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We give some initial properties of a subset of modular metric spaces and introduce some fixed-
point theorems for multivalued mappings under the setting of contraction type. An appropriate
example is as well provided. The stability of fixed points in our main theorems is also studied.

1. Introduction and Preliminaries

The field of metric fixed-point theory has been widely investigated since 1922, when Banach
[1] had proved his contraction principle. We are going to recall this well-known theorem
before we continue over on.

A self-mapping f on a metric space (X, d) is called a contraction if there exists 0 ≤ k < 1
such that

d
(
fx, fy

) ≤ kd
(
x, y

)
(1.1)

for all x, y ∈ X. The contraction principle simply stated that, if (X, d) is complete, such a map-
ping has a unique fixed point.

One of themost influenced generalizations of Banach’s theorem is traced to Nadler [2].
In 1969, via Hausdorff’s concept of a distance between two arbitrary sets, Nadler proved the
contraction principle for multivalued mappings in complete metric spaces. Also, some
authors extended Nadler’s principle and established fixed-point theorems for multivalued
mappings in metric spaces and other spaces (see [3–9]). One of the most interesting studies
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are the extensions of such principle in modular spaces and modular function spaces (see
[10–12] and references therein).

Lately, in 2010, Chistyakov [13] introduced the notion of amodular metric space which
is a new generalization of a metric space. We will give a short revisit to modular and modular
metric spaces as follows.

Definition 1.1. Let X be a linear space over R with θ ∈ X as its zero element. A functional ρ :
X → [0,+∞] is said to be a modular on X if for any x, y ∈ X, the following conditions hold:

(i) ρ(x) = 0 if and only if x = θ,

(ii) ρ(x) = ρ(−x),
(iii) ρ(αx + βy) ≤ ρ(x) + ρ(y) whenever α, β ≥ 0 and α + β = 1.

The linear subspace Xρ := {x ∈ X : limλ→ 0ρ(λx) = 0} is called a modular space.

Definition 1.2 (see [13]). Let X be a nonempty set. A function ω : (0,+∞) ×X ×X → [0,+∞]
is said to be a metric modular on X if satisfying, for all x, y, z ∈ X, the following conditions
hold:

(i) ωλ(x, y) = 0 for all λ > 0 if and only if x = y,

(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0,

(iii) ωλ+μ(x, y) ≤ ωλ(x, z) +ωμ(z, y) for all λ, μ > 0.

Suppose xι ∈ X, the set Xω(xι) = {x ∈ X : limλ→+∞ωλ(x, xι) = 0} is called a modular metric
space generated by xι and induced by ω. If its generator xι does not play any role in the
situation, we will write Xω instead of Xω(xι).

Observe that a metric modular ω on X is nonincreasing with respect to λ > 0. We can
simply show this assertion by using the condition (iii) itself. For any x, y ∈ X and 0 < μ < λ,
we have

ωλ

(
x, y

) ≤ ωλ−μ(x, x) +ωμ

(
x, y

)
= ωμ

(
x, y

)
. (1.2)

For each x, y ∈ X and λ > 0, we set ωλ+(x, y) := limε↓0ωλ+ε(x, y) and ωλ−(x, y) := limε↓0ωλ−ε
(x, y). Consequently, from (1.2), we have ωλ+(x, y) ≤ ωλ(x, y) ≤ ωλ−(x, y).

If, for any x, y ∈ X, a metric modular ω on X possesses a finite value and ωλ(x, y) =
ωμ(x, y) for all λ, μ > 0, then d(x, y) := ωλ(x, y) is a metric on X.

Recently, Mongkolkeha et al. [14] have introduced some notions and established some
fixed-point results in modular metric spaces. We now state some notions and results in [14]
in the following.

Definition 1.3 (see [14]). Let Xω be a modular metric space.

(i) The sequence {xn}n∈N
in Xω is said to be convergent if there exists x ∈ Xω such that

ωλ(xn, x) → 0, as n → ∞ for all λ > 0.

