

m + 2
um+2 +

1
m + 2

∂2xu
m+2 − (m + 1)umu2

x

)

+umuxuxx

]

dτ.

(3.28)

For the right hand of (3.28), we have

∣
∣
∣
∣

∫

R

(Λqut)Λq−2(−εut)dx
∣
∣
∣
∣ ≤ ε‖ut‖2Hq ,

∣
∣
∣
∣

∫

R

(Λqut)
(
1 − ∂2x

)−1
Λq∂x

(

− k

m + 1
um+1 − m + 3

m + 2
um+2 − (m + 1)umu2

x

)

dx

∣
∣
∣
∣

≤ c‖ut‖Hq

(∫

R

(
1 + ξ2

)q−1[∫

R

[

− k

m + 1
ûm

(
ξ − η

)
û
(
η
) − m + 3

m + 2
̂um+1

(
ξ − η

)
û
(
η
)

−(m + 1) ̂umux

(
ξ − η

)
ûx

(
η
)
]

dη

]2
)1/2

≤ c‖ut‖Hq‖u‖H1‖u‖Hq+1

(
‖u‖m−1

L∞ + ‖u‖mL∞

)
.

(3.29)
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Since

∫

(Λqut)
(
1 − ∂2x

)−1
Λq∂2x

(
um+1ux

)
dx = −

∫

(Λqut)Λq
(
um+1ux

)
dx

+
∫

(Λqut)
(
1 − ∂2x

)−1
Λq

(
um+1ux

)
dx,

(3.30)

using Lemma 3.3, ‖um+1ux‖Hq ≤ c‖(um+2)x‖Hq ≤ c(m + 2)‖u‖m+1
L∞ ‖u‖Hq+1 and ‖u‖L∞ ≤ ‖u‖H1 ,

we have

∣
∣
∣
∣

∫

(Λqut)Λq
(
um+1ux

)
dx

∣
∣
∣
∣ ≤ c‖ut‖Hq

∥
∥
∥um+1ux

∥
∥
∥
Hq

≤ c‖ut‖Hq‖u‖mL∞‖u‖H1‖u‖Hq+1 ,
∣
∣
∣
∣

∫

(Λqut)
(
1 − ∂2x

)−1
Λq

(
um+1ux

)
dx

∣
∣
∣
∣ ≤ c‖ut‖Hq‖u‖mL∞‖u‖H1‖u‖Hq+1 .

(3.31)

Using the Cauchy-Schwartz inequality and Lemmas 3.1 and 3.3 yields that

∣
∣
∣
∣

∫

R

(Λqut)
(
1 − ∂2x

)−1
Λq(umuxuxx)dx

∣
∣
∣
∣ ≤ c‖ut‖Hq‖umuxuxx‖Hq−2

≤ c‖ut‖Hq

∥
∥
∥um

(
u2
x

)

x

∥
∥
∥
Hq−2

≤ c‖ut‖Hq

∥
∥
∥
[
um

(
u2
x

)]

x
− (um)xu

2
x

∥
∥
∥
Hq−2

≤ c‖ut‖Hq

(∥
∥
∥umu2

x

∥
∥
∥
Hq−1 +

∥
∥
∥(um)xu

2
x

∥
∥
∥
Hq−2

)

≤ c‖ut‖Hq

(∥
∥
∥umu2

x

∥
∥
∥
Hq

+
∥
∥
∥(um)xu

2
x

∥
∥
∥
Hq

)

≤ c‖ut‖Hq‖u‖Hq+1

(
‖u‖mL∞‖ux‖L∞ + ‖u‖m−1

L∞ ‖ux‖2L∞

)
,

(3.32)

in which we have used (3.25).
Applying (3.29)–(3.32) into (3.28) yields the inequality

(1 − 2ε)‖ut‖Hq ≤ c‖u‖Hq+1

((
‖u‖m−1

L∞ + ‖u‖mL∞

)
‖u‖H1

+‖u‖mL∞‖ux‖L∞ + ‖u‖m−1
L∞ ‖ux‖2L∞

) (3.33)

for a constant c > 0. This completes the proof of Lemma 3.5.

Remark 3.6. In fact, letting ε = 0 in problem (3.1), (3.14), (3.15), and (3.16) are still valid.
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Setting φε(x) = ε−1/4φ(ε−1/4x) with 0 < ε < 1/4 and uε0 = φε 	 u0, we know that
uε0 ∈ C∞ for any u0 ∈ Hs, s > 0. From Lemma 3.2, it derives that the Cauchy problem

ut − utxx + εutxxxx = − k

m + 1

(
um+1

)

x
− m + 3
m + 2

(
um+2

)

x
+

1
m + 2

∂3x

(
um+2

)

− (m + 1)∂x
(
umu2

x

)
+ umuxuxx,

u(0, x) = uε0(x), x ∈ R

(3.34)

has a unique solution uε(t, x) ∈ C∞([0,∞);H∞).
Furthermore, we have the following.

Lemma 3.7. For s > 0, u0 ∈ Hs, it holds that

‖uε0x‖L∞ ≤ c‖u0x‖L∞ , (3.35)

‖uε0‖Hq ≤ c if q ≤ s, (3.36)

‖uε0‖Hq ≤ cε(s−q)/4 if q > s, (3.37)

‖uε0 − u0‖Hq ≤ cε(s−q)/4 if q ≤ s, (3.38)

‖uε0 − u0‖Hs = o(1), (3.39)

where c is a constant independent of ε.

