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Fabric tensor has proved to be an effective tool statistically characterizing directional data in
a smooth and frame-indifferent form. Directional data arising from microscopic physics and
mechanics can be summed up as tensor-valued orientation distribution functions (ODFs). Two
characterizations of the tensor-valued ODFs are proposed, using the asymmetric and symmetric
fabric tensors respectively. The later proves to be nonconvergent and less accurate but still an
available solution for where fabric tensors are required in full symmetry. Analytic solutions of the
two types of fabric tensors characterizing centrosymmetric and anticentrosymmetric tensor-valued
ODFs are presented in terms of orthogonal irreducible decompositions in both two- and three-
dimensional (2D and 3D) spaces. Accuracy analysis is performed on normally distributed random
ODFs to evaluate the approximation quality of the two characterizations, where fabric tensors of
higher orders are employed. It is shown that the fitness is dominated by the dispersion degree of
the original ODFs rather than the orders of fabric tensors. One application of tensor-valued ODF
and fabric tensor in continuum damage mechanics is presented.

1. Introduction

Many quantities arising from microscopic physics and mechanics are directional dependent,
and as is often the case, are randomly and discontinuously distributed along the orientations.
Statistical characterization of such directional data is essential [1–4]. With regard to physical
problems, such characterization must take a frame-indifferent form, or a tensorial formwhich
is invariant to coordinate transformations; see, for example, Kanatani [5], Advani and Tucker
[6], and Yang et al. [7].

Directional data can be generalized as orientation distribution functions (ODFs). In
its classical definition [3–5, 8, 9], an ODF is actually a probability density function of a
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continuous random orientational variable, which practically represents the fraction of the
total number of directional elements per unit stereo-angle along a certain direction. The
classically defined ODFs can be abstracted as scalar-valued directional functions, because
from a vector-space viewpoint, their values on each orientation are nothing but normalized
scalars. Therefore, the classical ODFs are referred to as scalar-valued ODFs in this paper,
following Yang et al. [7], in regard to the generality of tensor-valued ODFs.

The scalar-valued ODFs can be statistically characterized by their fabric tensors [5,
6, 9–21]. Such tensors are labeled fabric because they were first and have been extensively
introduced to describe the fabric (or texture) of structured solid materials, such as granular
[5, 10–12] and microcracked [13–16] media, polycrystals and polymers [17, 18], and bones
[19], and prove to be an effective tool bridging the multiscale behaviors of the materials.
Recent applications of fabric tensors extend beyond material studies to wherever directional
variables are focused, such as mixed fluids [6, 20] and medical imaging [9, 21], whether
being called fabric tensors or not. The analytic solutions of fabric tensors of higher orders
are obtained by Kanatani [5], who characterized the scalar-valued ODFs in expansions of
three kinds of fabric tensors and addressed their equivalence to the Fourier series expansion
in 2D and to the spherical harmonics expansion in 3D. Yang et al. [22] showed that fabric
tensors of different orders are not independent: fabric tensors of lower orders can be precisely
determined by those of higher orders.

The concept of the tensor-valuedODFs is relatively new, but their objectivity in physics
and mechanics is visible. Yang et al. [7, 23] proved that the damage effective stress in damage
mechanics is inherently a vector-valued ODF, which cannot be fully described by a Cauchy-
like stress tensor of order two. In fabric-tensor-based micromechanics of granular media;
see, for example, Rahmoun et al. [11] and Li and Yu [12], the contact forces and contact
vectors should both be taken for vector-valued ODFs. In the microplane theory of Bažant and
Gambarova [24] and Carol and Bažant [25], the microplane elasticity tensor is essentially a
second-order tensor-valued ODF that defines a one-to-one linear map between the stress and
strain vector-valued ODFs. The fabric tensor algebra of vector-valued ODFs is preliminarily
studied by Yang et al. [7], who derived the explicit expressions of symmetric fabric tensors
up to the sixth order. Li and Yu [12] provided a stepwise repetitive method to determine
asymmetric fabric tensors of higher orders. However, general analytic solution is not found
in previous studies.

The approximation quality of the fabric tensor characterization is not so frequently
stressed in previous studies, perhaps because there are few alternative ways to characterize
directional data in a tensorial form. Kanatani [5] suggested the test of uniformity to evaluate
the fitness. Li and Yu [12] simply defined the proximity index for both scalar- and vector-
valued ODFs. One can intuitively estimate the accuracy of the zeroth-, second-, and fourth-
order fabric tensor approximations to randomly distribute scalar-valued ODFs in many of
the referred studies [5, 6, 9, 11, 13, 14, 16]. Nevertheless, systematic accuracy analysis has not
been reported yet, even for scalar-valued ODFs.

In this paper, we complete the fabric tensor algebra for the largest generality of tensor-
valued ODFs. A strict but asymmetric characterization is presented in complete parallel
to that of the scalar-valued ODFs by Kanatani [5]. The relationship of fabric tensors of
different orders [22] holds for the tensor-valued ODFs in this case. However, the asymmetric
fabric tensors may be inconvenient for practical use because of potential inconsistency with
physical hypotheses and observations. Therefore, a nonstandard symmetric characterization
is proposed, which is proved to be nonconvergent but still available for most irregular
tensor-valued ODFs. Analytic solutions of the two types of fabric tensors characterizing
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centrosymmetric and anticentrosymmetric tensor-valued ODFs in 2D and 3D are presented
in the forms of orthogonal irreducible decompositions by Zheng and Zou [26]. Accuracy
analysis is performed on normally distributed random ODFs to evaluate the approximation
quality of the two characterizations, where fabric tensors of higher orders are employed.

