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This paper investigates robust adaptive switching controller design for Markovian jump nonlinear
systems with unmodeled dynamics and Wiener noise. The concerned system is of strict-feedback
form, and the statistics information of noise is unknown due to practical limitation. With
the ordinary input-to-state stability (ISS) extended to jump case, stochastic Lyapunov stability
criterion is proposed. By using backstepping technique and stochastic small-gain theorem, a
switching controller is designed such that stochastic stability is ensured. Also system states will
converge to an attractive region whose radius can be made as small as possible with appropriate
control parameters chosen. A simulation example illustrates the validity of this method.

1. Introduction

The establishment of modern control theory is contributed by state space analysis method
which was introduced by Kalman in 1960s. This method, describing the changes of internal
system states accurately through setting up the relationship of internal system variables and
external system variables in time domain, has become the most important tool in system
analysis. However, there remain many complex systems whose states are driven by not only
continuous time but also a series of discrete events. Such systems are named hybrid systems
whose dynamics vary with abrupt event occurring. Further, if the occurring of these events
is governed by a Markov chain, the hybrid systems are called Markovian jump systems. As
one branch of modern control theory, the study of Markovian jump systems has aroused lots
of attention with fruitful results achieved for linear case, for example, stability analysis [1, 2],
filtering [3, 4] and controller design [5, 6], and so forth. But studies are far from complete
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because researchers are facing big challenges while dealing with the nonlinear case of such
complicated systems.

The difficulties may result from several aspects for the study of Markovian jump
nonlinear systems (MJNSs). First of all, controller design largely relies on the specific model
of systems, and it is almost impossible to find out one general controller which can stabilize
all nonlinear systems despite of their forms. SecondlyMarkovian jump systems are applied to
model systems suffering sudden changes of working environment or system dynamics. For
this reason, practical jump systems are usually accompanied by uncertainties, and it is hard
to describe these uncertainties with precise mathematical model. Finally, noise disturbance is
an important factor to be considered. More often that not, the statistics information of noise
is unknown when taking into account the complexity of working environment. Among the
achievements of MJNSs, the format of nonlinear systems should be firstly taken into account.
As one specific model, the nonlinear system of strict-feedback form is well studied due to
its powerful modelling ability of many practical systems, for example, power converter [7],
satellite attitude [8], and electrohydraulic servosystem [9]. However, such models should
be modified since stochastic structure variations exist in these practical systems, and this
specific nonlinear system has been extended to jump case. For Markovian jump nonlinear
systems of strict-feedback form, [10, 11] investigated stabilization and tracking problems for
such MJNSs, respectively. And [12] studied the robust controller design for such systems
with unmodeled dynamics. However, for the MJNSs suffering aforementioned factors in this
paragraph, research work has not been performed yet.

Motivated by this, this paper focuses on robust adaptive controller design for a class
of MJNSs with uncertainties and Wiener noise. Compared with the existing result in [12],
several practical limitations are considered which include the following: the uncertainties
are with unmodeled dynamics, and the upper bound of dynamics is not necessarily
known. Meanwhile the statistics information of Wiener noise is unknown. Also the adaptive
parameter is introduced to the controller design whose advantage has been described in [13].
The control strategy consists of several steps: firstly, by applying generalized Itô formula, the
stochastic differential equation for MJNS is deduced and the concept of JISpS (jump input-
to-state practical stability) is defined. Then with backstepping technology and small-gain
theorem, robust adaptive switching controller is designed for such strict-feedback system.
Also the upper bound of the uncertainties can be estimated. Finally according to the stochastic
Lyapunov criteria, it is shown that all signals of the closed-loop system are globally uniformly
bounded in probability. Moreover, system states can converge to an attractive region whose
radius can be made as small as possible with appropriate control parameters chosen.

The rest of this paper is organized as follows. Section 2 begins with somemathematical
notions including differential equation for MJNS, and we introduce the notion of JISpS and
stochastic Lyapunov stability criterion. Section 3 presents the problem description, and a
robust adaptive switching controller is given based on backstepping technique and stochastic
small-gain theorem. In Section 4, stochastic Lyapunov criteria are applied for the stability
analysis. Numerical examples are given to illustrate the validity of this design in Section 5.
Finally, a brief conclusion is drawn in Section 6.

2. Mathematical Notions

2.1. Stochastic Differential Equation of MJNS
Throughout the paper, unless otherwise specified, we denote by (Ω,F, {Ft}t≥0, P) a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right
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continuous and F0 contains all p-null sets). Let |x| stand for the usual Euclidean norm for
a vector x, and let ‖xt‖ stand for the supremum of vector x over time period [t0, t], that is,
‖xt‖ = supt0≤s≤t|x(s)|. The superscript T will denote transpose and we refer to Tr(·) as the
trace for matrix. In addition, we use L2(P) to denote the space of Lebesgue square integrable
vector.

Take into account the following Markovian jump nonlinear system:

dx = f(x, u, t, r(t))dt + g(x, u, t, r(t))dω(t), (2.1)

where x ∈ R
n, u ∈ R

m are state vector and input vector of the system, respectively.
r(t), t ≥ 0 is named system regime, a right-continuous Markov chain on the probability
space taking values in finite state space S = {1, 2, . . . ,N}. And ω(t) = {ω1, ω2, . . . , ωl} is l-
dimensional independent Wiener process defined on the probability space, with covariance
matrix E{dωdωT} = Υ(t)ΥT (t)dt, where Υ(t) is an unknown bounded matrix-value function.
Furthermore, we assume that the Wiener noise ω(t) is independent of the Markov chain r(t).
The functions f : R

n+m × R+ × S → R
n and g : R

n+m × R+ × S → R
n×l are locally Lipschitz in

(x, u, r(t) = k) ∈ R
n+m × S for all t ≥ 0; namely, for any h > 0, there is a constant Kh ≥ 0 such

that

∣

∣f(x1, u1, t, k) − f(x2, u2, t, k)
∣

∣ ∨ ∣∣g(x1, u1, t, k) − g(x2, u2, t, k)
∣

∣ ≤ Kh(|x1 − x2| + |u1 − u2|)
(2.2)