The proof of Lemma 3.7 can be found in [38].

Remark 3.8. For s ≥ 1, using ‖uε‖L∞ ≤ c‖uε‖H1/2+ ≤ c‖uε‖H1 , ‖uε‖2H1 ≤ c
∫
R(u

2
ε + u2

εx)dx, (3.14),
(3.36), and (3.37), we know that

‖uε‖2L∞ ≤ c‖uε‖H1 ≤ c

∫

R

(
u2
ε0 + u2

ε0x + εu2
ε0xx

)
dx

≤ c
(
‖uε0‖2H1 + ε‖uε0‖2H2

)

≤ c
(
c + cε × ε(s−2)/2

)

≤ c0,

(3.40)

where c0 is independent of ε.

Lemma 3.9. If u0(x) ∈ Hs(R) with s ≥ 1 such that ‖u0x‖L∞ < ∞. Let uε0 be defined as in system
(3.34). Then there exist two positive constants T and c, which are independent of ε, such that the
solution uε of problem (3.34) satisfies ‖uεx‖L∞ ≤ c for any t ∈ [0, T).
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Proof. Using notation u = uε and differentiating both sides of the first equation of problem
(3.34) or (3.27)with respect to x give rise to

(1 − ε)utx − εutxxx +
1

m + 2
∂2

(
um+2

)
−
(

m +
1
2

)(
umu2

x

)

=
k

m + 1
um+1 + um+2 −Λ−2

[

εutx +
k

m + 1
um+1 + um+2 +

(

m +
1
2

)(
umu2

x

)

+
1
2
∂x

[
(um)xu

2
x

]]

.

(3.41)

Letting p > 0 be an integer and multiplying the above equation by (ux)
2p+1 and then

integrating the resulting equation with respect to x yield the equality

1 − ε

2p + 2
d

dt

∫

R

(ux)2p+2dx − ε

∫

R

(ux)2p+1utxxxdx +
p −m

2p + 2

∫

R

(ux)2p+3umdx

=
∫

R

(ux)2p+1
(

k

m + 1
um+1 + um+2

)

dx

−
∫

R

(ux)2p+1Λ−2
[

εutx +
k

m + 1
um+1 + um+2 +

(

m +
1
2

)(
umu2

x

)
+
1
2
∂x

[
(um)xu

2
x

]]

dx.

(3.42)

Applying the Hölder’s inequality yields that

1 − ε

2p + 2
d

dt

∫

R

(ux)2p+2dx ≤
{

ε

(∫

R

|utxxx|2p+2dx
)1/(2p+2)

+
(∫

R

∣
∣
∣um+1

∣
∣
∣
2p+2

dx

)1/(2p+2)

+
(∫

R

∣
∣
∣um+2

∣
∣
∣
2p+2

dx

)1/(2p+2)

+
(∫

R

|G|2p+2dx
)1/(2p+2)

}

×
(∫

R

|ux|2p+2dx
)(2p+1)/(2p+2)

+
∣
∣
∣
∣
p −m

2p + 2

∣
∣
∣
∣‖ux‖L∞‖u‖mL∞

∫

R

|ux|2p+2dx
(3.43)

or

(1 − ε)
d

dt

(∫

R

(ux)2p+2dx
)1/(2p+2)

≤
{

ε

(∫

R

|utxxx|2p+2dx
)1/(2p+2)

+
(∫

R

∣
∣
∣um+1

∣
∣
∣
2p+2

dx

)1/(2p+2)

+
(∫

R

∣
∣
∣um+2

∣
∣
∣
2p+2

dx

)1/(2p+2)

+
(∫

R

|G|2p+2dx
)1/(2p+2)

}

+
∣
∣
∣
∣
p −m

2p + 2

∣
∣
∣
∣‖ux‖L∞‖u‖mL∞

(∫

R

|ux|2p+2dx
)1/(2p+2)

,

(3.44)
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where

G = Λ−2
[

εutx +
k

m + 1
um+1 + um+2 +

(

m +
1
2

)(
umu2

x

)
+
1
2
∂x

[
(um)xu

2
x

]]

. (3.45)

Since ‖f‖Lp → ‖f‖L∞ as p → ∞ for any f ∈ L∞ ⋂
L2, integrating both sides of (3.44) with

respect to t and taking the limit as p → ∞ result in the estimate

(1 − ε)‖ux‖L∞ ≤ (1 − ε)‖u0x‖L∞

+
∫ t

0

[

ε‖utxxx‖L∞ + c
(
‖u‖m+1

L∞ + ‖u‖m+2
L∞ + ‖G‖L∞

)
+
1
2
‖u‖mL∞‖ux‖2L∞

]

dτ.
(3.46)

Using the algebraic property of Hs0(R)with s0 > 1/2 and (3.40) yields that

‖u‖m+2
L∞ ≤ c‖u‖m+2

H1 ≤ c, (3.47)