(ii) The sequence {xn}n∈N
in Xω is said to be a Cauchy sequence if ωλ(xm, xn) → 0, as

m,n → ∞ for all λ > 0.

(iii) Xω is said to be complete if every Cauchy sequence in Xω converges.
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(iv) A subsetC ofXω is said to be closed if the limit of a convergent sequence ofC always
belongs to C.

(v) A subset C of Xω is said to be bounded if, for all λ > 0, φλ(C) = sup{ωλ(x, y) : x, y ∈
C} < +∞.

Along this paper, we will use the following alternative notions of convergence and Cauchy-
ness, which are equivalent to the notions given above.

Let Xω be a modular metric space and {xn}n∈N
be a sequence in Xω.

(i) A point x ∈ Xω is called a limit of {xn}n∈N
if for each λ, ε > 0, there exists n0 ∈ N such

that ωλ(xn, x) < ε for every n ∈ N with n ≥ n0. A sequence that has a limit is said
to be convergent (or converges to x) and will be written as limn→+∞xn = x.

(ii) A sequence {xn}n∈N
in Xω is said to be a Cauchy sequence if, for each λ, ε > 0, there

exists n0 ∈ N such that ωλ(xn, xm) < ε for every m,n ∈ N withm,n ≥ n0.

Moreover, we observe that the limit of any sequence in Xω is unique.

Definition 1.4 (see [14]). Let Xω be a modular metric space. A self-mapping f onXω is said to
be a contraction if there exists 0 ≤ k < 1 such that

ωλ

(
fx, fy

) ≤ kωλ

(
x, y

)
(1.3)

for all x, y ∈ Xω and λ > 0.

Theorem 1.5 (see [14]). Let Xω be a complete modular metric space and f a contraction on Xω.
Then, the sequence {fnx}n∈N

converges to the unique fixed point of f in Xω for any initial x ∈ Xω.

The purpose of this paper is to study some properties of a subset of modular metric
spaces, establish and extend some fixed-point theorems of Mongkolkeha et al. [14] to multi-
valued mappings in modular metric spaces.

2. Some Properties of a Subset of Modular Metric Spaces

In this section, we study some properties of a subset of modular metric spaces, some of which
will take advantages in the proof of our main theorems. Throughout this paper, let CB(Xω)
denotes the set of all nonempty closed bounded subsets of Xω and C(X) denotes the set of all
nonempty closed subsets of X.

Let A be a non-empty subset of a modular metric space Xω. For x ∈ Xω, we denotes
ωλ(x,A) := infy∈Aωλ(x, y).

For A,B ∈ CB(Xω), define δλ(A,B) := supx∈Aωλ(x, B) and the Hausdorff metric
modular Ωλ(A,B) := max{δλ(A,B), δλ(B,A)}. Notice that δλ is not symmetric.

Proposition 2.1. Let Xω be a modular metric space and A,B,C ∈ CB(Xω). Then, the following
properties hold.

(i) δλ(A,B) = 0 for all λ > 0 ⇔ A ⊆ B.
(ii) B ⊆ C ⇒ δλ(A,C) ≤ δλ(A,B) for all λ > 0.
(iii) δλ(A ∪ B,C) = max{δλ(A,C), δλ(B,C)} for all λ > 0.
(iv) δλ+μ(A,B) ≤ δλ(A,C) + δμ(C,B) for all λ, μ > 0.
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Proof. (i) By the definition of δλ, we have, for all λ > 0, that

δλ(A,B) = 0 ⇐⇒ sup
x∈A

ωλ(x, B) = 0

⇐⇒ ωλ(x, B) = 0, ∀x ∈ A.

(2.1)

Since B is closed in Xω, we get ωλ(x, B) = 0 for all λ > 0 ⇔ x ∈ B. That is, δλ(A,B) = 0 for all
λ > 0 ⇔ A ⊆ B.

(ii) It is obvious that ωλ(x,C) ≤ ωλ(x, B) for all x ∈ Xω and λ > 0. Hence, δλ(A,C) ≤
δλ(A,B).