∀(x1, u1, t, k), (x2, u2, t, k) ∈ R
n+m × R+ × S, |x1| ∨ |x2| ∨ |u1| ∨ |u2| ≤ h. (2.3)

It is known by [2] that with (2.3) standing, MJNS (2.1) has a unique solution.
Considering the right-continuousMarkov chain r(t)with regime transition rate matrix

Π = [πkj]N×N , the entries πkj , k, j = 1, 2, . . . ,N are interpreted as transition rates such that

P
(

r(t + dt) = j | r(t) = k) =
{

πkjdt + o(dt) if k /= j,
1 + πkjdt + o(dt) if k = j,

(2.4)

where dt > 0 and o(dt) satisfies limdt→ 0(o(dt)/dt) = 0. Here πkj > 0(k /= j) is the transition
rate from regime k to regime j. Notice that the total probability axiom imposes πkk negative
and

N
∑

j=1

πkj = 0, ∀k ∈ S. (2.5)

For each regime transition rate matrix Π, there exists a unique stationary distribution ζ =
(ζ1, ζ2, . . . , ζN) such that [14]

Π · ζ = 0,
N
∑

k=1

ζk = 1, ζk > 0, ∀k ∈ S. (2.6)
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Let C2,1(Rn × R+ × S) denote the family of all functions F(x, t, k) on R
n × R+ × S which are

continuously twice differentiable in x and once in t. Furthermore, we give the stochastic
differentiable equation of F(x, t, k) as

dF(x, t, k) =
∂F(x, t, k)

∂t
dt +

∂F(x, t, k)
∂x

f(x, u, t, k)dt

+
1
2
Tr

[

ΥTgT (x, u, t, k)
∂2F(x, t, k)

∂x2
g(x, u, t, k)Υ

]

dt

+
N
∑

j=1

πkjF
(

x, t, j
)

dt +
∂F(x, t, k)

∂x
g(x, u, t, k)dω(t)

+
N
∑

j=1

[

F
(

x, t, j
) − F(x, t, k)]dMj(t),

(2.7)

whereM(t) = (M1(t),M2(t), . . . ,MN(t)) is a martingale process.
Take the expectation in (2.7), so that the the infinitesimal generator produces [2, 15]

LF(x, t, k) = ∂F(x, t, k)
∂t

+
∂F(x, t, k)

∂x
f(x, u, t, k) +

N
∑

j=1

πkjF
(

x, t, j
)

+
1
2
Tr

[

ΥTgT (x, u, t, k)
∂2F(x, t, k)

∂x2
g(x, u, t, k)Υ

]

.

(2.8)

Remark 2.1. Equation (2.7) is the differential equation of MJNS (2.1). It is given by [12], and
the similar result is also achieved in [15]. Compared with the differential equation of general
nonjump systems, two parts come forth as differences: transition rates πkj and martingale
process M(t), which are both caused by the Markov chain r(t). And we will show in the
following section that the martingale process also has effects on the controller design.

2.2. JISpS and Stochastic Small-Gain Theorem

Definition 2.2. MJNS (2.1) is JISpS in probability if for any given ε > 0, there existKL function
β(·, ·),K∞ function γ(·), and a constant dc ≥ 0 such that

P
{|x(t, k)| < β(|x0|, t) + γ(‖ut(k)‖) + dc

} ≥ 1 − ε ∀t ≥ 0, k ∈ S, x0 ∈ R
n \ {0}. (2.9)

Remark 2.3. The definition of ISpS (input-to-state practically stable) in probability for
nonjump stochastic system is put forward byWu et al. [16], and the difference between JISpS
in probability and ISpS in probability lies in the expressions of system state x(t, k) and control
signal ut(k). For nonjump system, system state and control signal contain only continuous
time t with k ≡ 1. While jump systems concern with both continuous time t and discrete
regime k. For different regime k, control signal ut(k) will differ with different sample taken
even at the same time t, and that is the reason why the controller is called a switching one.
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Figure 1: Interconnected feedback system.

Based on this, the corresponding stability is called Jump ISpS, and it is an extension of ISpS.
Let k ≡ 1, and the definition of JISpS will degenerate to ISpS.

Consider the jump interconnected dynamic system described in Figure 1:

dx1 = f1(x1, x2,Ξ1(r(t)), r(t))dt + g1(x1, x2,Ξ1(r(t)), r(t))dWt1,

dx2 = f2(x1, x2,Ξ2(r(t)), r(t))dt + g2(x1, x2,Ξ2(r(t)), r(t))dWt2,
(2.10)

where x = (xT1 , x
T
2 )

T ∈ R
n1+n2 is the state of system, Ξi(r(t)), i = 1, 2 denotes exterior

disturbance and/or interior uncertainty. Wti is independent Wiener noise with appropriate
dimension, and we introduce the following stochastic nonlinear small-gain theorem as a
lemma, which is an extension of the corresponding result in Wu et al. [16].

Lemma 2.4 (stochastic small-gain theorem). Suppose that both the x1-system and x2-system are
JISpS in probability with (Ξ1(k), x2(t, k)) as input and x1(t, k) as state and (Ξ2(k), x1(t, k)) as input
and x2(t, k) as state, respectively; that is, for any given ε1, ε2 > 0,

P
{|x1(t, k)| < β1(|x1(0, k)|, t) + γ1(‖x2(t, k)‖) + γw1(‖Ξ1t(k)‖) + d1

} ≥ 1 − ε1,
P
{|x2(t, k)| < β2(|x2(0, k)|, t) + γ2(‖x1(t, k)‖) + γw2(‖Ξ2t(k)‖) + d2

} ≥ 1 − ε2,
(2.11)

hold with βi(·, ·) being KL function, γi and γwi being K∞ functions, and di being nonnegative
constants, i = 1, 2.