‖G‖L∞ ≤ c‖G‖H1/2+

= c

∥
∥
∥
∥Λ

−2
[

εutx + um+1 + um+2 +
(

m +
1
2

)(
umu2

x

)
+
1
2
∂x

[
(um)xu

2
x

]]∥∥
∥
∥
H1/2+

≤ c
(∥
∥
∥Λ−2uxt

∥
∥
∥
H1/2+

+
∥
∥
∥Λ−2

(
umu2

x

)∥
∥
∥
H1/2+

+
∥
∥
∥Λ−2∂x

[
(um)xu

2
x

]∥
∥
∥
H1/2+

)
+ c

≤ c
(
‖ut‖L2 +

∥
∥
∥umu2

x

∥
∥
∥
H0

+
∥
∥
∥(um)xu

2
x

∥
∥
∥
H0

)
+ c

≤ c
(
‖ut‖L2 + ‖u‖mL∞‖ux‖L∞‖u‖H1 + ‖ux‖2L∞‖u‖m−1

L∞ ‖u‖H1

)
+ c

≤ c
(
‖ut‖L2 + ‖ux‖L∞ + ‖ux‖2L∞

)
+ c

≤ c
(
1 + ‖ux‖2L∞

)
,

(3.48)

where we have used (3.16) and (3.40). Using (3.48), we have

∫ t

0
‖G‖L∞dτ ≤ c

∫ t

0

(
1 + ‖ux‖2L∞

)
dτ, (3.49)

where c is a constant independent of ε. Moreover, for any fixed r ∈ (1/2, 1), there exists a
constant cr such that ‖utxxx‖L∞ ≤ cr‖utxxx‖Hr ≤ cr‖ut‖Hr+3 . Using (3.16) and (3.40) yields that

‖utxxx‖L∞ ≤ c‖u‖Hr+4

(
1 + ‖ux‖2L∞

)
. (3.50)

Making use of the Gronwall’s inequality to (3.15) with q = r + 3, u = uε and (3.40) gives rise
to

‖u‖2Hr+4 ≤
(∫

R

(
Λr+4u0

)2
+ ε

(
Λr+3u0xx

)2
)

exp

[

c

∫ t

0

(
1 + ‖ux‖2L∞

)
dτ

]

. (3.51)
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From (3.36), (3.37), (3.50), and (3.51), one has

‖utxxx‖L∞ ≤ cε(s−r−4)/4
(
1 + ‖ux‖2L∞

)
exp

[

c

∫ t

0

(
1 + ‖ux‖2L∞

)
dτ

]

. (3.52)

For ε < 1/4, it follows from (3.46), (3.49), and (3.52) that

‖ux‖L∞ ≤ ‖u0x‖L∞

+ c

∫ t

0

[

ε(s−r)/4
(
1 + ‖ux‖2L∞

)
exp

(

c

∫ τ

0

(
1 + ‖ux‖2L∞

)
dς

)

+ 1 + ‖ux‖2L∞

]

dτ.
(3.53)

It follows from the contraction mapping principle that there is a T > 0 such that the
equation

‖W‖L∞ = ‖u0x‖L∞

+ c

∫ t

0

[(
1 + ‖W‖2L∞

)
exp

(

c

∫ τ

0

(
1 + ‖W‖2L∞

)
dς

)

+ 1 + ‖W‖2L∞

]

dτ
(3.54)

has a unique solution W ∈ C[0, T]. Using the Theorem presented at page 51 in Li and Olver
[29] or Theorem II in section I.1 presented in [42] yields that there are constants T > 0 and
c > 0, which are independent of ε, such that ‖ux‖L∞ ≤ W(t) for arbitrary t ∈ [0, T], which
leads to the conclusion of Lemma 3.9.

Lemma 3.10 (Li and Olver [29]). If u and f are functions inHq+1 ∩ {‖ux‖L∞ < ∞}, then

∣
∣
∣
∣

∫

R

ΛquΛq(uf
)
xdx

∣
∣
∣
∣ ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cq
∥
∥f

∥
∥
Hq+1‖u‖2Hq , q ∈

(
1
2
, 1

]

,

cq
(∥
∥f

∥
∥
Hq+1‖u‖Hq‖u‖L∞

+
∥
∥fx

∥
∥
L∞

‖u‖2Hq +
∥
∥f

∥
∥
Hq‖u‖Hq‖ux‖L∞

)
, q ∈ (0,∞).

(3.55)

Lemma 3.11. For u, v ∈ Hs(R) with s > 3/2,w = u−v, q > 1/2, and a natural number n, it holds
that

∣
∣
∣
∣

∫

R

ΛswΛs
(
un+1 − vn+1

)

x
dx

∣
∣
∣
∣ ≤ c

(
‖w‖Hs‖w‖Hq‖v‖Hs+1 + ‖w‖2Hs

)
. (3.56)

The proof of this Lemma can be found in [38].
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Lemma 3.12. For problem (3.34), s > 3/2 and u0 ∈ Hs(R), there exist two positive constants c and
M, which are independent of ε, such that the following inequalities hold for any sufficiently small ε
and t ∈ [0, T)

‖uε‖Hs ≤ Mect, (3.57)

‖uε‖Hs+k1 ≤ ε−k1/4Mect, k1 > 0, (3.58)

‖uεt‖Hs+k1 ≤ ε−(k1+1)/4Mect, k1 > −1. (3.59)

Proof. If s > 3/2, u0 ∈ Hs, we obtain that

u0 ∈ Hs1 with 1 ≤ s1 ≤ 3
2
,

‖u0x‖L∞ ≤ c‖u0x‖H1/2+ ≤ c‖u0‖Hs ≤ c.
(3.60)

From Lemma 3.9, we know that there exist two constants T and c (both independent of ε)
such that

‖uεx‖L∞ ≤ c for any t ∈ [0, T). (3.61)

Applying the inequality (3.15) with q + 1 = s and the bounded property of solution u
(see (3.40) and (3.60)), we have