2. Notation and Operation of Tensor and Orientation

In this paper, we mainly use the abstract notation of tensors to simplify the expressions. For
this purpose, quite a few notations and operators must be predefined. The abstract form of
a generic tensor is written in bold and nonitalic, with its order shown in the subscript, for
example, a fourth-order tensor T4 = {Tijkl} (Cartesian components in { }). In particular,
scalars are written like ψ and vectors like v = {vi}.

2.1. Tensor Symmetrization

In the component notation, the symmetrization of a generic tensor Ti1i2···inj1j2···jm on the indices
i1i2 · · · in is denoted by Ti1i2···inj1j2···jm , which is defined as the sum of the components of Tn+m
indexed by the n! permutations of the overbared subscripts i1i2 · · · in divided by n! If two
symmetrizations are required at the same time (luckily, two is enough for our use), double
overbars must be used. Here are two examples:

Tijkl =
1
2
(
Tijkl + Tikjl

)
, Ri pTj q =

1
4
(
RipTjq + RjpTiq + RiqTjp + RjqTip

)
. (2.1)

In the abstract notation, the symmetrization is simply represented by the overbared
orders, for example, Tn⊕m = {Ti1i2···inj1j2···jm}, T1

⊕
2
⊕

1 = {Tijkl}, and R
1
⊕

1

⊗
T
1
⊕

1
= {RipTj q}.

The operator
⊕

means sequenced addition of orders, which removes ambiguities when the
orders are operated. For example, T1

⊕
2
⊕

1 precisely indicates that the second and third
orders are symmetrized, while T1+2+1 may be mistaken for T2+2 or T2+2.

Full symmetrization of a tensor Tn can be realized by defining the alternating product
operation signified by �,

Tn
def= 1

⊗
n

1
⊕

1

n� Tn = 1
⊗
n

1
⊕

1

n� Tn, (2.2)

where 12 = {δij} is the second-order identity tensor and 1
⊗
n

1
⊕

1
means the nth power tensor

product of 11⊕ 1:

1
⊗
n

1
⊕

1

def= 11⊕ 1

⊗
11⊕ 1

⊗
· · ·
⊗

11⊕ 1
︸ ︷︷ ︸

n times

.
(2.3)

The alternating product is actually a modified inner product in which the left-hand operand
tensor participates on alternate orders. Equation (2.2) makes itself explicit in the component
form

Ti1i2···in = δi1j1δi2j2 · · · δinjnTj1j2···jn . (2.4)
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2.2. Tensor Deviatorization and Orthogonal Irreducible Decomposition

In this subsection, we only consider full symmetric tensors. Successive contraction of a full
symmetric tensor Tn form times is denoted by

Tn�2m
def=
{
Ti1i2···in−2mj1j1j2j2···jmjm

}
. (2.5)

A symmetric tensor Dn is termed a deviator tensor if it is traceless, Dn�2 = 0. The
deviatorization operation of a symmetric tensor means to segregate its deviator part, as
signified by the operator �·� on its order,

T�2n�

def=
n∑

r=0

κr2nT2n�2r
⊗

I2r , (2.6a)

T�2n+1�
def=

n∑

r=0

κr2n+1T2n+1�2r
⊗

I2r , (2.6b)

where I2r is the 2rth order identity tensor, I2r = 1
⊗
r

2
. The coefficients κrm are determined in

such a way that κ0m
def= 1 and any contraction of (2.6a) and (2.6b) vanishes. The results of κrm

are provided by Kanatani [5],

κrm =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(−1)r
22r

m

m − r

(
m − r
r

)

, in 2D,

(−1)r( m2r )
(
m−1
r

)

(
2m−1
2r

) , in 3D,

(2.7)

wherem is the order of T, whether even or odd. For examples, the deviatorizations of the 3D
symmetric tensors of orders from 1 to 4 are shown in the component forms

T�i� = Ti, T�ij� = Tij − 1
3
Trrδij ,

T�ijk� = Tijk − 3
5
Trriδjk, T�ijkl� = Tijkl − 6

7
Trrijδkl +

3
35
TrrssIijkl.

(2.8)

The orthogonal irreducible decomposition theorem of symmetric tensors of higher
orders is proposed by Zheng and Zou [26], which states that any symmetric tensor Tm in
either 2D or 3D can be orthogonally decomposed into deviator-tensor-induced irreducible
bases in the following unified forms:

T2n =
n∑

r=0

D2r

⊗
I2n−2r , (2.9a)

T2n+1 =
n∑

r=0

D2r+1

⊗
I2n−2r , (2.9b)
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whereD2r andD2r+1 are two clusters of deviator tensors. The deviatorization of any deviator-
tensor-induced irreducible basis vanishes except for the last term where r = n, namely,
D�2r

⊗
I2n−2r� = 0 (r = 0, 1, . . . , n − 1) and D�2n� = D2n.