If there exist nonnegative parameters ρ1, ρ2, s0 such that nonlinear gain functions γ1, γ2 satisfy

(

1 + ρ1
)

γ1 ◦
(

1 + ρ2
)

γ2(s) ≤ s, ∀s ≥ s0, (2.12)

the interconnected system is JISpS in probability with Ξ(k) = (Ξ1(k),Ξ2(k)) as input and x =
(x1, x2) as state; that is, for any given ε > 0, there exist a KL function βc(·, ·), a K∞ function γw(·),
and a parameter dc ≥ 0 such that

P
{|x(t, k)| < βc(|x0|, t) + γw(‖Ξt(k)‖) + dc

} ≥ 1 − ε. (2.13)
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Remark 2.5. The previously mentioned stochastic small-gain theorem for jump systems is
an extension of nonjump case. This extension can be achieved without any mathematical
difficulties, and the proof process is the same as in [16]. The reason is that in Lemma 3.1
we only take into account the interconnection relationship between synthetical system and
its subsystems, despite the fact that subsystems are of jump or nonjumpform. If both
subsystems are nonjump and ISpS in probability, respectively, the synthetical system is
ISpS in probability. By contraries, if both subsystems are jump and JISpS in probability,
respectively, the synthetical system is JISpS in probability correspondingly.

3. Problem Description and Controller Design

3.1. Problem Description

Consider the following Markovian jump nonlinear systems with dynamic uncertainty and
noise described by

dξ = q
(

y, ξ, t, r(t)
)

dt,

dxi = xi+1dt + fTi (Xi, t, r(t))θ∗dt + Δi(X, ξ, t, r(t))dt + gTi (Xi, t, r(t))dω,

dxn = udt + fTn (X, t, r(t))θ
∗dt + Δn(X, ξ, t, r(t))dt + gTn (X, t, r(t))dω i = 1, 2, . . . , n − 1,

y = x1,

(3.1)

where Xi = (x1, x2, . . . , xi)
T ∈ R

i(X ∈ R
n) is state vector, u ∈ R is system input signal, ξ ∈ R

n0

is unmeasured state vector, and y is output signal. θ∗ ∈ R
p0 is a vector of unknown adaptive

parameters. The Markov chain r(t) ∈ S and Wiener noise ω are as defined in Section 2. fi :
R
i × R+ × S → R

p0 , gi : R
i × R+ × S → R

l are vector-valued smooth functions, and
Δi(X, ξ, t, r(t)) denotes the unmodeled dynamic uncertainty which could vary with different
regime r(t) taken. Both fi, gi and Δi are locally Lipschitz as in Section 2.

Our design purpose is to find a switching controller u of the form u(x, t, k), k ∈ S
such that the closed-loop jump system could be JISpS in probability and the system output y
could be within an attractive region around the equilibrium point. In this paper, the following
assumptions are made for MJNS (3.1).

(A1) The ξ subsystem with input y is JISpS in probability; namely, for any given ε > 0,
there exist KL function β(·, ·),K∞ function γ(·), and a constant dc ≥ 0 such that

P
{|ξ(t, k)| < β(|ξ0|, t) + γ

(∥

∥y
∥

∥

)

+ dc
} ≥ 1 − ε ∀t ≥ 0, k ∈ S, ξ0 ∈ R

n0 \ {0}. (3.2)

(A2) For each i = 1, 2, . . . , n, k ∈ S, there exists an unknown bounded positive constant
p∗i such that

|Δi(X, ξ, t, k)| ≤ p∗i φi1(Xi, k) + p∗i φi2(|ξ|, k), (3.3)

where φi1(·, k), φi2(·, k) are known nonnegative smooth functions for any given k ∈
S. Notice that p∗i is not unique since any p∗i > p∗i satisfies inequality (3.3). To avoid
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confusion, we define p∗i the smallest nonnegative constant such that inequality (3.3)
is satisfied.

For the design of switching controller, we introduce the following lemmas.

Lemma 3.1 (Young’s inequality [12]). For any two vectors x, y ∈ R
n, the following inequality

holds

xTy ≤ εp

p
|x|p + 1

qεq
∣

∣y
∣

∣

q
, (3.4)

where ε > 0 and the constants p > 1, q > 1 satisfy (p − 1)(q − 1) = 1.

Lemma 3.2 (martingale representation [17]). Let B(t) = [B1(t), B2(t), . . . , BN(t)] be N-
dimensional standard Wiener noise. Supposing M(t) is an FN

t -martingale (with respect to P) and
thatM(t) ∈ L2(P) for all t ≥ 0, then there exists a stochastic process Ψ(t) ∈ L2(P), such that

dM(t) = Ψ(t) · dB(t). (3.5)

3.2. Controller Design

Now we seek for the switching controller for MJNS (3.1) so that the closed-loop system
could be JISpS in probability, where the parameter θ∗, p∗i needs to be estimated. Denote the
estimation of adaptive parameter θ∗ with θ and the estimation of upper bound of uncertainty
p∗i with pi. Perform a new transformation as

zi = xi(k) − αi−1
(

Xi−1, t, θ, pi, k
) ∀i = 1, 2, . . . , n, k ∈ S. (3.6)

For simplicity, we just denote αi−1(Xi−1, t, θ, pi, k), fi(Xi, t, k), gi(Xi, t, k), Δi(X, ξ, t, k), q(y, ξ,
t, k) by αi−1(k), fi(k), gi(k), Δi(k), q(k), respectively, where α0(k) = 0, αn(k) = u(k), for all
k ∈ S, and the new coordinate is Z(k) = (z1(k), z2(k), . . . , zn(k)).