(iii) Observe that, if B ⊆ C, then

δλ(A ∪ B,C) = sup
x∈A∪B

ωλ(x,C) = max

{

sup
x∈A

ωλ(x,C), sup
x∈B

ωλ(x,C)

}

. (2.2)

(iv) Let a ∈ A, b ∈ B, and c ∈ C. Then,

ωλ+μ(a, b) ≤ ωλ(a, c) +ωμ(c, b), (2.3)

which implies that

ωλ+μ(a, B) ≤ ωλ(a, c) +ωμ(c, B)

≤ ωλ(a, c) + δμ(C,B).
(2.4)

Since c ∈ C is arbitrary, we have

ωλ+μ(a, B) ≤ ωλ(a,C) + δμ(C,B). (2.5)

Similarly, since a ∈ A is arbitrary, we can deduce that

δλ+μ(A,B) ≤ δλ(A,C) + δμ(C,B). (2.6)

Proposition 2.2. Let Xω be a modular metric space. Then,

Ωλ(A ∪ B,C ∪D) ≤ max{Ωλ(A,C),Ωλ(B,D)} (2.7)

for all A,B,C,D ∈ CB(Xω).
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Proof. Suppose λ > 0 is arbitrary. For a ∈ A and b ∈ B, we have ωλ(a,C ∪D) ≤ ωλ(a,C) and
ωλ(b, C ∪D) ≤ ωλ(b,D). Hence, we get

δλ(A ∪ B,C ∪D) = max{δλ(A,C ∪D), δλ(B,C ∪D)}
≤ max{δλ(A,C), δλ(B,D)}
≤ max{Ωλ(A,C),Ωλ(B,D)}.

(2.8)

Similarly, we have

δλ(C ∪D,A ∪ B) ≤ max{Ωλ(A,C),Ωλ(B,D)}. (2.9)

Hence, we have

Ωλ(A ∪ B,C ∪D) = max{δλ(A ∪ B,C ∪D), δλ(C ∪D,A ∪ B)}
≤ max{Ωλ(A,C),Ωλ(B,D)}.

(2.10)

Proposition 2.3. Let Xω be a modular metric space generated by xι. Then, CB(Xω) is a modular
metric space generated by {xι} and is induced by Ω.

Proof. For {xι}, A ∈ CB(Xω), we have

Ωλ(A, {xι}) = max

{

sup
x∈A

ωλ(x, {xι}), sup
x∈{xι}

ωλ(x,A)

}

= max

{

sup
x∈A

ωλ(x, xι), inf
x∈A

ωλ(xι, x)

}

= sup
x∈A

ωλ(x, xι).

(2.11)

Since x ∈ A ⊆ Xω and limλ→+∞wλ(x, xι) = 0, we have limλ→+∞Ωλ(A, {xι}) = 0.
By the definition of Ω and Proposition 2.1, it is clear that Ωλ(A,B) = Ωλ(B,A) ≥ 0 for

all λ > 0 and Ωλ(A,B) = 0 for all λ > 0 if and only if A = B.
Again, by Proposition 2.1, we have

Ωλ+μ(A,B) = max
{
δλ+μ(A,B), δλ+μ(B,A)

}

≤ max
{
δλ(A,C) + δμ(C,B), δμ(B,C) + δλ(C,A)

}

≤ max{δλ(A,C), δλ(C,A)} +max
{
δμ(B,C), δμ(C,B)

}

= Ωλ(A,C) + Ωμ(C,B)

(2.12)

for all λ, μ > 0. Therefore, CB(Xω) is a modular metric space generated by {xι} and is induced
by Ω.
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Remark 2.4. Note that the metric modularΩ depends onω, so the completeness ofXω implies
the completeness of CB(Xω).

Now,we are arriving at themost important lemma used in our proof ofmain theorems.

Lemma 2.5. Let A,B ∈ CB(Xω) and a ∈ A. Then, for ε > 0, there exists a point bε ∈ B such that
ωλ(a, bε) ≤ Ωλ(A,B) + ε.

