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A new fixed point theorem is obtained for the class of cyclic weak ¢-contractions on partially metric
spaces. It is proved that a self-mapping T on a complete partial metric space X has a fixed point if
it satisfies the cyclic weak ¢-contraction principle.

1. Introduction and Preliminaries

Fixed point theorems analyze the conditions on maps (single or multivalued) under which
the existence of a solution for the equation d(x,Tx) = 0 can be guaranteed. The Banach
contraction mapping principle [1] is one of the earliest, widely known, and important results
in this direction. After this pivotal principle, a number of remarkable results started to appear
in the literature published by many authors (see, e.g., [2-36]). In this trend, one of the
distinguished contributions was announced by Kirk et al. [15] in 2003. They introduced the
notion of cyclic contraction, which is defined as follows.

Let A and B be two subsets of a metric space (X, d). A self-mapping T on AUB is called
cyclic provided that T(A) C B and T(B) C A. In addition, if for some k € (0, 1), the mapping
T satisfies the inequality

d(Tx,Ty) <kd(x,y) + (1 -k)dist(A,B) Vxe€ A, y€B, (1.1)

then it is called cyclic contraction where dist(A, B) = inf{d(x,y) : x € A, y € B}. In their
outstanding paper [15], the authors also proved that if A and B are closed subsets of a
complete metric space with A N B #0, then the cyclic contraction T has a unique fixed point
in ANB.
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The notion of ®-contraction was defined by Boyd and Wong [11]: A self-mapping T
on a metric space X is called ®-contraction if there exists an upper semi-continuous function
@ :[0,c0) — [0,0) such that

d(Tx,Ty) <®@(d(x,y)) VYx,y€X. (1.2)

This concept was generalized by Alber and Guerre-Delabriere [7], by introducing weak ¢-
contraction. A self-mapping T on a metric space X is called weak ¢-contraction if ¢ : [0, 0) —
[0, 00) is a strictly increasing map with ¢(0) = 0 and

d(Tx,Ty) <d(x,y) - ¢(d(x,y)), Vx,yeX (1.3)

Padcurar and Rus [19] gave a characterization of ®d-contraction mappings in the
context of cyclic operators and proved some fixed point results for such mappings on a
complete metric space. As a natural next step, Karapimar [13] generalized the results in
[19] by replacing the notion of cyclic ¢-contraction mappings with cyclic weak ¢-contraction
mappings. For more results for cyclic mapping analysis we refer to [3, 7, 12, 14, 16, 17, 21-23]
and the references therein.

Recently, in fixed point theory, one of the celebrated subjects is the partial metric
spaces. The notion of a partial metric space was defined by Matthews [37] in 1992 as a
generalization of usual metric spaces. The motivation behind the theory of partial metric
spaces is to transfer mathematical techniques into computer science to develop the branches
of computer science such as domain theory and semantics (see, e.g., [35, 38—46]).

Definition 1.1 (see [37,47]). A partial metric on a nonempty set X is a functionp : X x X —
[0, 00) such that forall x, y,z € X

(PM1) p(x,y) = p(y, x) (symmetry),

(PM2) if p(x, x) = p(x,y) = p(y,y), then x = y (equality),

(PM3) p(x, x) < p(x,y) (small self-distances),
)

(PM4) p(x,z) +p(y,y) < p(x,y) +p(y, z) (triangularity).
The pair (X, p) is called a partial metric space (abbreviated by PMS).

Remark 1.2. If x = y, then p(x, y) may not be 0.

Example 1.3 (see [47]). Let X = {[a,b] : a,b,e R, a < b}, and define p([a,b], [c,d]) =
max{b,d} — min{a,c}. Then, (X, p) is a partial metric space.

Example 1.4 (see [47]). Let X := [0,1] U [2,3], and definep : X x X — [0, o) by

_ Jmax{x,y} if {x,y}N[2,3]#0,
plxy) = {Ix—yl if {x,y} c[0,1]. (14)

Then, (X, p) is a complete partial metric space.
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Example 1.5 (see [48]). Let (X,d) and (X,p) be a metric space and a partial metric space,
respectively. Mappings p; : X x X — R* (i € {1,2,3}) defined by

pr(xy) =d(x,y) +p(xy)
p2(x,y) = d(x,y) + max{w(x),w(y)} (1.5)
p3(x,y) = d(x,y) +a

induce partial metrics on X, where w : X — R* is an arbitrary function and a > 0.