According to stochastic differential equation (2.7), one has

dzi = dxi − dαi−1(k)

=
[

xi+1 + fTi (k)θ
∗ + Δi(k)

]

dt − ∂αi−1(k)
∂t

dt −
i−1
∑

j=1

∂αi−1(k)
∂xj

[

xj+1 + fTj (k)θ
∗ + Δj(k)

]

dt

− ∂αi−1(k)
∂θ

θ̇ dt −
i−1
∑

j=1

∂αi−1(k)
∂pi

ṗidt − 1
2

i−1
∑

p,q=1

∂2αi−1(k)
∂xp∂xq

gTp (k)ΥΥ
Tgq(k)dt −

N
∑

j=1

πkjαi−1
(

j
)

dt

+

⎡

⎣gTi (k) −
i−1
∑

j=1

∂αi−1(k)
∂xj

gTj (k)

⎤

⎦dω +
N
∑

j=1

[

αi−1(k) − αi−1
(

j
)]

dMj(t)
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=
[

zi+1 + αi(k) + τTi (k)θ
∗ + Λi(k)

]

dt − ∂αi−1(k)
∂t

dt − ∂αi−1(k)
∂θ

θ̇ dt −
i−1
∑

j=1

∂αi−1(k)
∂pi

ṗidt

−
i−1
∑

j=1

∂αi−1(k)
∂xj

xj+1dt − 1
2

i−1
∑

p,q=1

∂2αi−1(k)
∂xp∂xq

gTp (k)ΥΥ
Tgq(k)dt −

N
∑

j=1

πkjαi−1
(

j
)

dt

+ ρTi (k)dω + Γi(k)dM(t).

(3.7)

Here we define

Λi(k) � Δi(k) −
i−1
∑

j=1

∂αi−1(k)
∂xj

Δj(k),

τi(k) � fi(k) −
i−1
∑

j=1

∂αi−1(k)
∂xj

fj(k),

ρi(k) � gi(k) −
i−1
∑

j=1

∂αi−1(k)
∂xj

gj(k),

Γi(k) � [αi−1(k) − αi−1(1), αi−1(k) − αi−1(2), . . . , αi−1(k) − αi−1(N)].

(3.8)

From assumption (A2), one gets that there exists nonnegative smooth function φi1, φi2
satisfying

|Λi(k)| ≤ p∗i φi1(Xi, k) + p∗i φi2(|ξ|, k). (3.9)

The inequality (3.9) could easily be deduced by using Lemma 3.1.
Considering the transformation zi in (3.7)which contains themartingale processM(t),

according to Lemma 3.2, there exist a function Ψ(t) ∈ L2(P) and anN-dimensional standard
Wiener noise B(t) satisfying dM(t) = Ψ(t)dB(t), where E[Ψ(t)Ψ(t)T ] = ψ(t)ψ(t)T ≤ Q < ∞
and Q is a positive bounded constant. Therefore we have

dzi =

⎧

⎨

⎩

zi+1 + αi(k) + τTi (k)θ
∗ + Λi(k) − ∂αi−1(k)

∂t
− ∂αi−1(k)

∂θ
θ̇ −

i−1
∑

j=1

∂αi−1(k)
∂pi

ṗi

−
i−1
∑

j=1

∂αi−1(k)
∂xj

xj+1 − 1
2

i−1
∑

p,q=1

∂2αi−1(k)
∂xp∂xq

gTp (k)ΥΥ
Tgq(k) −

N
∑

j=1

πkjαi−1
(

j
)

⎫

⎬

⎭

dt

+ ρTi (k)dω + Γi(k)Ψ(t)dB(t).

(3.10)

Differential equation of new coordinate Z = (z1, z2, . . . , zn) is deduced by (3.10). The
martingale process resulting fromMarkov process is transformed into Wiener noise by using
Martingale representation theorem. To deal with this, quartic Lyapunov function is proposed,
and in the controller design, consideration must be taken for the Wiener noise B(t).
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Choose the quartic Lyapunov function as

V (k) =
1
4

n
∑

i=1

z4i +
1
2γ

˜θT ˜θ +
n
∑

i=1

1
2σi

p̃2i , (3.11)

where γ > 0, σi > 0 are constants. ˜θ = θ∗ − θ and p̃i = pMi − pi are parameter estimation errors,
where pMi � max{p∗i , p0i } and p0i are given positive constants.

In the view of (3.10) and (3.11), the infinitesimal generator of V satisfies

LV (k) =
n
∑

i=1

z3i

⎧

⎨

⎩

zi+1 + αi(k) + τTi (k)θ
∗ + Λi(k) − ∂αi−1(k)

∂t
− ∂αi−1(k)

∂θ
θ̇ −

i−1
∑

j=1

∂αi−1(k)
∂pi

ṗi

−
i−1
∑

j=1

∂αi−1(k)
∂xj

xj+1 − 1
2

i−1
∑

p,q=1

∂2αi−1(k)
∂xp∂xq

gTp (k)ΥΥ
Tgq(k) −

N
∑

j=1

πkjαi−1
(

j
)

⎫

⎬

⎭

+
3
2

n
∑

i=1

z2i ρ
T
i (k)ΥΥ

Tρi(k) +
3
2

n
∑

i=1

z2i Γi(k)ψψ
TΓTi (k) −

1
γ
˜θT θ̇ −

n
∑

i=1

1
σi
p̃iṗi +

N
∑

j=1

πkjV
(

j
)

≤
n
∑

i=1

z3i

⎧

⎨

⎩

(

3
4
δ4/3i +

1
4δ4i−1

)

zi + αi(k) + τTi (k)θ − ∂αi−1(k)
∂t

− ∂αi−1(k)
∂θ

θ̇ −
i−1
∑

j=1

∂αi−1(k)
∂pi

ṗi

−
i−1
∑

j=1

∂αi−1(k)
∂xj

xj+1 + λz3i
i−1
∑

p,q=1

[

∂2αi−1(k)
∂xp∂xq

]2
[

gTp (k)gq(k)
]2

+ μ1zi
[

ρTi (k)ρi(k)
]2

+μ2zi
[

Γi(k)ΓTi (k)
]2 −

N
∑

j=1

πkjαi−1
(

j
)

⎫

⎬

⎭

+
[

(n − 1)n(2n − 1)
96λ

+
9n
16μ1

]

|Υ|4

+
9n
16μ2

Q2 − ˜θT
[

1
γ
θ̇ −

n
∑

i=1

z3i τi(k)

]

−
n
∑

i=1

[

1
σi
p̃iṗi − z3iΛi(k)

]

+
N
∑

j=1

πkjV
(

j
)

.