Proof. Let a ∈ A, ε, λ > 0 be arbitrary. Sinceωλ(a, B) = infb∈Bωλ(a, b), we claim thatωλ(a, B)+ε
is not a lower bound of the set {ωλ(a, b) : b ∈ B}. Therefore, there exists bε ∈ B for which
ωλ(a, bε) ≤ ωλ(a, B) + ε and hence ωλ(a, bε) ≤ Ωλ(A,B) + ε.

3. Fixed-Point Theorems for Multivalued Mappings

In this section, we extend the result by Mongkolkeha et al. [14] under the multivalued setting
and hereby obtain some corollaries. Beforehand, we will give the notion of a multivalued
ω-contraction in modular metric spaces.

Definition 3.1. Let Xω be a modular metric space. A multivalued mapping F : Xω → CB(Xω)
is said to be a multivalued ω-contraction if there exists 0 ≤ k < 1 such that

Ωλ

(
Fx, Fy

) ≤ kωλ

(
x, y

)
(3.1)

for all x, y ∈ Xω and λ > 0. In this case, the least number k which satisfies the inequality (3.1)
is said to be the contraction constant.

Remark 3.2. For a sequence {xn}n∈N
inXω, it is obvious that, if limn→+∞xn = x and F is amulti-

valued ω-contraction on Xω, then limn→+∞Fxn = Fx.

Theorem 3.3. Let Xω be a complete modular metric space and F a multivalued ω-contraction on Xω

with contraction constant k. Then, F has a fixed point in Xω.

Proof. Let x0 ∈ Xω be arbitrary and x1 ∈ Fx0. By Lemma 2.5, there exists x2 ∈ Fx1 such that

ωλ(x1, x2) ≤ Ωλ(Fx0, Fx1) + k. (3.2)

Similarly, by this procedure, we define a sequence {xn}n∈N
in Xω such that xn ∈ Fxn−1 and

ωλ(xn, xn+1) ≤ Ωλ(Fxn−1, Fxn) + kn (3.3)

for all n ∈ N. Hence, by the multivalued ω-contractivity, we have

ωλ(xn, xn+1) ≤ Ωλ(Fxn−1, Fxn) + kn

≤ kωλ(xn−1, xn) + kn

≤ k
[
kωλ(xn−2, xn−1) + kn−1

]
+ kn

≤ k2ωλ(xn−2, xn−1) + 2kn.

(3.4)
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Thus, by induction, we deduce that

ωλ(xn, xn+1) ≤ knωλ(x0, x1) + nkn. (3.5)

Notice that
∑

n∈N
kn < +∞ and

∑
n∈N

nkn < +∞. Now, since

∑

n∈N

ωλ(xn, xn+1) ≤ ωλ(x0, x1)
∑

n∈N

kn +
∑

n∈N

nkn < +∞, (3.6)

for all λ > 0. Without loss of generality, suppose m,n ∈ N and m > n. Observe that, for arbit-
rary ε > 0,

ωλ(xn, xm) ≤ ωλ/(m−n)(xn, xn+1) +ωλ/(m−n)(xn+1n, xn+2) + · · · +ωλ/(m−n)(xm−1, xm)

≤ ωλ/m(xn, xn+1) +ωλ/m(xn+1n, xn+2) + · · · +ωλ/m(xm−1, xm)

≤
+∞∑

n=n∗

ωλ/m(xn, xn+1)

< ε

(3.7)

for all m > n ≥ n∗ for some n∗ ∈ N, and hence {xn}n∈N
is a Cauchy sequence. Then, the com-

pleteness of Xω implies that limn→+∞xn = x for some x ∈ Xω. Consequently, the sequence
{Fxn}n∈N

converges to Fx, that is, limn→+∞Ωλ(Fxn, Fx) = 0 for all λ > 0. Since xn ∈ Fxn−1, we
have

0 ≤ ωλ(xn+1, Fx) ≤ δλ(Fxn, Fx) ≤ Ωλ(Fxn, Fx) (3.8)

which implies that ωλ(x, Fx) = 0. Since Fx is closed, it follows that x ∈ Fx.