2.3. Definition and Integral of Orientation

Any orientation about a point can be defined by a unit vector n starting at that point and
ending on a unit circle denoted S1 in 2D or a unit sphere denoted S2 in 3D,

n def=

⎧
⎨

⎩

{
cosφ, sinφ

}
, in 2D,

{
sin θ cosφ, sin θ sinφ, cos θ

}
, in 3D,

(2.10)

where φ and θ are the stereo angles defining the orientation n.
The contour integral

∮
(·)dn in 2D and 3D are, respectively, defined as

∮
(·)dn def=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2π

∮

S1
(·)dl = 1

2π

∫2π

0
(·)dφ, in 2D,

1
4π

∮

S2
(·)dA =

1
4π

∫π

0

∫2π

0
(·) sin θdφdθ, in 3D.

(2.11)

Noting that 2π and 4π are the circumference of S1 and the spherical area of S2, respectively,
so the integral

∮
(·)dn represents an average value of the distribution (·) over all orientations.

The identity tensors are related to the integral of orientations by

I2n = 1
⊗
n

2
= α2n

∮
n
⊗

2ndn = α2n

∮
N2n(n)dn, (2.12)

where N2n(n)
def= n

⊗
2n and the coefficient α2n is given by

α2n =

⎧
⎪⎪⎨

⎪⎪⎩

22n
(
2n
n

) , in 2D,

2n + 1, in 3D.

(2.13)

Noting that n · n = 1, the successive contraction of I2n for n − r times takes the form

I2n�2(n−r) =
α2n
α2r

I2r . (2.14)

For example, in 3D, δij = 3
∮
ninjdn, Iijkl = 5

∮
ninjnknldn, and Iijkk = (3/5)δij .

3. Asymmetric Characterization of Tensor-Valued ODFs

A tensor-valued ODF is a tensor function dependent on the predefined orientation n. A
generic tensor-valued ODF of order m is denoted by tm = tm(n), which may be randomly
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and discontinuously distributed along the orientations. The fabric tensor characterization
first requires that tm(n) be decomposed into the centrosymmetric and anticentrosymmetric
parts namely, tm(n) = sm(n) + am(n), where

sm(n) =
1
2
[tm(n) + tm(−n)], sm(n) = sm(−n),

am(n) =
1
2
[tm(n) − tm(−n)], am(n) = −am(−n).

(3.1)

We first consider the centrosymmetric tensor-valued ODF sm(n). Let sm(n) be approxi-
mated by another tensor-valued ODF sm(n), which is precisely determined by a tensor Sm+2n

(even orders must be added due to the centrosymmetry of sm(n)),

sm(n) ≈ sm(n)
def= Sm+2n

2n· N2n(n), (3.2)

for example, s2(n) ≈ s2(n)
def= S4

2· (n⊗n). BecauseN2n(n) is full symmetric, it is quite visible
that Sm+2n = Sm⊕ 2n.

The tensor Sm+2n is defined as the fabric tensor of the second kind (or simply referred to
as fabric tensor where no ambiguity arises) of the tensor-valued ODF sm(n) if the following
condition of least-square minimization of error is imposed:

Δ def=
∮
|sm(n) − sm(n)|2dn, ∂Δ

∂Sm+2n
= 0. (3.3)

Applied with (3.2), (3.3) yields

∮
sm(n)

⊗
N2n(n)dn =

∮
sm(n)

⊗
N2n(n)dn, (3.4)

which can be further recast as

Sm+2n
2n· I4n = α4nSm⊕ 2n, (3.5)

where Sm⊕ 2n is defined as the fabric tensor of the first kind of sm(n),

Sm⊕ 2n
def=
∮
sm(n)

⊗
N2n(n)dn. (3.6)

One contracting property of Sm⊕ 2n is favorable, Sm⊕ 2n�2 = Sm⊕ 2n−2.
Such asymmetric characterization of tensor-valued ODFs is the intrinsic extension of

that of scalar-valued ODFs by Kanatani [5], in that the components of the tensor-valued
ODF are handled as independent scalar-valued ODFs, whose fabric tensor expansion proves
to be equivalent to the Fourier series expansion in 2D and to the spherical harmonics
expansion in 3D. In other words, the asymmetric characterization is convergent; namely, the
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approximation error Δ is a nonincreasing function of the used order 2n and tends to zero
when 2n tends to infinity.

3.1. Analytic Solution of Sm+2n

Evidently, Sm⊕ 2n can be approximately determined by observed values of sm(n) on finite
numbers of orientations, so what left for us to do is to find the explicit expression of Sm+2n

with respect to Sm⊕ 2n, or the inversed form of (3.5).
Resorting to (2.9a), the orthogonal irreducible decomposition of Sm+2n takes the

following form:

Sm+2n = Sm⊕ 2n
def=

n∑

r=0

Dm
⊕

2r

⊗
I2n−2r , (3.7)

where Dm
⊕

2r (r = 0, 1, . . . , n) are defined by [5] as the fabric tensors of the third kind of sm(n),
which are, however, barely perceptible in practical use.