(3.12)

The following inequalities could be deduced by using Young’s inequality and norm
inequalities with the help of changing the order of summations or exchanging the indices
of the summations:

n
∑

i=1

z3i zi+1 ≤
3
4

n−1
∑

i=1

δ4/3i z4i +
1
4

n−1
∑

i=1

1
δ4i
z4i+1 =

n
∑

i=1

(

3
4
δ4/3i +

1
4δ4i−1

)

z4i

− 1
2

n
∑

i=1

z3i

i−1
∑

p,q=1

∂2αi−1(k)
∂xp∂xq

gTp (k)ΥΥ
Tgq(k)
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≤
n
∑

i=1

λz6i

i−1
∑

p,q=1

[

∂2αi−1(k)
∂xp∂xq

]2

gTp (k)gp(k)g
T
q (k)gq(k) +

n
∑

i=1

i−1
∑

p,q=1

1
16λ

∣

∣

∣ΥΥT
∣

∣

∣

2

=
n
∑

i=1

λz6i

i−1
∑

p,q=1

[

∂2αi−1(k)
∂xp∂xq

]2
[

gTp (k)gq(k)
]2

+

∣

∣ΥΥT
∣

∣

2

96λ
(n − 1)n(2n − 1),

3
2

n
∑

i=1

z2i ρ
T
i (k)ΥΥ

Tρi(k)

≤
n
∑

i=1

μ1z
4
i

[

ρTi (k)ρi(k)
]2

+
n
∑

i=1

9
16μ1

∣

∣

∣ΥΥT
∣

∣

∣

2

=
n
∑

i=1

μ1z
4
i

[

ρTi (k)ρi(k)
]2

+
9n
16μ1

∣

∣

∣ΥΥT
∣

∣

∣

2
,

3
2

n
∑

i=1

z2i Γi(k)ψψ
TΓTi (k)

≤ 3
2

n
∑

i=1

z2i Γi(k)QΓTi (k)

≤
n
∑

i=1

μ2z
4
i

[

Γi(k)ΓTi (k)
]2

+
n
∑

i=1

9
16μ2

Q2

=
n
∑

i=1

μ2z
4
i

[

Γi(k)ΓTi (k)
]2

+
9n
16μ2

Q2,

(3.13)

where δ0 = ∞, δn = 0 and λ > 0, μ1 > 0, μ2 > 0, δi > 0, i = 1, 2, . . . , n are design parameters to
be chosen.

Here we suggest the following adaptive laws [18]:

θ̇ = γ

[

n
∑

i=1

z3i τi(k) − a
(

θ − θ0
)

]

,

ṗi = σi
[

z3i �i(k) −mi

(

pi − p0i
)]

.

(3.14)

Here a > 0, θ0 ∈ R
p0 , mi > 0, i = 1, 2, . . . , n are design parameters to be chosen. And define

function β(k) as

�i(k) = φi1(Xi, k) · tanh
[

z3i φi1(Xi, k)
εi

]

+ z3i tanh

(

z6i
υi

)

,

βi(k) = pi ·�i(k),

(3.15)
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where εi > 0, υi > 0, i = 1, 2, . . . , n are control parameters to be chosen, and let the virtual
control signal be

αi(k) = − cizi −
(

3
4
δ4/3i +

1
4δ4i−1

)

zi − τTi (k)θ +
∂αi−1(k)

∂t
+
∂αi−1(k)
∂θ

θ̇ +
i−1
∑

j=1

∂αi−1(k)
∂pi

ṗi

+
i−1
∑

j=1

∂αi−1(k)
∂xj

xj+1 − λz3i
i−1
∑

p,q=1

[

∂2αi−1(k)
∂xp∂xq

]2
[

gTp (k)gq(k)
]2 − μ1zi

[

ρTi (k)ρi(k)
]2

− μ2zi
[

Γi(k)ΓTi (k)
]2

+
N
∑

j=1

πkjαi−1
(

j
) − βi(k).

(3.16)

Thus the real control signal u(k) satisfies u(k) = αn(k) such that

LV ≤ −
n
∑

i=1

ciz
4
i + a˜θ

(

θ − θ0
)

+
n
∑

i=1

z3i

[

Λi(k) − pMi �i(k)
]

+
n
∑

i=1

mip̃i
(

pi − p0i
)

+
[

(n − 1)n(2n − 1)
96λ

+
9n
16μ1

]

|Υ|4 + 9n
16μ2

Q2 +
N
∑

j=1

πkjV
(

j
)

.