∫

R

(Λsuε)
2dx ≤

∫

R

[

(Λsuε0)
2 + ε

(
Λs−1uε0xx

)2
]

dx + c

∫ t

0
‖uε‖2Hsdτ,

= A + c

∫ t

0
‖uε‖2Hsdτ,

(3.62)

where

A =
∫

R

[

(Λsuε0)
2 + ε

(
Λs−1uε0xx

)2
]

dx ≤ ‖uε0‖2Hs + ‖uε0‖2Hs+1

≤ c + cεε−1/2 ≤ 2c,
(3.63)

in which we have used (3.36) and (3.37).
From (3.61) and (3.62) and using the Gronwall’s inequality, we get the following:

‖uε‖Hs ≤ 2cect, (3.64)

from which we know that (3.57) holds.
In a similar manner, for q + 1 = s + k1 and k1 > 0, applying (3.40) and (3.60) to (3.15),

we have

‖uε‖2Hs+k1 ≤
(
cε−k1/2 + cε−(k1+1)/2ε

)
+ c

∫ t

0
‖uε‖2Hs+k1dτ, (3.65)

which results in (3.58) by using Gronwall’s inequality.
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From (3.16), for q = s + k1, we have

(1 − 2ε)‖uεt‖Hs+k1 ≤ c‖uε‖Hs+k1+1 , (3.66)

which leads to (3.59) by (3.58).

Lemma 3.13. If 1/2 < q < min{1, s − 1} and s > 3/2, then for any functions w, f defined on R, it
holds that

∣
∣
∣
∣

∫

R

ΛqwΛq−2(wf
)
xdx

∣
∣
∣
∣ ≤ c‖w‖2Hq

∥
∥f

∥
∥
Hq , (3.67)

∣
∣
∣
∣

∫

R

ΛqwΛq−2(wxfx
)
xdx

∣
∣
∣
∣ ≤ c‖w‖2Hq

∥
∥f

∥
∥
Hs. (3.68)

The proof of this lemma can be found in [38].
Our next step is to demonstrate that uε is a Cauchy sequence. Let uε and uδ be solutions

of problem (3.34), corresponding to the parameters ε and δ, respectively, with 0 < ε < δ < 1/4,
and let w = uε − uδ. Then w satisfies the problem

(1 − ε)wt − εwxxt + (δ − ε)(uδt + uδxxt)

=
(
1 − ∂2x

)−1[ − εwt + (δ − ε)uδt − k

m + 1
∂x

(
um+1
ε − um+1

δ

)
− ∂x

(
um+2
ε − um+2

δ

)

− ∂x
[
∂x

(
um+1
ε

)
∂xw + ∂x

(
um+1
ε − um+1

ε

)
∂xuδ

]

+
[
um
ε uεxuεxx − um

δ uδxuδxx

]
]

− 1
m + 2

∂x
(
um+2
ε − um+2

δ

)
,

(3.69)

w(x, 0) = w0(x) = uε0(x) − uδ0(x). (3.70)

Lemma 3.14. For s > 3/2, u0 ∈ Hs(R), there exists T > 0 such that the solution uε of (3.34) is
a Cauchy sequence in C([0, T];Hs(R))

⋂
C1([0, T];Hs−1(R)).

Proof. For qwith 1/2 < q < min{1, s− 1}, multiplying both sides of (3.69) by ΛqwΛq and then
integrating with respect to x give rise to

1
2
d

dt

∫

R

[
(1 − ε)(Λqw)2 + ε(Λqwx)

2
]
dx

= (ε − δ)
∫

R

(Λqw)[(Λquδt) + (Λquδxxt)]dx

− ε

∫

R

ΛqwΛq−2wtdx + (δ − ε)
∫

R

ΛqwΛq−2uδtdx

− 1
m + 2

∫

R

(Λqw)Λq
(
um+2
ε − um+2

δ

)

x
dx

− k

m + 1

∫

R

ΛqwΛq−2
(
um+1
ε − um+1

δ

)

x
dx
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−
∫

R

ΛqwΛq−2
(
um+2
ε − um+2

δ

)

x
dx

−
∫

R

ΛqwΛq−2
[
∂x

(
um+1
ε

)
∂xw

]

x
dx

−
∫

R

ΛqwΛq−2
[
∂x

(
um+1
ε − um+1

δ

)
∂xuδ

]

x
dx

+
∫

R

ΛqwΛq−2[um
ε uεxuεxx − um

δ uδxuδxx

]
dx.

(3.71)

It follows from the Schwarz inequality that

d

dt

∫[
(1 − ε)(Λqw)2 + ε(Λqwx)

2
]
dx

≤ c

{

‖Λqw‖L2

[
(δ − ε)(‖Λquδt‖L2 + ‖Λquδxxt‖L2)

+ε
∥
∥
∥Λq−2wt

∥
∥
∥
L2

+ (δ − ε)
∥
∥
∥Λq−2uδt

∥
∥
∥
L2

]

+
∣
∣
∣
∣

∫

R

ΛqwΛq
(
um+2
ε − um+2

δ

)

x
dx

∣
∣
∣
∣

∣
∣
∣
∣

∫

ΛqwΛq−2
(
um+1
ε − um+1

δ

)

x
dx

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

ΛqwΛq−2
(
um+2
ε − um+2

δ

)

x
dx

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

R

ΛqwΛq−2
[
∂x

(
um+1
ε

)
∂xw

]

x
dx

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

R

ΛqwΛq−2
[
∂x

(
um+1
ε − um+1

δ

)
∂xuδ

]

x
dx

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

R

ΛqwΛq−2[um
ε uεxuεxx − um

δ uδxuδxx

]
dx

∣
∣
∣
∣

}

.