Applying (3.7) to (3.5), and noting that any contraction ofDm
⊕

2r vanishes, one obtains

n∑

r=0

ξ2r2n,2r
α2n+2r

Dm
⊕

2r

⊗
I2n−2r = Sm⊕ 2n, (3.8)

where the coefficient ξ2r2n,2r is determined by (if one substitutes (3.7) to (3.5) and observes the
result, he may realize that ξ2s2n,2r is all about a ball and box puzzle. Assume that 2n+2r distinct
balls, 2n colored red and 2r blue, are paired and placed into n + r sequenced boxes, each
box with a pair. And ξ2s2n,2r is actually the probability of that 2s boxes are filled with a pair in
different colors)

ξ2s2n,2r = 22s
( n+r2s )

(
n+r−2s
n−s

)

(
2n+2r
2r

) . (3.9)

Successively contracting (3.8) for n − t times on the symmetrized orders, taking in the
property Sm⊕ 2n�2 = Sm⊕ 2n−2,

t∑

r=0

ξ2r2n,2rζ
2t
2n,2r

α2n+2r
Dm

⊕
2r

⊗
I2t−2r = Sm⊕ 2t, (3.10)

where ζ2t2n,2r is the product of the coefficients arising from each contraction,

ζ2t2n,2r =
n−t−1∏

s=0

[
((α2n−2s−2r)/(α2n−2s−2r−2))

(
2n−2s−2r

2

)
+
(
2n−2s−2r

1

)(
2r
1

)]

(
2n−2s

2

) . (3.11)

Taking the deviatorization of (3.10) on the remaining symmetric orders, noting that
any term in the left-hand side vanishes except the last one, one finally acquires the fabric
tensors of the third kind of sm(n),

Dm
⊕

2t =
α2n+2t

ξ2t2n,2tζ
2t
2n,2t

Sm⊕ �2t� = η
2t
2nSm⊕ �2t�. (3.12)



8 Journal of Applied Mathematics

The coefficient η2t2n is fully simplified by taking in (2.13), which turns out to be independent
of n,

η2t =

⎧
⎪⎪⎨

⎪⎪⎩

22t, in 2D,

4t + 1
22t

(
4t
2t

)

, in 3D.
(3.13)

The analytic solution of fabric tensors of the second kind of sm(n) is finally obtained
by applying (3.12) and (2.6a) to (3.7),

Sm⊕ 2n =
n∑

t=0

η2t
t∑

r=0

κr2tSm
⊕

2t−2r
⊗

I2n−2t+2r . (3.14)

For the anticentrosymmetric tensor-valued ODF am(n), odd orders must be appended
to the fabric tensors of the second kind,

am(n) ≈ ám(n)
def= Am+2n+1

2n+1· N2n+1(n). (3.15)

Accordingly, the fabric tensors of the first kind are defined as

Am
⊕

2n+1
def=
∮
am(n)

⊗
N2n+1(n)dn. (3.16)

The analytic solution of Am+2n+1 with respect to Am
⊕

2n+1 can be acquired completely
parallel to that of Sm+2n, which takes the following form:

Am
⊕

2n+1 =
n∑

t=0

η2t+1
t∑

r=0

κr2t+1Am
⊕

2t+1−2r
⊗

I2n−2t+2r , (3.17)

where η2t+1 is calculated just by replacing 2t with 2t + 1 in (3.13).
For the generic tensor-valued ODF tm(n), its centrosymmetric part sm(n) and anticen-

trosymmetric part am(n) are characterized independently, which means that the order of A
is unnecessarily one larger than that of S (anyway, we take this assumption in the accuracy
analysis). For quick reference, the ultimately solved coefficients of the fabric tensors of the
second kind up to the sixth and seventh approximation orders are listed in Table 1.

3.2. Relationship between Fabric Tensors of Different Orders

Assume that two fabric tensors Sm⊕ 2n1 and Sm⊕ 2n2 , where n1 < n2, are used to characterize

the centrosymmetric tensor-valued ODF sm(n)

sm(n) ≈ s1
m(n) = Sm⊕ 2n1

2n1· N2n1(n),

sm(n) ≈ s2
m(n) = Sm⊕ 2n2

2n2· N2n2(n).
(3.18)



Journal of Applied Mathematics 9

Table 1: Coefficients of lower order fabric tensors of the second kind using asymmetric characterization
for tensor-valued ODFs (2D and 3D).

sm(n) Sm Sm⊕ 2 Sm⊕ 4 Sm⊕ 6 am(n) Am
⊕

1 Am
⊕

3 Am
⊕

5 Am
⊕

7

Sm 1, 1 Am
⊕

1 2, 3

Sm⊕ 2 −1,−3
2

4,
15
2

Am
⊕

3 −4,−15
2

8,
35
2

Sm⊕ 4 1,
15
8

−12,−105
4

16,
315
8

Am
⊕

5 6,
105
8

−32,−315
4

32,
693
8

Sm⊕ 6 −1,−35
16

24,
945
16

−80,−3465
16

64,
3003
16

Am
⊕

7 −8,−315
16

80,
3465
16

−192,−9009
16

128,
6435
16

In view of (3.4), the fabric tensors of the first kind defined by (3.6) take the following form:

Sm⊕ 2n1
def=
∮
sm(n)

⊗
N2n1(n)dn =

∮
s1
m(n)

⊗
N2n1(n)dn, (3.19a)

Sm⊕ 2n2
def=
∮
sm(n)

⊗
N2n2(n)dn =

∮
s2
m(n)

⊗
N2n2(n)dn. (3.19b)