(3.17)

Based on assumption (A2) and (3.9), we obtain the following inequality by applying
Lemma 3.1:

z3iΛi(k) − pMi z3i �i(k) ≤
∣

∣

∣z3iΛi(k)
∣

∣

∣ − pMi z3i φi1(Xi, k) · tanh
[

z3i φi1(Xi, k)
εi

]

− pMi z6i tanh
(

z6i
υi

)

≤
∣

∣

∣z3i

∣

∣

∣ ∗ [p∗i φi1(Xi, k) + p∗i φi2(|ξ|, k)
] − pMi z3i φi1(Xi, k)

· tanh
[

z3i φi1(Xi, k)
εi

]

− pMi z6i tanh
(

z6i
υi

)

≤
∣

∣

∣z3i

∣

∣

∣p∗i φi1(Xi, k) − pMi z3i φi1(Xi, k) · tanh
[

z3i φi1(Xi, k)
εi

]

+ pMi
∣

∣

∣z3i

∣

∣

∣φi2(|ξ|, k) − pMi z6i tanh
(

z6i
υi

)

≤ pMi

[

∣

∣

∣z3i φi1(Xi, k)
∣

∣

∣ − z3i φi1(Xi, k) · tanh
[

z3i φi1(Xi, k)
εi

]]

+ pMi

[

z6i − z6i tanh
(

z6i
υi

)

+
1
4
φ2
i2(|ξ|, k)

]

≤ εi + υi
2

pMi +
pMi
4
φ2
i2(|ξ|, k).

(3.18)
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In (3.18), the following inequality is applied:

0 ≤ ∣

∣η
∣

∣ − η · tanh
(

η

ε

)

≤ 1
2
ε. (3.19)

Notice the fact that

a˜θT
(

θ − θ0
)

= − 1
2
a˜θT ˜θ − 1

2
a
(

θ − θ0
)T(

θ − θ0
)

+
1
2
a
(

θ∗ − θ0
)T(

θ∗ − θ0
)

≤ − 1
2
a˜θT ˜θ +

1
2
a
(

θ∗ − θ0
)T(

θ∗ − θ0
)

,

mip̃i
(

pi − p0i
)

= − 1
2
mip̃

2
i −

1
2
mi

(

pi − p0i
)2

+
1
2
mi

(

pMi − p0i
)2

≤ − 1
2
mip̃

2
i +

1
2
mi

(

pMi − p0i
)2
.

(3.20)

Submitting (3.18), (3.20) into (3.12), there is

LV (k) ≤ −
n
∑

i=1

ciz
4
i −

1
2
a˜θT ˜θ −

n
∑

i=1

1
2
mip̃

2
i +

1
2
a
(

θ∗ − θ0
)T(

θ∗ − θ0
)

+
n
∑

i=1

1
2
mi

(

pMi − p0i
)2

+
[

(n − 1)n(2n − 1)
96λ

+
9n
16μ1

]

|Υ|4 + 9n
16μ2

Q2 +
n
∑

i=1

εi + υi
2

pMi

+
n
∑

i=1

pMi
4
φ2
i2(|ξ|, k) +

N
∑

j=1

πkjV
(

j
)

≤ − α1V (k) + Vξ(|ξ|, k) + dz +
N
∑

j=1

πkjV
(

j
)

.

(3.21)

Here parameter α1, dz and K∞ function Vξ(|ξ|, k) is chosen to satisfy

Vξ(|ξ|, k) ≥
n
∑

i=1

pMi
4
φ2
i2(|ξ|, k), α1 = min

{

4ci, a · γ,m · σi
}

,

dz =
1
2
a
(

θ∗ − θ0)T(θ∗ − θ0) +
n
∑

i=1

1
2
mi

(

pMi − p0i
)2

+
[

(n − 1)n(2n − 1)
96λ

+
9n
16μ1

]

|Υ|4

+
9n
16μ2

Q2 +
n
∑

i=1

εi + υi
2

pMi .

(3.22)

4. Stochastic Stability Analysis

Theorem 4.1. Considering the MJNS (3.1) with Assumptions (A2) standing, the X-subsystem
is JISpS in probability with the adaptive laws (3.14) and switching control law (3.16) adopted;
meanwhile all solutions of closed-loop X-subsystem are ultimately bounded.
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Proof. Considering the MJNS (3.1) with Lyapunov function (3.11), the following equations
hold according to [10]:

EV (r(t)) =
N
∑

l=1

EV (l)ζl, ELV (r(t)) =
N
∑

l=1

E(LV (l))ζl. (4.1)

Thus (3.21) can be written as

ELV (r(t)) =
N
∑

l=1

E(LV (l))ζl

≤
N
∑

l=1

E

⎧

⎨

⎩

−α1ζlV (l) + ζlVξ(|ξ|, l) + ζldz + ζl
N
∑

j=1

πljV
(

j
)

⎫

⎬

⎭

= − α1
N
∑

l=1

ζlEV (l) + E

⎧

⎨

⎩

N
∑

l=1

ζl
N
∑

j=1

πljV
(

j
)

⎫

⎬

⎭

+
N
∑

l=1

ζlEVξ(|ξ|, l) + dz

≤ − αEV (r(t)) + χ(|ξ(t)|) + dz,

(4.2)

where positive scalar α is given as

α � α1 −max
l,j∈S

{

ζl
ζj

}

∗max
j∈S

{

N
∑

l=1

πlj

}

χ(|ξ(t)|) �
N
∑

l=1

ζlEVξ(|ξ|, l).
(4.3)

It is easily seen that χ(|ξ(t)|) is a K∞ function with r(t) given, and appropriate control
parameter ci, l · γ ,m · σi can be chosen to satisfy α > 0.

For each integer h ≥ 1, define a stopping time as

τh = inf{t ≥ 0 : |z(t)| ≥ h} (4.4)

Obviously, τh → ∞ almost surely as h → ∞. Noticing that 0 < |z(t)| ≤ h if 0 ≤ t < τh, we can
apply the generalized Itô formula to derive that for any t ≥ 0,

E
[

eα·(t∧τh)V (r(t ∧ τh))
]

= V (z0, 0, r(0)) +
∫ t∧τh

0
eαs[αEV (r(s)) + ELV (r(s))]ds

≤ V (r(0)) +
∫ t∧τh

0
eαs

[

αEV (r(s)) − αEV (r(s)) + χ(|ξ(t)|) + dz
]

ds

= V (r(0)) +
∫ t∧τh

0
eαs

[

χ(|ξ(t)|) + dz
]

ds.