Example 3.4. LetX = [0, 1],ω : (0,+∞)×X×X → [0,+∞] defined byωλ(x, y) := (1/(1+λ))|x−
y|. Clearly, Xω = [0, 1] for any generator xι ∈ X. Now, we define a multivalued mapping
F : Xω → CB(Xω) given by

Fx =
{
0,

x + 1
2

}
. (3.9)

We have Ωλ(Fx, Fy) = (1/2(1 + λ) )|x − y| ≤ (1/2)ωλ(x, y). Therefore, F is a multivalued
ω-contraction with contraction constant k = 1/2, and we have that 0 and 1 are fixed points of
F.

Remark 3.5. Note that our result does not assure the uniqueness of a fixed point, as illustrated
in the above example.

We next present the local version of Theorem 3.3.
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Theorem 3.6. Let Xω be a complete modular metric space,

Bω

(
x0, γ

)
:=

{
x ∈ Xω : ωλ(x, x0) ≤ γ, ∀λ > 0

}
, (3.10)

and F : Bω(x0, γ) → CB(Xω). Suppose there exists 0 ≤ k < 1 for which

Ωλ

(
Fx, Fy

) ≤ kωλ

(
x, y

)
(3.11)

for all x, y ∈ Bω(x0, γ), λ > 0 and

Ωλ(Fx0, {x0}) ≤ (1 − k)γ (3.12)

for all λ > 0. Then, F has a fixed point in Bω(x0, γ).

Proof. To prove this theorem, we only need to show that Bω(x0, γ) is complete and Fx ⊆
Bω(x0, γ). To show that Bω(x0, γ) is complete, suppose that {xn}n∈N

is a Cauchy sequence in
Bω(x0, γ). SinceXω is complete, limn→+∞ωλ(xn, x) = 0 for some x ∈ Xω for all λ > 0. Since, for
each n ∈ N, xn ∈ Bω(x0, γ), we get

ωλ(x0, x) ≤ ωλ/2(x0, xn) +ωλ/2(xn, x)

≤ γ +ωλ/2(xn, x).
(3.13)

As n → +∞, we have ωλ(x0, x) ≤ γ . Therefore, Bω(x0, γ) is complete.
Now, we prove the latter. For any x ∈ Bω(x0, γ), let y ∈ Fx. Observe that, for all λ > 0,

ωλ

(
y, x0

)
= δλ

({
y
}
, {x0}

)

≤ δλ/3
({

y
}
, Fx

)
+ δλ/3(Fx, Fx0) + δλ/3(Fx0, {x0})

≤ Ωλ/3(Fx, Fx0) + Ωλ/3(Fx0, {x0})
≤ kωλ(x, x0) + (1 − k)γ

≤ γ.

(3.14)

This implies that Fx ⊆ Bω(x0, γ) for all x ∈ Bω(x0, γ). Applying Theorem 3.3 to complete the
proof.

In the following theorem, we prove the existence of fixed points for a mapping intro-
duced in 1969 by Kannan [15] in view of multivalued mappings in modular metric spaces.

Theorem 3.7. Let Xω be a complete modular metric space and F : Xω → CB(Xω) a multivalued
mapping such that there exists 0 ≤ k < 1/2 such that

Ωλ

(
Fx, Fy

) ≤ k
[
ω2λ(x, Fx) +ω2λ

(
y, Fy

)]
(3.15)

for all x, y ∈ Xω and λ > 0. Then, F has a fixed point in Xω.
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Proof. Let the sequence {xn}n∈N
be constructed as in the proof of Theorem 3.3, so we get, for

all λ > 0,

ωλ(xn, xn+1) ≤ Ωλ(Fxn−1, Fxn) + kn (3.16)

for all n ∈ N. Observe that

ωλ(xn, xn+1) ≤ Ωλ(Fxn−1, Fxn) + kn

≤ k[ω2λ(xn−1, Fxn−1) +ω2λ(xn, Fxn)] + kn

≤ k[ωλ(xn−1, Fxn−1) +ωλ(xn, Fxn)] + kn

≤ k[ωλ(xn−1, Fxn−1) +ωλ(xn, xn+1)] + kn.