The following relation between Sm⊕ 2n1 and Sm⊕ 2n2 is evident:

Sm⊕ 2n1 =
∮
sm(n)

⊗
N2n1(n)dn =

∮
s2
m(n)

⊗
N2n1(n)dn, (3.20)

where the second equality is achieved by contracting (3.19b) for n2 − n1 times.
Equation (3.20) indicates that once a fabric tensor Sm⊕ 2n2 of the original ODF sm(n)

is obtained, those of lower orders Sm⊕ 2n1 can be precisely determined by the approximate
ODF s2

m(n) induced from Sm⊕ 2n2 , needless to use the original ODF again. Simply put,
fabric tensors of lower orders can be precisely determined by those of higher orders. Such
dependence implies that fabric tensors of different orders cannot be treated as independent
state variables in thermodynamics [22].

3.3. Accuracy Analysis

The approximation quality of the fabric tensor characterization is quantified by the squared
error ratio εn defined as

εn
def=

Δn

∮ |tm(n)|2dn
=

∮ |tm(n) − tnm(n)|2dn
∮ |tm(n)|2dn

, (3.21)

where the superscript n determines the approximation orders applied for both the centrosym-
metric and anticentrosymmetric parts of tm(n),

tm(n) ≈ tnm(n) = Sm⊕ 2n
2n· N2n(n) +Am

⊕
2n+1

2n+1· N2n+1(n). (3.22)

Accuracy analysis performed on scalar-valuedODFs is sufficient to evaluate the fitness
of the asymmetric characterization, because each component of the tensor-valued ODFs
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is characterized in terms of independent scalar-valued ODFs. Nevertheless, vector-valued
ODFs are investigated in the next section to calibrate the accuracy of the symmetric
characterization.

The original scalar-valued ODF ψ(n) is assigned on each direction with a random
real number sampling from the normal distribution with mean μ and standard deviation
σ, denoted N(μ, σ2). In the accuracy analysis, μ is fixed at 1.0 and σ ranges from 0.1 to 0.5
with increment 0.1. The order parameter n ranges from 0 to 5, namely, as high as the tenth,
and eleventh fabric tensors are involved. The squared error ratios in 2D and 3D are shown in
Figures 1 and 2, respectively.

As evidenced by the figures, the increase of σ will to a considerable extent reduce the
accuracy when the approximation order is at a lower level, for example, the mostly used
second and fourth-order (n = 1, 2). The loss of accuracy can be remedied by increasing the
order to a higher level such as the tenth order (n = 5), which, however, cannot be effective
due to upsurging computational expense. Therefore, the approximation quality of the fabric
tensor characterization is dominated by the dispersion degree of the original ODFs rather
than the orders of fabric tensors. The original and approximate ODFs related to distribution
N(1.0, 0.32) in 2D and 3D are plotted in Figures 3 and 4, respectively, from which the fitness
can be intuitively estimated.

4. Symmetric Characterization of Tensor-Valued ODFs

For quite a few non-scalar-valued ODFs in practice, their values on all orientations are
objectively symmetric, that is, tm(n) = tm(n). Such circumstances include all the vector-valued
ODFs and many second-order tensor-valued ODFs in physics, such as the elasticity ODF
Eij(n) = Eji(n) and the conservative diffusion gradient ODF Gij(n) = Gji(n). The symmetry
of the fabric tensors of such ODFs is obvious, Sm+2n = Sm⊕ 2n and Am+2n+1 = Am

⊕
2n+1. On

many occasions, however, these fabric tensors are supposed to be fully symmetrized to keep
consistency with physical hypotheses or observations. Therefore, the symmetric characteriza-
tion is proposed, where the fabric tensors are fully symmetrized.

Consider again that the centrosymmetric part of tm(n) denoted sm(n), which is
characterized by the symmetrized fabric tensor of the second kind Sm+2n,

sm(n) ≈ sm(n)
def= Sm+2n

2n· N2n(n). (4.1)

The condition of least-square minimization of error goes as follows:

Δ def=
∮
|sm(n) − sm(n)|2dn, ∂Δ

∂Sm+2n
= 0. (4.2)

Noting that Sm+2n is related to Sm+2n by the alternating product defined in (2.2), (4.2)
can be recast as

∮
sm(n)

⊗
N2n(n)dn =

∮
sm(n)

⊗
N2n(n)dn, (4.3)
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which can be further reduced to

1
⊗
m

1
⊕

1

m� Sm+2n
2n· I

2n
⊕

2n
= α4nSm+2n, (4.4)

where Sm+2n is termed the symmetrized fabric tensor of the first kind,

Sm+2n
def=
∮
sm(n)

⊗
N2n(n)dn. (4.5)
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Figure 3: Original scalar-valued ODF sampling from N(1.0, 0.32) and its approximate ODFs using asym-
metric characterization in 2D.