(3.72)

Using the first inequality in Lemma 3.10, we have

∣
∣
∣
∣

∫

R

ΛqwΛq
(
um+2
ε − um+2

δ

)

x
dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

R

ΛqwΛq(wgm+1
)
xdx

∣
∣
∣
∣

≤ c‖w‖2Hq

∥
∥gm+1

∥
∥
Hq+1 ,

(3.73)

where gm+1 =
∑m+1

j=0 u
m+1−j
ε u

j

δ
. For the last three terms in (3.72), using Lemmas 3.1 and 3.13,

1/2 < q < min{1, s − 1}, s > 3/2, the algebra property of Hs0 with s0 > 1/2 and (3.40), we
have

∣
∣
∣
∣

∫

R

ΛqwΛq−2
(
∂x

(
um+1
ε

)
∂xw

)

x
dx

∣
∣
∣
∣ ≤ c‖w‖2Hq‖uε‖m+1

Hs , (3.74)

∣
∣
∣
∣

∫

R

ΛqwΛq−2
(
∂x

(
um+1
ε − um+1

δ

)
∂xuδ

)

x
dx

∣
∣
∣
∣

≤ c‖w‖Hq‖uδ‖Hs

∥
∥
∥um+1

ε − um+1
δ

∥
∥
∥
Hq

≤ c‖w‖2Hq‖uδ‖Hs,
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∣
∣
∣
∣

∫

R

ΛqwΛq−2[um
ε uεxuεxx − um

δ uδxuδxx

]
dx

∣
∣
∣
∣

≤ c‖w‖Hq

∥
∥
∥
(
um
ε − um

δ

)(
u2
εx

)

x
+ um

δ

[
u2
εx − u2

δx

]

x

∥
∥
∥
Hq−2

≤ c‖w‖Hq

(∥
∥
∥
(
um
ε − um

δ

)(
u2
εx

)

x

∥
∥
∥
Hq−1

+
∥
∥
∥um

δ

[
u2
εx − u2

δx

]

x

∥
∥
∥
Hq−2

)

≤ c‖w‖Hq

(∥
∥um

ε − um
δ

∥
∥
Hq

∥
∥
∥
(
u2
εx

)

x

∥
∥
∥
Hq−1

+
∥
∥um

δ

∥
∥
Hs

∥
∥
∥
[
u2
εx − u2

δx

]

x

∥
∥
∥
Hq−2

)

≤ c‖w‖Hq

(
‖w‖Hq

∥
∥gm−1

∥
∥
Hq‖u‖2Hs +

∥
∥um

δ

∥
∥
Hs‖uεx + uδx‖Hq‖w‖Hq

)

≤ c‖w‖2Hq

(∥
∥gm−1

∥
∥
Hq‖u‖2Hs +

∥
∥um

δ

∥
∥
Hs‖uεx + uδx‖Hq

)
.

(3.75)

Using (3.67), we derives that the inequality

∣
∣
∣
∣

∫

R

ΛqwΛq−2
(
um+2
ε − um+2

δ

)

x
dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

R

ΛqwΛq−2(wgm+1
)
xdx

∣
∣
∣
∣

≤ c
∥
∥gm+1

∥
∥
Hq‖w‖2Hq

(3.76)

holds for some constant c, where gm+1 =
∑m+1

j=0 u
m+1−j
ε u

j

δ. Using the algebra property of Hq

with q > 1/2, q + 1 < s and Lemma 3.12, we have ‖gm‖Hq+1 ≤ c for t ∈ (0, T̃]. Then it follows
from (3.57)–(3.59) and (3.73)–(3.76) that there is a constant c depending on T̃ such that the
estimate

d

dt

∫

R

[
(1 − ε)(Λqw)2 + ε(Λqwx)

2
]
dx ≤ c

(
δγ‖w‖Hq + ‖w‖2Hq

)
(3.77)

holds for any t ∈ [0, T̃), where γ = 1 if s ≥ 3 + q and γ = (1 + s − q)/4 if s < 3 + q. Integrating
(3.77)with respect to t, one obtains the estimate

1
2
‖w‖2Hq =

1
2

∫

R

(Λqw)2dx

≤
∫

R

[
(1 − ε)(Λqw)2 + ε(Λqw)2

]
dx

≤
∫

R

[
(Λqw0)

2 + ε(Λqw0x)
2
]
dx + c

∫ t

0

(
δγ‖w‖Hq + ‖w‖2Hq

)
dτ.