(3.17)

Further, set ξ := k/(1 − k) < 1, we obtain

ωλ(xn, xn+1) ≤ ξωλ(xn−1, xn) +
kn

1 − k

≤ ξ2ωλ(xn−2, xn−1) +
kn

(1 − k)2
+

kn

(1 − k)

≤ ξ2ωλ(xn−2, xn−1) + 2
kn

(1 − k)2

...

≤ ξnωλ(x0, x1) + nξn.

(3.18)

As in the proof of Theorem 3.3, we conclude that {xn}n∈N
is a Cauchy sequence. The com-

pleteness of Xω implies that limn→+∞xn = x for some x ∈ Xω.
Now, we show that x is a fixed point of F. Observe that

ωλ(x, Fx) = δλ({x}, Fx)
≤ δλ/2({x}, Fxn) + δλ/2(Fxn, Fx)

= ωλ/2(x, Fxn) + δλ/2(Fxn, Fx)

≤ ωλ/2(x, xn+1) + Ωλ/2(Fxn, Fx)

≤ ωλ/2(x, xn+1) + k[ωλ(xn, Fxn) +ωλ(x, Fx)].

(3.19)

Again, we have that

ωλ(x, Fx) ≤ 1
1 − k

ωλ/2(x, xn+1) +
k

1 − k
ωλ(xn, Fxn). (3.20)

As n → +∞, we have ωλ(x, Fx) = 0. Since Fx is closed, we have x ∈ Fx. Therefore, x is a
fixed point of F in Xω.
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4. Stability of Fixed Points

In this section, we discuss some stability of fixed points in Theorems 3.3 and 3.7. In this con-
text, Fix(F)will denote the set of all fixed points of a self-mapping F on Xω.

Theorem 4.1. Let Xω be a complete modular metric space, and let F,G : Xω → CB(Xω) be two
multivalued ω-contractions having the same contraction constant k. If, for any A,B ∈ CB(Xω),
limλ↓0Ωλ(A,B) = ζ(A,B) < +∞, then Ωλ(Fix(F),Fix(G)) ≤ (1 − k)−1supx∈Xω

ζ(Fx,Gx).

Proof. Suppose λ > 0, by Theorem 3.3, we can conclude that Fix(F)/= ∅/= Fix(G). Let ε > 0 be
arbitrary, and let γ > 0 be such that γ

∑
n∈N

nkn < 1. For x0 ∈ Fix(F), choose x1 ∈ Gx0 such
that

ωλ(x0, x1) ≤ Ωλ(Fx0, Gx0) + ε. (4.1)

By the multivalued ω-contractivity, it is possible to choose x2 ∈ Gx1 such that

ωλ(x1, x2) ≤ kωλ(x0, x1) +
γεk

1 − k
. (4.2)

Now, define a sequence {xn}n∈N
inductively by xn ∈ Gxn−1 and

ωλ(xn, xn+1) ≤ kωλ(xn−1, xn) +
γεkn

1 − k
. (4.3)

Set η := γε/(1 − k), it follows that

ωλ(xn, xn+1) ≤ kωλ(xn−1, xn) + ηkn

≤ k2ωλ(xn−1, xn−1) + 2ηkn.

(4.4)

Inductively, we have that

ωλ(xn, xn+1) ≤ knωλ(x0, x1) + nηkn. (4.5)

Notice that
∑

n∈N
kn < +∞ and

∑
n∈N

nkn < +∞. Now, since
∑

n∈N

ωλ(xn, xn+1) ≤ ωλ(x0, x1)
∑

n∈N

kn + η
∑

n∈N

nkn < +∞, (4.6)

we can say that {xn}n∈N
is a Cauchy sequence. The completeness of Xω implies that

limn→+∞xn = x for some x ∈ Xω. Since limn→+∞Ωλ(Gxn,Gx) = 0 and xn ∈ Gxn−1, we get
x ∈ Fix(G). Now, observe that