Each partial metric p on X generates a Ty topology 7, on X which has the family of
open p-balls {B,(x,¢),x € X, e > 0} as a base, where B,(x,¢) = {y € X : p(x,y) <p(x,x) + €}
forall x € X and £ > 0.

If p is a partial metric on X, then the function d, : X x X — [0, o) given by

dy(x,y) =2p(x,y) —p(x,x) - p(v,y) (1.6)
is a metric on X. Furthermore, it is possible to observe that the following
dm(x,y) = max{p(x,y) - p(x,x),p(x,y) -p(v,y)}, (17)

also defines a metric on X. In fact, d, and d,, are equivalent (see, e.g., [9]).

Example 1.6 (see, e.g. [5, 27, 30, 47]). Consider X = [0, 00) with p(x,y) = max{x,y}. Then,
(X, p) is a partial metric space. It is clear that p is not a (usual) metric. Note that in this case
dp(x,y) = |x =yl = du(x, ).

For our purposes, we need to recall some basic topological concepts in partial metric
spaces (for details see, e.g., [5, 8, 27, 30, 37, 47]).

Definition 1.7. (1) A sequence {x,} in the PMS (X, p) converges to a limit point x if and only
if p(x,x) = limy, . p(x, x,).

(2) A sequence {x,} in the PMS (X, p) is called a Cauchy sequence if limy, s — o p(xp,
X,) exists and is finite.

(3) A PMS (X,p) is called complete if every Cauchy sequence {x,} in X converges,
with respect to 7,, to a point x € X such that p(x, x) = limy, s — P (X0, Xim).

(4) A mapping F : X — X is said to be continuous at xg € X if, for every e > 0, there
exists 6 > 0 such that F(B,(xo,6)) C B,(Fxo,€).

Lemma 1.8. (1) A sequence {x,} is a Cauchy sequence in the PMS (X, p) if and only if it is a Cauchy
sequence in the metric space (X, dp).
(2) A PMS (X, p) is complete if and only if the metric space (X, d,) is complete. Moreover,

lim dp,(x, x,) = 0 & p(x,x) = im p(x, x,) = Lim_p(xp, Xpm). (1.8)

In [32], Romaguera introduced the concepts of a 0-Cauchy sequence in a partial metric
space and of a 0-complete partial metric space as follows.
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Definition 1.9. A sequence {x,} in a partial metric space (X,p) is called 0-Cauchy if
limy, ;— op(Xn, ) = 0. A partial metric space (X,p) is said to be 0-complete if every 0-
Cauchy sequence in X converges, with respect to 7,, to a point x € X such that p(x, x) = 0. In
this case, p is said to be a 0-complete partial metric on X.

Remark 1.10 (see [32]). Each 0-Cauchy sequence in (X, p) is a Cauchy sequence in (X, p), and
each complete partial metric space is 0-complete.

The following example shows that there exists a 0-complete partial metric space that
is not complete.

Example 1.11 (see [32]). Let (QN [0, o0), p) be a partial metric space, where Q denotes the set
of rational numbers and the partial metric p is given by p(x, y) = max{x, y}.

Now, we state a number of simple but useful lemmas that can be derived by
manipulating the properties (P1) — (P4).

Lemma 1.12. Let (X, p) be a PMS. Then, the following statements hold true:

(A) if limy, —, op(xpn, 2) = p(z,2) and p(z,z) = 0, then lim,_, ,p(x,, y) = p(z,y) for every
y € X (see [5, 27, 30]),

(B) if limy— oop (X0, y) = p(y,y), imy . op(xn, 2) = p(z,2), and p(y,y) = p(z,z), then
y =z (see [31]),

(C) if p(x,y) =0 then x = y (see [27, 30]),

(D) if x #y, then p(x,y) > 0 (see [27, 30]).

One of the implications of Lemma 1.12 can be stated as follows.
Remark 1.13. If {x,} converges to x in (X, p), then lim,, . ,p(x,, y) < p(x,y) forall y € X.

We would like to point out that the topology induced by a partial metric differs from
the topology induced by a metric in certain aspects. The following remark and example
highlight one of these aspects.

Remark 1.14. Limit of a sequence {x,} in a partial metric space (X, p) may not be unique.