Note that Sm+2n does not have the contracting property, that is, S(m+2n)�2 /=Sm+2n−2, which
means that the relationship between fabric tensors of different orders does hold for the
symmetric characterization. Equation (4.4) looks somewhat confusing, so we just show its
component form form = 2 and n = 1,

δi p δj q Sijkl Ikl st = α4Spqst. (4.6)

4.1. Analytic Solution of Sm+2n

Likewise, our task is to find the analytic solution of Sm+2n with respect to Sm+2n, or the
inversed form of (4.4).
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Known from (4.4), Sm+2n is also a full symmetric tensor (just look at (4.6)). To avail
of the orthogonal irreducible decomposition, the parity of m must be discussed. We only
consider the even case in the derivation. When m is an even integer, let m = 2p, and the
decomposition of S2p+2n takes the following form:

S2p+2n = S2p+2n
def=

p+n∑

r=0

D2r

⊗
I2p+2n−2r , (4.7)

where D2r (r = 0, 1, . . . , p + n) are accordingly termed the symmetrized fabric tensors of the third
kind, of which any contractions vanish.

Applying (4.7) to (4.4), and after some manipulations, one obtains

1
ξ2r2n+2p,2r

p+n∑

r=0

D2r
2r· I

2r
⊕

2p
⊕

2n

2n· I
2n
⊕

2n
= α4nS2p+2n. (4.8)

Note that each term in the summation takes the following recursive pattern (it is actually
another more complicated ball and box puzzle),

Da
a· Ia⊕x

⊕
b

b· Ib⊕y = ξab+x,a
x∑

l=0

(
b
a−l
)
( xl )(

b+x
a

) D
l
⊕
a−l

a−l· I
(a−l)⊕ 2y

⊕
b−(a−l)

b−(a−l)· I
b−(a−l)+x−l.

(4.9)
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Thus, (4.8) can be reduced to

p+n∑

r=0

μ2r
2p,2nD2r

⊗
I2p+2n−2r = S2p+2n, (4.10)

where the coefficient μ2r
2p,2n is given by

μ2r
2p,2n =

Frecur
(
2r, 2n, 2p, 2n

)

α4nξ
2r
2n+2p,2r

, (4.11)

and Frecur(a, b, x, y) is a recursive function drawn from (4.9), compatible for any parities of
the parameters,

Frecur
(
a, b, x, y

)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αb+x
b/2∑

l=0

ξb−2ly,b

αb+x−2l
, a = 0,

ξa
b+x,a

x∑

l=0

(
b
a−l
)
( xl )(

b+x
a

) Frecur
(
a − l, b − (a − l), y, x − l), a > 0.

(4.12)

The solving of (4.10) is through successive contraction and deviatorization, identical
to that of (3.8), which yields the symmetrized fabric tensors of the third kind,

D2t =
1

μ2t
2p,2nζ

2t
2p+2n,2t

S�(2p+2n)�(2p+2n−2t)� = λ
2t
2p,2nS�(2p+2n)�(2p+2n−2t)�. (4.13)

For vector-valued ODFs (m = 1), the closed-form expression of the coefficient λ2t1,2n+1
can be shown as

λ2t1,2n+1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2n + 2)2

(2n + 2)2 + 2t2
η2t, in 2D;

(2n + 2)2

(2n + 2)2 + 2t2 + 2t
η2t, in 3D.

(4.14)

However, for generic tensor-valued ODFs of higher orders, the closed-form expression of λ
is not found because of greater recursion depth.

The analytic solution of the symmetrized fabric tensors of the second kind is finally
obtained, considering the parity of the approximation order,

S2p+2n =
p+n∑

t=0

λ2t2p,2n

t∑

r=0

κr2tS(2p+2n)�(2p+2n−2t+2r)
⊗

I2p+2n−2t+2r ,

S2p+1+2n =
p+n∑

t=0

λ2t+12p+1,2n

t∑

r=0

κr2t+1S(2p+1+2n)�(2p+2n−2t+2r)
⊗

I2p+2n−2t+2r .

(4.15)
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The anticentrosymmetric tensor-valued ODF am(n) is characterized by

am(n) ≈ ám(n)
def= Am+2n+1

2n+1· N2n+1(n), (4.16)

where the symmetrized fabric tensors of the second kind Am+2n+1 are solved as

A2p+2n+1 =
p+n∑

t=0

λ2t+12p,2n+1

t∑

r=0

κr2t+1A(2p+2n+1)�(2p+2n−2t+2r)
⊗

I2p+2n−2t+2r , (4.17a)

A2p+2n+2 =
p+n+1∑

t=0

λ2t2p+1,2n+1

t∑

r=0

κr2tA(2p+2n+2)�(2p+2n+2−2t+2r)
⊗

I2p+2n+2−2t+2r , (4.17b)

with the symmetrized fabric tensors of the first kind defined as

Am+2n+1
def=
∮
am(n)

⊗
N2n+1(n)dn. (4.18)

The ultimately solved coefficients of the symmetrized fabric tensors of the second kind
of lower orders for vector-valued ODFs and second-order tensor-valued ODFs are listed in
Tables 2 and 3.