(3.78)

Applying the Gronswall inequality, (3.37) and (3.39) yields that

‖u‖Hq ≤ cδ(s−q)/4ect + δγ(ect − 1
)
, (3.79)

for any t ∈ [0, T̃).
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Multiplying both sides of (3.69) by ΛswΛs and integrating the resultant equation with
respect to x, one obtains that

1
2
d

dt

∫

R

[
(1 − ε)(Λsw)2 + ε(Λswx)

2
]
dx

= (ε − δ)
∫

R

(Λsw)[(Λsuδt) + (Λsuδxxt)]dx

− ε

∫

R

ΛswΛs−2wtdx + (δ − ε)
∫

R

ΛswΛs−2uδtdx

− k

m + 1

∫

R

(Λsw)Λs
(
um+1
ε − um+1

δ

)

x
dx

− 1
m + 2

∫

R

(Λsw)Λs
(
um+2
ε − um+2

δ

)

x
dx

−
∫

R

ΛswΛs−2
(
um+2
ε − um+2

δ

)

x
dx

−
∫

R

ΛswΛs−2
[
∂x

(
um+1
ε

)
∂xw

]

x
dx

−
∫

R

ΛswΛs−2
[
∂x

(
um+1
ε − um+1

δ

)
∂xuδ

]

x
dx

+
∫

R

ΛswΛs−2[um
ε uεxuεxx − um

δ uδxuδxx

]
dx.

(3.80)

From Lemma 3.13, we have

∣
∣
∣
∣

∫

R

ΛswΛs−2
(
um+2
ε − um+2

δ

)

x
dx

∣
∣
∣
∣ ≤ c3

∥
∥gm+1

∥
∥
Hs‖w‖2Hs. (3.81)

From Lemma 3.11, it holds that

∣
∣
∣
∣

∫

R

ΛswΛs
(
um+2
ε − um+2

δ

)

x
dx

∣
∣
∣
∣ ≤ c

(
‖w‖Hs‖w‖Hq‖uδ‖Hs+1 + ‖w‖2Hs

)
. (3.82)

Using the Cauchy-Schwartz inequality and the algebra property of Hs0 with s0 > 1/2, for
s > 3/2, we have

∣
∣
∣
∣

∫

R

ΛswΛs−2
[
∂x

(
um+1
ε

)
∂xw

]

x
dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

R

ΛqwΛs−2
[
∂x

(
um+1
ε

)
∂xw

]

x
dx

∣
∣
∣
∣

≤ c‖Λsw‖L2

∥
∥
∥Λs−2

[
∂x

(
um+1
ε

)
∂xw

]

x

∥
∥
∥
L2

≤ c‖w‖Hq

∥
∥
∥∂x

(
um+1
ε

)
∂xw

∥
∥
∥
Hs−1

≤ c‖uε‖m+1
Hs ‖w‖2Hs

∣
∣
∣
∣

∫

R

ΛswΛs−2
[
∂x

(
um+1
ε − um+1

δ

)
∂xuδ

]

x
dx

∣
∣
∣
∣ ≤ c‖w‖Hs

∥
∥
∥Λs−2

[
∂x

(
um+1
ε − um+1

δ

)
∂xuδ

]

x

∥
∥
∥
L2

≤ c‖uδ‖Hs

∥
∥gm

∥
∥
Hs‖w‖2Hs,

(3.83)



Abstract and Applied Analysis 19

∣
∣
∣
∣

∫

R

ΛswΛs−2[um
ε uεxuεxx − um

δ uδxuδxx

]
dx

∣
∣
∣
∣

≤ c‖w‖Hs

(∥
∥
∥
(
um
ε − um

δ

)(
u2
εx

)

x

∥
∥
∥
Hs−2

+
∥
∥
∥um

δ

[
u2
εx − u2

δx

]

x

∥
∥
∥
Hs−2

)

≤ c‖w‖Hs

(∥
∥
(
um
ε − um

δ

)∥
∥
Hs

∥
∥
∥
(
u2
εx

)

x

∥
∥
∥
Hs−2

+
∥
∥um

δ

∥
∥
Hs

∥
∥
∥
[
u2
εx − u2

δx

]

x

∥
∥
∥
Hs−2

)

≤ c‖w‖2Hs,

(3.84)

in which we have used Lemma 3.1 and the bounded property of ‖uε‖Hs and ‖uδ‖Hs (see
Lemma 3.12). It follows from (3.80)–(3.84) and (3.57)–(3.59) and (3.79) that there exists a
constant c depending onm such that

d

dt

∫

R

[
(1 − ε)(Λsw)2 + ε(Λswx)

2
]
dx

≤ 2δ
(
‖uδt‖Hs + ‖uδxxt‖Hs +

∥
∥
∥Λs−2wt

∥
∥
∥
L2

+
∥
∥
∥Λs−2uδt

∥
∥
∥
)
‖w‖Hs

+ c
(
‖w‖2Hs + ‖w‖Hq‖w‖Hs‖uδ‖Hs+1

)

≤ c
(
δγ1‖w‖Hs + ‖w‖2Hs

)
,

(3.85)

where γ1 = min(1/4, (s−q−1)/4) > 0. Integrating (3.85)with respect to t leads to the estimate

1
2
‖w‖2Hs ≤

∫

R

[
(1 − ε)(Λsw)2 + ε(Λswx)

2
]
dx

≤
∫

R

[
(Λsw0)

2 + ε(Λsw0x)
2
]
dx + c

∫ t

0

(
δγ1‖w‖Hs + ‖w‖2Hs

)
dτ.