(4.5)
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Let h → ∞, apply Fatou’s lemma to (4.5), and we have

E
[

eαtV (r(t))
] ≤ V (r(0)) + E

∫ t

0
eαs

[

χ(|ξ(t)|) + dz
]

ds. (4.6)

By using mean value theorem for integration, there is

E
[

eαtV (x(t), t, k)
]

= eαtEV (r(t))

≤ V (r(0)) + sup
0≤s≤t

[

χ(|ξ(s)|) + dz
] ·
∫ t

0
eαsds.

(4.7)

According to the property ofK∞ function, the following inequality is deduced:

eαtEV (r(t)) ≤ V (r(0)) +

{

χ

(

sup
0≤s≤t

|ξ(s)|
)

+ dz

}

·
∫ t

0
eαsds

= V (r(0)) +
[

χ(‖ξ(t)‖) + dz
] ·
(

1
α

)

(

eαt − 1
)

≤ V (r(0)) +
[

χ(‖ξ(t)‖) + dz
] ·
(

1
α

)

eαt.

(4.8)

According to (3.11), one gives

eαt
N
∑

j=1

1
4
E
{

z4i

}

≤ eαtEV (r(t)) ≤ EV (r(0)) +
[

χ(‖ξ(t)‖) + dz
] ·
(

1
α

)

eαt. (4.9)

Consequently,

N
∑

i=1

E
{

z4i

}

≤ 4e−αtV (r(0)) +
4
α

{

χ(‖ξ(t)‖) + dz
}

. (4.10)

DefiningKL function β(·, ·),K∞ function γ(·), and nonnegative number dc as:

β(|z0|, t) = 4e−λtV (r(0)), γ(‖ξ(t)‖) = 4
α
χ(‖ξ(t)‖), dc =

4
α
dz. (4.11)

and applying Chebyshev’s inequality, we have that the X-subsystem of MJNS (3.1) is JISpS
in probability.

The proof is completed.

Theorem 4.2. Considering the MJNS (3.1)with Assumptions (A1), (A2) holding, the interconnected
Markovian jump system is JISpS in probability with adaptive laws (3.14) and switching control law
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Figure 2: Regime transition r(t).
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Figure 3: System output y.

(3.16) adopted; meanwhile all solutions of closed-loop system are ultimately bounded. Furthermore,
the system output could be regulated to an arbitrarily small neighborhood of the equilibrium point in
probability within finite time.

Proof. From Assumption (A1), the ξ subsystem is JISpS in probability. And it has been shown
in Theorem 4.1 that the X subsystem is JISpS in probability. Similar to the proof in [12], we
have that the entire MJNS (3.1) is JISpS in probability; that is, for any given ε > 0, there exists
T > 0 and δ > 0 such that if t > T , the output of jump system y satisfies

P
{∣

∣y(t)
∣

∣ < δ
} ≥ 1 − ε. (4.12)

Meanwhile δ can be made as small as possible by appropriate control parameters chosen.

5. Simulation

With loss of generality, in this section we consider a two-order Markovian jump nonlinear
system with regime transition space S = {1, 2}, and the system with unmodeled dynamics
and noise is as follows:

dξ = q(x1, ξ, t, r(t))dt,

dx1 = x2dt + f1(x1, t, r(t))θ∗dt + Δ1(X, ξ, t, r(t))dt + x
1/3
1 dω,
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dx2 = udt + f2(X, t, r(t))θ∗dt + Δ2(X, ξ, t, r(t))dt,

y = x1,

(5.1)

where the transition rate matrix is Π = [ π11 π12
π21 π22 ] =

[ −2 2
3 −3

]

with stationary distribution ζ1 =
ζ2 = 0.5.

Here let noise covariance be E{dωdωT} = 1 and system dynamics for each mode as

q(x1, ξ, t, 1) = −0.5ξ + 0.3x1, q(x1, ξ, t, 2) = −0.4ξ + 0.3x1 cos t,

f1(x1, t, 1) = x2
1, f1(x1, t, 2) = −x1 cosx1,

Δ1(X, ξ, t, 1) = 0.5ξ + 0.4x1 sin 2t, Δ1(X, ξ, t, 2) = x1ξ,

f2(X, t, 1) = x1 sinx2 + x2, f2(X, t, 2) = x1 + 2x2,

Δ2(X, ξ, t, 1) = 0.4ξ sin t + 0.3x1. Δ2(X, ξ, t, 2) = x1|ξ|1/2.

(5.2)

From Assumption (A2), we have

Δ1(X, ξ, t, 1) ≤ p∗1|ξ| + p∗1|x1|, Δ1(X, ξ, t, 2) ≤ p∗1|ξ|2 + p∗1|x1|2,

Δ2(X, ξ, t, 1) ≤ p∗2|ξ| + p∗2|x1|, Δ2(X, ξ, t, 2) ≤ p∗2|ξ| + p∗2|x1|2,
(5.3)

where p∗1 ≤ 0.5 and p∗2 ≤ 0.5 and the ξ subsystem satisfies

LV0(ξ, t, k) ≤ − 4
10

|ξ|2 + χ0(|x1|) + d0, (5.4)

where V0 = (1/2)ξ2, χ0(|x1|) = 0.15|x1|2, d0 = 0.125, and it can be checked which satisfies the
stochastic small-gain theorem. Thus the control law is taken as follows (here δ1 = 1 ).