ωλ(x0, x) ≤ ωλ/2n(x0, x1) +ωλ/2n(x1, x2) + · · · +ωλ/2n(xn−1, xn) +ωλ/2(xn, x)

≤
∑

m∈N

ωλ/2n(xm−1, xm) +ωλ/2(xn, x)

≤ ωλ/2n(x0, x1)
∑

m∈N

km−1 + η
∑

m∈N

(m − 1)km−1 +ωλ/2(xn, x)

≤ (1 − k)−1[ωλ/2n(x0, x1) + ε] +ωλ/2(xn, x)

≤ (1 − k)−1[Ωλ/2n(Fx0, Gx0) + 2ε] +ωλ/2(xn, x).

(4.7)



Abstract and Applied Analysis 11

Since ωλ(x0, x) ≥ ωλ(x0,Fix(G)) and together with (4.18), we have, as n → +∞, that

δλ(Fix(F),Fix(G)) ≤ (1 − k)−1
[

sup
x∈Fix(F)

ζ(Fx,Gx) + 2ε

]

≤ (1 − k)−1
[

sup
x∈Xω

ζ(Fx,Gx) + 2ε

]

.

(4.8)

Similarly, we have

δλ(Fix(G),Fix(F)) ≤ (1 − k)−1
[

sup
x∈Xω

ζ(Fx,Gx) + 2ε

]

. (4.9)

Since ε > 0 is arbitrary, this completes the proof.

Corollary 4.2. Let Xω be a complete modular metric space and Fn : Xω → CB(Xω), for n ∈ N,
multivalued ω-contractions having the same contraction constant k, and for any A,B ∈ CB(Xω),
limλ↓0Ωλ(A,B) = ζ(A,B) < +∞. If limn→+∞ζ(Fnx,Fx) = 0 uniformly for x ∈ Xω, then
limn→+∞Ωλ(Fix(Fn),Fix(F)) = 0.

Proof. Let ε > 0 be arbitrary. Since limn→+∞ζ(Fnx,Fx) = 0 uniformly for x ∈ Xω and λ > 0, there
exists n0 ∈ N such that

sup
x∈Xω

ζ(Fnx,Fx) < (1 − k)ε (4.10)

for all n ∈ N with n ≥ n0. By Theorem 4.1, we have

Ωλ(Fix(Fn), Fix(F)) < ε (4.11)

for all n ∈ N with n ≥ n0 and λ > 0.

Likewise, we can deduce a stability theorem for fixed points in Theorem 3.7.

Theorem 4.3. Let Xω be a complete modular metric space, and let F,G : Xω → CB(Xω) be two
multivalued mappings such that there exists 0 ≤ k < 1 such that

Ωλ

(
Fx, Fy

) ≤ k
[
ω2λ(x, Fx) +ω2λ

(
y, Fy

)]
,

Ωλ

(
Gx,Gy

) ≤ k
[
ω2λ(x,Gx) +ω2λ

(
y,Gy

)]
,

(4.12)

for all x, y ∈ Xω and λ > 0. If, for any A,B ∈ CB(Xω), limλ↓0Ωλ(A,B) = ζ(A,B) < +∞, then
Ωλ(Fix(F),Fix(G)) ≤ (1 − k)−1supx∈Xω

ζ(Fx,Gx).
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Proof. Suppose λ > 0, by Theorem 3.7, we can conclude that Fix(F)/= ∅/= Fix(G). Let ε > 0 be
arbitrary, and let γ > 0 be such that γ

∑
n∈N

nkn < 1. For x0 ∈ Fix(F), choose x1 ∈ Gx0 such
that

ωλ(x0, x1) ≤ Ωλ(Fx0, Gx0) +
γε

1 − k
. (4.13)

It is possible to choose x2 ∈ Gx1 such that

ωλ(x1, x2) ≤ Ωλ(Gx0, Gx1) +
γε

1 − k
k. (4.14)

By induction, we can construct a sequence {xn}n∈N
such that

ωλ(xn, xn+1) ≤ Ωλ(Gxn−1, Gxn) +
γε

1 − k
kn.