(3.86)

It follows from the Gronwall inequality and (3.86) that

‖w‖Hs ≤
(

2
∫

R

[
(Λsw0)

2 + ε(Λsw0x)
2
]
dx

)1/2

ect + δγ1
(
ect − 1

)

≤ c1
(
‖w0‖Hs + δ3/4

)
ect + δγ1

(
ect − 1

)
,

(3.87)

where c1 is independent of ε and δ.
Then (3.39) and the above inequality show that

‖w‖Hs −→ 0 as ε −→ 0, δ → 0. (3.88)
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Next, we consider the convergence of the sequence {uεt}. Multiplying both sides of (3.69) by
Λs−1wtΛs−1 and integrating the resultant equation with respect to x, we obtain

(1 − ε)‖wt‖2Hs−1 +
1

m + 2

∫

R

(
Λs−1wt

)
Λs−1

(
um+2
ε − um+2

δ

)

x
dx

+
∫

R

[
−ε

(
Λs−1wt

)(
Λs−1wxxt

)
+ (δ − ε)

(
Λs−1wt

)
Λs−1(uδt + uδxxt)

]
dx

=
∫

R

(
Λs−1wt

)
Λs−3

[

−εwt + (δ − ε)uδt − k

m + 1
∂x

(
um+1
ε − um+1

δ

)
− ∂x

(
um+2
ε − um+2

δ

)

− ∂x
[
∂x

(
um+1
ε

)
∂xw + ∂x

(
um+1
ε − um+1

ε

)
∂xuδ

]

+
[
um
ε uεxuεxx − um

δ uδxuδxx

]
]

dx.

(3.89)

It follows from (3.57)–(3.60) and the Schwartz inequality that there is a constant c
depending on T̃ and m such that

(1 − ε)‖wt‖2Hs−1 ≤ c
(
δ1/2 + ‖w‖Hs + ‖w‖s−1

)
‖wt‖Hs−1 + ε‖wt‖2Hs−1 . (3.90)

Hence,

1
2
‖wt‖2Hs−1 ≤ (1 − 2ε)‖wt‖2Hs−1

≤ c
(
δ1/2 + ‖w‖Hs + ‖w‖Hs−1

)
‖wt‖Hs−1 ,

(3.91)

which results in

1
2
‖wt‖Hs−1 ≤ c

(
δ1/2 + ‖w‖Hs + ‖w‖Hs−1

)
. (3.92)

It follows from (3.79) and (3.88) that wt → 0 as ε, δ → 0 in the Hs−1 norm. This
implies that uε is a Cauchy sequence in the spaces C([0, T);Hs(R)) and C([0, T);Hs−1(R)),
respectively. The proof is completed.

Proof of Theorem 2.1. We consider the problem

(1 − ε)ut − εutxx =
(
1 − ∂2x

)−1[− k

m + 1

(
um+1

)

x
− m + 3
m + 2

(
um+2

)

x
+

1
m + 2

∂3x

(
um+2

)

−(m + 1)∂x
(
umu2

x

)
+ umuxuxx

]

,

u(0, x) = uε0(x).

(3.93)
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Letting u(t, x) be the limit of the sequence uε and taking the limit in problem (3.93) as ε → 0,
from Lemma 3.14, it is easy to see that u is a solution of the problem

ut =
(
1 − ∂2x

)−1[− k

m + 1

(
um+1

)

x
− m + 3
m + 2

(
um+2

)

x
+

1
m + 2

∂3x

(
um+2

)

−(m + 1)∂x
(
umu2

x

)
+ umuxuxx

]

,

u(0, x) = u0(x),

(3.94)

and hence u is a solution of problem (3.94) in the sense of distribution. In particular, if s ≥ 4,
u is also a classical solution. Let u and v be two solutions of (3.94) corresponding to the same
initial data u0 such that u, v ∈ C([0, T);Hs(R)). Then w = u − v satisfies the Cauchy problem

wt =
(
1 − ∂2x

)−1{
∂x

[

− k

m + 1
wgm − m + 3

m + 2
wgm+1 +

1
m + 2

∂2x
(
wgm+1

)

−∂x
(
um+1

)
∂xw − ∂x

(
um+1 − vm+1

)
∂xv

]

+umuxuxx − vmvxvxx

}

,

w(0, x) = 0.

(3.95)

For any 1/2 < q < min{1, s−1}, applying the operatorΛqwΛq to both sides of equation
(3.95) and integrating the resultant equation with respect to x, we obtain the equality

1
2
d

dt
‖w‖2Hq =

∫

R

(Λqw)Λq−2
{

∂x

[

− k

m + 1
wgm − m + 3

m + 2
wgm+1 +

1
m + 2

∂2x
(
wgm+1

)

−∂x
(
um+1

)
∂xw − ∂x

(
um+1 − vm+1

)
∂xv

]

+umuxuxx − vmvxvxx

}

dx.

(3.96)

By the similar estimates presented in Lemma 3.14, we have

d

dt
‖w‖2Hq ≤ c̃‖w‖2Hq . (3.97)

Using the Gronwall inequality leads to the conclusion that

‖w‖Hq ≤ 0 × ec̃t = 0 (3.98)

for t ∈ [0, T̃). This completes the proof.
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4. Global Existence of Strong Solutions

We study the differential equation

pt = um+1(t, p
)
, t ∈ [0, T),

p(0, x) = x.
(4.1)

Motivated by the Lagrangian viewpoint in fluid mechanics, by which one looks at the
motion of individual fluid particles (see [43]), we state the following Lemma.

Lemma 4.1. Let u0 ∈ Hs, s ≥ 3 and let T > 0 be the maximal existence time of the solution to
problem (2.2). Then problem (4.1) has a unique solution p ∈ C1([0, T)×R). Moreover, the map p(t, .)
is an increasing diffeomorphism of R with px(t, x) > 0 for (t, x) ∈ [0, T) × R.