Case 1. The system regime is k = 1:

α1(1) = −
(

c1 +
3
4

)

x1 − x2
1θ − μ1x

7/3
1 − p1x1 tanh

(

x4
1

ε1

)

− x3
1 tanh

(

x6
1

vi

)

α2(1) = −
(

c2 +
1
4

)

z2(1) − x1 sinx2 − u1z32(1)x2
1 −

1
4
z32(1) −

(

c1 +
3
4
+ 2x1 +

3
4
x2
1x

4
1

)

×
(

x2
1 + x2

)

+ π11α1(1) + π12α1(2) − μ2z2(1)[α1(1) − α1(2)]4 − τ2(1)θ − τ1(1)θ̇

− p1 tanh
(

x4
1

ε1

)

− 3x2
1 tanh

(

x6
1

vi

)

− 4p1x4
1sech

2

(

x4
1

ε1

)

− x8
1sech

2

(

x6
1

vi

)

− p2�1(2),
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z2(1) = x2 − α1(1),

θ̇ = γ

[

2
∑

i=1

z3i τi(1) − a
(

θ − θ0
)

]

,

ṗ1 = σ1
[

x3
1�i(1) −m1

(

p1 − p01
)]

,

ṗ2 = σ2
[

z32(1)�2(1) −m2

(

p2 − p02
)]

.

(5.5)

Case 2. The system regime is k = 2:

α1(2) = −
(

c1 +
3
4

)

x1 − x1 sinx1 − x2 − p1x1 tanh
(

x4
1

ε1

)

− x3
1 tanh

(

x6
1

vi

)

,

α2(2) = −
(

c2 +
1
4

)

z2(2) − μ1z
3
2(2)x

4
1 −

1
4
z32(2) −

(

c1 +
11
4

+
3
4
x2
1 + x

6
1

)

(x1 + x2)

+ π21α1(1) + π22α1(2) − μ2z2(2)[α1(1) − α1(2)]4 − τ2(2)θ − τ1(2)θ̇

− p1 tanh
(

x4
1

ε1

)

− 3x2
1 tanh

(

x6
1

vi

)

− 4p1x4
1sech

2

(

x4
1

ε1

)

− x8
1sech

2

(

x6
1

vi

)

− p2�2(2),

z2(2) = x2 − α1(2),

θ̇ = γ

[

2
∑

i=1

z3i τi(2) − a
(

θ − θ0
)

]

,

ṗ1 = σ1
[

x3
1�i(2) −m1

(

p1 − p01
)]

,

ṗ2 = σ2
[

z32(2)�2(2) −m2

(

p2 − p02
)]

.

(5.6)

In computation, we set the initial value to be x1 = 1.6, x2 = −2.7, θ = 0, p1 = p2 = 0 let
parameter θ0 = 1, γ = 1, a = 1, p0 = 0.7, εi = vi = 0.5, mi = 1, μ1 = μ2 = 1 and the time step to
be 0.05 s. For comparison, two groups of different control parameters are given. First we take
the parameter with values c1 = c2 = 0.7, σ1 = σ2 = 2, and the simulation results are as follows.
Figure 2 shows the regime transition of the jump system, Figure 3 shows the system output
y which is defined as the system state x1, and Figure 4 shows system state x2. Figure 5 shows
the corresponding switching controller u; finally Figure 6 shows the trajectory of adaptive
parameter θ and Figure 7; Figure 8 shows the trajectory of parameter p1, p2, respectively.

Now we choose different control parameters as c1 = c2 = 2, σ1 = σ2 = 5 and repeat
the simulation. The simulation results are as follows. Figure 9 shows the regime transition of
the jump system, Figure 10 shows the system output y which is defined as the system state
x1 and, Figure 11 shows system state x2, and Figure 12 shows the corresponding switching
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Figure 6: Adaptive parameter θ.
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Figure 7: Parameter p1.
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Figure 8: Parameter p2.
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Figure 9: Regime transition r(t).

controller u; the trajectory of adaptive parameter θ is shown in Figures 13 and 14; Figure 15
shows the trajectory of parameter p1, p2, respectively.

Comparing the results from two simulations, all the signals of closed-loop system
are globally uniformly ultimately bounded, and the system output can be regulated to a
neighborhood near the equilibrium point despite different jump samples. As could be seen
from the figures, larger values of c1, c2, σ1, σ2 help to increase the convergence speed of
system states. This reason is that the increase of these parameters increases the value of α,
which determines the system states convergence speed. Also adaptive parameters θ and p1,
p2 approach convergence faster with the increasing of aforementioned parameters.

Remark 5.1. Much research work has been performed towards the study of nonlinear system
by using small-gain theorem [16, 19]. In contrast to their contributions, this paper considers
a more general form than nonjump systems. The controller u(k) varies with different regime
r(t) = k taken, and it differs in two aspects (see (3.16)): the coupling of regimes πkjαi−1(j) and
μ2zi[Γi(k)ΓTi (k)]

2, which are both caused by the Markovian jumps. The switching controller
will degenerate to an ordinary one if r(t) ≡ 1. This controller design method can also be
applied for the nonjump nonlinear system.

6. Conclusion

In this paper, the robust adaptive switching controller design for a class of Markovian jump
nonlinear system is studied. Such MJNSs, suffering from unmodeled dynamics and noise
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Figure 10: System output y.
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Figure 11: System state x2.
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Figure 12: Switching controller u.
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Figure 13: Adaptive parameter θ.
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Figure 14: Parameter p1.
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Figure 15: Parameter p2.

of unknown covariance, are of the strict feedback form. With the extension of input-to-
state stability (ISpS) to jump case as well as the small-gain theorem, stochastic Lyapunov
stability criterion is put forward. By using backstepping technique, a switching controller is
designed which ensures the jump nonlinear system to be jump ISpS in probability. Moreover
the upper bound of uncertainties can be estimated, and system output will converge to
an attractive region around the equilibrium point, whose radius can be made as small as
possible with appropriate control parameters chosen. Numerical examples are given to show
the effectiveness of the proposed design.
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