4.2. Nonconvergence of the Symmetric Characterization

The symmetric characterization is proved to be nonconvergent simply by a counter example.
Assume an anticentrosymmetric vector-valued ODF a(n) = {ai(n)} that is precisely deter-
mined by its second-order symmetrized fabric tensor,

ai(n) = áIIi (n) = Airnr. (4.19)

As demanded by the convergence condition, ai(n) also must be precisely determined
by its fourth-order symmetrized fabric tensorAijkl. Applying (4.19) to (4.18), one obtains the
fourth-order fabric tensor of the first kind in 3D,

Aijkl =
∮
Airnrnjnknldn =

1
5
Aijδkl, (4.20)

which is then substituted to (4.17b) (or referring to the second row of the right half of Table 2)
to determine the fourth-order fabric tensor of the second kind Aijkl,

Aijkl =
14
11
Aijδkl −

1
11
Arrδijδkl. (4.21)

Finally, applying (4.21) to (4.16), one can find the convergence condition undermined
because

áIV
i
(n) = Aijklnjnknl =

7
11
Airnr +

7
11
Arsnrnsni − 1

11
Arrni /=ai(n). (4.22)
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Table 2: Coefficients of the lower order fabric tensors of the second kind using symmetric characterization
for vector-valued ODFs (2D and 3D).

s1(n) S1 S1+2 S1+4 a1(n) A0 A1+1 A1+3 A1+5

S1 1, 1 A1+1 0, 0 2, 3

S1+2 −6
5
,−45

22
4,

15
2

A1+3
2
5
,
15
22

−24
5
,−105

11
8,

35
2

S1+4
555
221

,
13475
2664

−240
17

,−4725
148

16,
315
8

A1+5 −27
65
,− 95

112
684
65

,
675
28

−480
13

,−1485
16

32,
693
8

Table 3: Coefficients of the lower order fabric tensors of the second kind using symmetric characterization
for second-order tensor-valued ODFs (2D and 3D).

s2(n) S0 S2 S2+2 S2+4

S2 0, 0 1, 1

S2+2

1
15
,
45
418

−4
3
,
45
19

4,
15
2

S2+4 −101
598

,− 44975
141696

98
23
,
23625
2624

−16,−4725
128

16,
315
8

a2(n) A1 A2+1 A2+3 A2+5

A2+1 0, 0 2, 3

A2+3

135
154

,
4725
2914

−60
11
,−525

47
8,

35
2

A2+5 −77336
53001

,−32007339
10178960

63980
4077

,
858627
23134

−1120
27

,−72765
688

32,
693
8

Despite of such non-convergence, the symmetric characterization is still available for
most irregular tensor-valued ODFs. On one hand, the approximation condition and accuracy
are definitely determined for a given order, while the accuracy may well rise with the used
order owing to more independent components in the fabric tensors, as illustrated in the
next subsection. On the other hand, if full symmetry is prescribed on the fabric tensors, the
symmetric characterization is of the highest accuracy, particularly much more accurate than
the ungrounded direct symmetrization of the asymmetric fabric tensors.

4.3. Accuracy Analysis

Accuracy analyses are performed on vector-valued and second-order tensor-valued ODFs,
because the symmetric characterization is identical to the asymmetric one for scalar-valued
ODFs. The original vector-valued ODF v(n) is generated in the following way: the magnitude
|v|(n) samples from N(1.0, σ2), with σ ranging from 0.1 to 0.5, and the stereo angles
θv(n) and φv(n) from N(θn, (σπ/2)

2) and N(φn, (σπ/2)
2), respectively. The second-order

tensor-valued ODF m2(n) is formed by v
⊗

v/|v|. Both the asymmetric and symmetric
characterizations are investigated and compared.

The results indicate that the symmetric characterization still follows the general rule
of the asymmetric one; that is to say, the fitness majorly decreases with the dispersion degree
of the original data (σ) and improves only when the approximation order reaches very high.
So we only display and discuss the results for σ = 0.3. The squared error ratios of the two
characterizations in 2D and 3D are shown in Figures 5 and 6, respectively.
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Figure 6: Squared error ratios of symmetric and asymmetric characterizations of vector-valued and second-
order tensor-valued ODFs sampling fromN(1.0, 0.32) in 3D.

Known from Figures 5 and 6, the accuracy and convergence rate of the symmetric
characterization are lower than those of the asymmetric one, because of fewer independent
components of cause. But the difference does not reach an unacceptable degree, especially for
lower orders. Therefore, the symmetric characterization is by all means an available solution
for where fabric tensors are required in full symmetry; after all, it is the most accurate way
to obtain full symmetric fabric tensors. The original and approximate vector-valued ODFs
related to N(1.0, 0.32) in 2D and 3D are plotted in Figures 7 and 8, respectively, where the



18 Journal of Applied Mathematics

1.5

1

1

0.5

0.5−0.5

−0.5

−1

−1

−1.5 n=0

(a)

1.5

1

1

0.5

0.5−0.5

−0.5

−1

−1

−1.5 n=1

(b)

1.5

1

1

0.5

0.5−0.5

−0.5

−1

−1

−1.5 n=2

(c)

1.5

1

1

0.5

0.5−0.5

−0.5

−1

−1

−1.5
n=4

(d)

Figure 7: Original vector-valued ODF sampling from N(1.0, 0.32) and its approximate ODFs using
symmetric characterization in 2D.

magnitude |v| and the cosine of the deviation angle cos〈v,n〉 serve as the radius and color
functions, respectively.

5. Application: Microplane-Based Damage Effective Stress

In this section, we show an application of tensor-valued ODF and fabric tensor in continuum
damage mechanics, which helps to clarify the multiaxial generalization of the damage
effective stress in the classical models. Continuumdamagemechanics deals with the degrada-
tion of solid materials due to small defects (voids, microcracks, and dislocations) using con-
tinuity modeling. Kachanov [27] and Rabotnov [28] raised the concept of damage effective
stress, which constitutes the core of continuum damage mechanics.