Proof. From Theorem 2.1, we have u(t, x) ∈ C([0, T);Hs(R))
⋂
C1([0, T);Hs−1(R)) and

Hs(R) ∈ C1(R), where the Sobolev imbedding theorem is used. Thus, we conclude that
both functions u(t, x) and ux(t, x) are bounded, Lipschitz in space and C1 in time. Using the
existence and uniqueness theorem of ordinary differential equations derives that problem
(4.1) has a unique solution p ∈ C1([0, T) × R).

Differentiating (4.1) with respect to x yields that

d

dt
px = (m + 1)umux

(
t, p

)
px, t ∈ [0, T), b /= 0,

px(0, x) = 1,
(4.2)

which leads to

px(t, x) = exp

(∫ t

0
(m + 1)umux

(
τ, p(τ, x)

)
dτ

)

. (4.3)

For every T ′ < T , using the Sobolev imbedding theorem yields that

sup
(τ,x)∈[0,T ′)×R

|ux(τ, x)| < ∞. (4.4)

It is inferred that there exists a constant K0 > 0 such that px(t, x) ≥ e−K0t for (t, x) ∈
[0, T) × R. It completes the proof.

The next Lemma is reminiscent of a strong invariance property of the Camassa-Holm
equation (the conservation of momentum [44, 45]).

Lemma 4.2. Let u0 ∈ Hs with s ≥ 3, and let T > 0 be the maximal existence time of the problem
(2.2), it holds that

y
(
t, p(t, x)

)
p2x(t, x) = y0(x)e

∫ t
0 mumuxdτ , (4.5)

where (t, x) ∈ [0, T) × R and y := u − uxx + k/2(m + 1).
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Proof. We have

d

dt

[
y
(
t, p(t, x)

)
p2x(t, x)

]
= ytp

2
x + 2ypxpxt + yxptp

2
x

= ytp
2
x + 2y(m + 1)umuxp

2
x + um+1yxp

2
x

=
[
yt + kumux + (m + 2)umuxy + yxu

m+1
]
p2x +mumuxyp

2
x

=
[
ut − utxx + kumux + (m + 2)umux(u − uxx) + um+1(ux − uxxx)

]
p2x

+mumuxyp
2
x

= mumuxyp
2
x.

(4.6)

Using px(0, x) = 1 and solving the above equation, we complete the proof of this lemma.

Lemma 4.3. If u0 ∈ Hs, s ≥ 3/2, such that (1 − ∂2x)u0 + k/2(m + 1) ≥ 0, then the solution of
problem (2.2) satisfies the following:

‖ux‖L∞ ≤ ‖u‖L∞ +
k

2(m + 1)
≤ c. (4.7)

Proof. Using u0−u0xx+k/2(m+1) ≥ 0, it follows from Lemma 4.2 that u−uxx+k/2(m+1) ≥ 0.
Letting Y1 = u − uxx, we have

u =
1
2
e−x

∫x

−∞
eηY1

(
t, η

)
dη +

1
2
ex

∫∞

x

e−ηY1
(
t, η

)
dη, (4.8)

from which we obtain that

∂xu(t, x) = −1
2

(

e−x
∫x

−∞
eηY1

(
t, η

)
dη + ex

∫∞

x

e−ηY1
(
t, η

)
dη

)

+ ex
∫∞

x

e−ηY1
(
t, η

)
dη

= −u(t, x) + ex
∫∞

x

e−ηY1
(
t, η

)
dη

= −u(t, x) + ex
∫∞

x

e−η
(

Y1
(
t, η

)
+

k

2(m + 1)

)

dη − k

2(m + 1)
ex

∫∞

x

e−ηdη

= −u(t, x) + ex
∫∞

x

e−η
(
y
(
t, η

))
dη − k

2(m + 1)

≥ −u(t, x) − k

2(m + 1)
.

(4.9)

On the other hand, we have

∂xu(t, x) =
1
2

(

e−x
∫x

−∞
eηY1

(
t, η

)
dη + ex

∫∞

x

e−ηY1
(
t, η

)
dη

)

− e−x
∫x

−∞
eηY1

(
t, η

)
dη

= u(t, x) − e−x
∫x

−∞
eηY1

(
t, η

)
dη
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= u(t, x) − e−x
∫x

−∞
eη

(

Y1
(
t, η

)
+

k

2(m + 1)

)

dη +
k

2(m + 1)
e−x

∫x

−∞
eηdη

= u(t, x) − e−x
∫x

−∞
eηy

(
t, η

)
dη +

k

2(m + 1)

≤ u(t, x) +
k

2(m + 1)
.

(4.10)

The inequalities (3.40), (4.9), and (4.10) derive that (4.7) is valid.

Proof of Theorem 2.2. Noting Remarks 3.6 and 3.8, ‖u‖H1 ≤ c and taking q + 1 = s in inequality
(3.15), we have

‖u‖2Hs ≤ ‖u0‖2Hs + c

∫ t

0
‖u‖2Hs

(
‖ux‖L∞ + ‖ux‖2L∞

)
dτ, (4.11)

from which we obtain that

‖u‖Hs ≤ ‖u0‖Hsec
∫ t
0(‖ux‖L∞+‖ux‖2L∞ )dτ . (4.12)

Applying Lemma 4.3 derives

‖u‖Hs ≤ ‖u0‖Hse(c+c
2)t. (4.13)

From Theorem 2.1 and (4.13), we know that the result of Theorem 2.2 holds.
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