(4.15)

Observe that

ωλ(xn, xn+1) ≤ Ωλ(Fxn−1, Fxn) +
γε

1 − k
kn

≤ k[ω2λ(xn−1, Fxn−1) +ω2λ(xn, Fxn)] +
γε

1 − k
kn

≤ k[ωλ(xn−1, Fxn−1) +ωλ(xn, Fxn)] +
γε

1 − k
kn

≤ k[ωλ(xn−1, Fxn−1) +ωλ(xn, xn+1)] +
γε

1 − k
kn.

(4.16)

Further, set ξ := k/(1 − k) < 1 and η := γε/(1 − k) , we obtain

ωλ(xn, xn+1) ≤ ξωλ(xn−1, xn) +
γε

(1 − k)2
kn

≤ ξ2ωλ(xn−2, xn−1) + 2
γε

(1 − k)3
kn

...

≤ ξnωλ(x0, x1) + nηξn.
(4.17)

Similar to the proof of Theorem 4.1, we conclude that {xn}n∈N
is a Cauchy sequence. The com-

pleteness of Xω implies that {xn}n∈N
converges to some limit x ∈ Xω. We can further see that

x ∈ Fix(G). Now, observe that

ωλ(x0, x) ≤ ωλ/2n(x0, x1) +ωλ/2n(x1, x2) + · · · +ωλ/2n(xn−1, xn) +ωλ/2(xn, x)

≤
∑

m∈N

ωλ/2n(xm−1, xm) +ωλ/2(xn, x)

≤ ωλ/2n(x0, x1)
∑

m∈N

km−1 + η
∑

m∈N

(m − 1)km−1 +ωλ/2(xn, x)

≤ (1 − k)−1[ωλ/2n(x0, x1) + ε] +ωλ/2(xn, x)

≤ (1 − k)−1[Ωλ/2n(Fx0, Gx0) + 2ε] +ωλ/2(xn, x).

(4.18)
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Since ωλ(x0, x) ≥ ωλ(x0,Fix(G)) and together with (4.18), we have, as n → +∞, that

δλ(Fix(F), Fix(G)) ≤ (1 − k) −1
[

sup
x∈Fix(F)

ζ(Fx,Gx) + 2ε

]

≤ (1 − k)−1
[

sup
x∈Xω

ζ(Fx,Gx) + 2ε

]

.

(4.19)

Similarly, we have

δλ(Fix(G), Fix(F)) ≤ (1 − k)−1
[

sup
x∈Xω

ζ(Fx,Gx) + 2ε

]

. (4.20)

Since ε > 0 is arbitrary, this completes the proof.

Corollary 4.4. LetXω be a complete modular metric space, and let Fn : Xω → CB(Xω), for n ∈ N, be
multivalued mappings such that there exists 0 ≤ k < 1 such that

Ωλ

(
Fnx, Fny

) ≤ k
[
ω2λ(x, Fnx) +ω2λ

(
y, Fny

)]
(4.21)

for all x, y ∈ Xω and λ > 0. Suppose for any A,B ∈ CB(Xω), limλ↓0Ωλ(A,B) = ζ(A,B) < +∞. If
limn→+∞ζ(Fnx,Fx) = 0 uniformly for x ∈ Xω, then limn→+∞Ωλ(Fix(Fn),Fix(F)) = 0.

Proof. Let ε > 0 be arbitrary. Since limn→+∞ζ(Fnx,Fx) = 0 uniformly for x ∈ Xω and λ > 0, there
exists n0 ∈ N such that

sup
x∈Xω

ζ(Fnx,Fx) < (1 − k)ε (4.22)

for all n ∈ N with n ≥ n0. By Theorem 4.3, we have

Ωλ(Fix(Fn),Fix(F)) < ε (4.23)

for all n ∈ N with n ≥ n0 and λ > 0.
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