Journal of Applied Mathematics 19

0 1−1

n = 0 n = 1

n = 2 n = 3

Original

Figure 8: Original vector-valued ODF sampling from N(1.0, 0.32) and its approximate ODFs using sym-
metric characterization in 3D.

We start from the original concept of uniaxial damage. Consider a smooth tensile bar of
nominal cross-sectional area S subjected to a uniaxial stress σ. The uniaxial damage effective
stress σ is defined by Kachanov [27] and Rabotnov [28]:

σ =
σ

(1 −D)
, D =

SD
S
, (5.1)

where D is the scalar damage variable and SD the damaged cross-sectional area.
The multiaxial generalization of the Kachanov-Rabotnov damage effective stress is not

a straightforward task, especially for anisotropic damage effects. Quite a few models have
been developed, as summarized by Zheng and Betten [29] into five types. All these models
start from a subjective premise that the damage effective stress is a Cauchy-like stress tensor
of order two, which is critically reviewed by Yang et al. [7, 23], who proposed that damage
effective stress should be generalized as a vector-valued ODF owing to its microplane-based
nature.

A microplane is a plane of any orientation cutting the material at a given point, which
is represented by the unit normal of that orientation, n = {ni}. The stress state on amicroplane
n is described by the Cauchy stress ODF σi = σi(n), which is precisely determined by the
second-order Cauchy stress tensor σij ,

σi = σi(n)
def= σijnj . (5.2)



20 Journal of Applied Mathematics

Equation (5.1) can be naturally extended onto each microplane to define the damage
effective stress ODF σi(n), with anisotropic damage effects measured by a scalar-valued ODF
D(n),

σi(n)
def=

σi(n)
1 −D(n)

=
σij

1 −D(n)
nj ≈ σijnj . (5.3)

Obviously, because the term σij/[1−D(n)] is nontensorial, the second-order tensor σij cannot
fully describe the damage effective stress ODF σi(n) but is only an approximate estimation.
This is the essential reasonwhy the definition of a second-order damage effective stress tensor
is so controversial; see, for example, the discussion by Zheng and Betten [29], Kachanov [30],
and Lemaitre et al. [31].

In fact, the second-order tensor σij can be identifiedwith the second-order fabric tensor
of the vector-valued ODF σi(n), and of course, the order can reach higher than two. Because
only the symmetric part of σij accounts for constitutive equations [32–34], the symmetric
characterization should be applied. For example, the second- and fourth-order symmetrized
fabric tensors of σi(n) in 3D are given by

σij = 3σ̃ij , (5.4a)

σijkl =
35
2
σ̃ijkl − 105

11
σ̃rrijδkl +

15
22
σ̃rrssδijδkl, (5.4b)

where σ̃ij and σ̃ijkl are the symmetrized fabric tensors of the first kind,

σ̃ij
def=
∮
σinjdn, (5.5a)

σ̃ijkl
def=
∮
σinjnknldn. (5.5b)

Substituting (5.3) to (5.5a) and then to (5.4a), the second-order fabric tensor σij is
finally obtained,

σij =
1
2
(
Ψikσkj + σikΨkj

)
, where Ψij = 3

∮
1

1 −D(n)
ninjdn. (5.6)

This is just the anisotropic damage model proposed by Murakami [34].
However, the definition of the damage effective stress ODF σi(n) in (5.3) is quite

narrow, which only deals with coaxial damage effects; that is, damage only affects the net
area of each microplane without changing its orientation. In general, noncoaxial damage
effects should be described by a second-order tensor-valued ODFMij(n), which connects the
damage effective stress ODF σi(n) to the Cauchy stress ODF σi(n) on each microplane with
full geometry equivalence. In noncoaxial cases, it can be shown that if the second-order
fabric tensor σij is applied to characterize σi(n), the widely applied anisotropic model based
on the fourth-order damage effect tensor [16, 29, 32, 33, 35, 36] in Voigt symmetry can be
realized. The noncoaxial cases as well as microplane-based physics equivalence hypotheses
and damage evolution laws will be elaborated in another paper, which may help to clarify
some uncertainties over the basic concepts of continuum damage mechanics.
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6. Conclusions

The fabric tensor approach for the largest generality of tensor-valued orientation distribution
functions (ODFs) is presented, including the analytical solution and accuracy analysis of
the asymmetric and symmetric characterizations. The asymmetric characterization of tensor-
valued ODFs is in complete parallel to that of scalar-valued ODFs by Kanatani [5], where
the components of tensor-valued ODFs are handled as independent scalar-valued ODFs. The
asymmetric characterization proves to be convergent [5] and featured by the relationship
of fabric tensors of different orders [7]. The symmetric characterization does not possess
such convergence property and relationship, but is still an available solution for most
irregular tensor-valued ODFs whose fabric tensors are prescribed in full symmetry. Accuracy
analyses are performed on normally distributed randomODFs to evaluate the approximation
quality of the two characterizations. The results indicate that the fitness is dominated by
the dispersion degree of the original ODFs rather than the orders of the fabric tensors. The
accuracy and convergence rate of the symmetric characterization are lower than those of the
asymmetric one, but the differences keep in an acceptable range for lower approximation
orders.
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