Example 1.15. Consider X = [0, o0) with p(x,y) = max{x, y}. Then, (X, p) is a partial metric
space. Clearly, p is not a metric. Observe that the sequence {1 + (1/1 + n)} converges to both
x = 5and y = 6, for example. Therefore, there is no uniqueness of the limit in this partial
metric space.

2. Main Results

In this section we aim to state and prove our main results. These results are more general in
the sense that they are applicable to chains of cyclic representations and related generalized
weak ¢-contractions introduced in the following two definitions.
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Definition 2.1 (see, e.g., [13]). Let X be a nonempty set, m, a positive integer,and T : X — X
an operator. The union X = U, X; is called a cyclic representation of X with respect to T if

(1) each X; is anonempty setfori =1,...,m,
(2) T(X1) € Xa, ..., T(Xim-1) C Xom, T(Xim) C X3

Definition 2.2 (cf. [13]). Let (X, p) be a partial metric space, m be a positive integer, Ay, ..., A,
closed nonempty subsets of X and Y = U, A;. An operator T : ¥ — Y is called a cyclic
generalized weak ¢-contraction if

(1) U, A; is a cyclic representation of Y with respect to T,

(2) there exists a continuous, nondecreasing function ¢ : [0, 00) — [0, o0) with ¢(t) >0
for every t € (0,00) and ¢(0) = 0, such that

p(Tx,Ty) < M(x,y) - p(M(x,y)), (2.1)

where
M(x,y) = max{p(x,y),p(Tx,x),p(y, Ty)}, (2.2)

foranyx € A;, y € Ajafori=1,2,...,mwith A, = A1
Our main theorem in this work is stated below.

Theorem 2.3. Let (X, p) be a 0-complete partial metric space, m a positive integer, and As, ..., Am
be closed non-empty subsets of X. Let Y = U", A; be a cyclic representation of Y with respect to T.
Suppose that T is a cyclic generalized weak ¢-contraction. Then, T has a unique fixed point z € N} A;.

Proof. First we show that if T has a fixed point, then it is unique. Suppose on the contrary
that there exist z, w € N} A; such that Tz = z and w = Tw with z# w. Due to (2.1), we have

P(Z, w) = P(TZ; T’(,U) < M(z, ’(1)) - (i)(M(Z/ ZU)), (23)

which is equivalent to
p(z,w) = p(Tz,Tw) < p(z,w) - p(p(z, w)) (2.4)

by (PM3) in Definition 1.1. This is a contradiction because p(z, w) > 0 by Lemma 1.12 and
¢(t) > 0 for all t > 0. Hence, T has a unique fixed point.

Next we prove the existence of a fixed pointof T. Let xo € Y = U"; A; and x,,41 = Tx,, be
the Picard iteration. If there exists ny such that x,, = x;,+1, then the theorem follows. Indeed,
we get X, = Xp+1 = Txp, and, therefore, xj is a fixed point of T. Thus, we may assume that
Xy # Xp41 for all n where we have

p(Xn, Xns1) >0, (2.5)
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by Lemma 1.12.
Since T is cyclic, for any n > 0, there is i, € {1,2,...,m} such that x, € A;, and
Xn+1 € Aj,+1. Then, by (2.1), we have

P(xpi, Xns2) = P(Txn, Txpi1) < M(Xp, Xpa1) — P(M (x4, Xpi1)), (2.6)

where

M (xy, Xp41) = max{p(xn, Xns1), P(TXn, %), p(Xni1, Txns1) }

(2.7)
= max{p(Xn, Xp41), P(Xns1, Xns2) }.-
If we assume M (x,,, Xy+1) = p(Xn+1, Xns2), then (2.6) turns into
P(Xpa1, Xne2) < P(Xns1, Xna2) = P(P(Xpa1, Xni2)), (2.8)

which is a contradiction. Because when we let t = p(x,41, Xn12), which is positive by (2.5),
we get ¢(t) = P(p(xps1,Xns2)) > 0, we need to take M (xp, X4+1) = p(%n, Xp41). Define t, =
p(xn, xyp41). Then, the inequality in (2.6) turns into

tn+1 < tn - ¢(tn) < tn- (2~9)

Therefore, {t,} is a nonnegative nonincreasing sequence. Hence, {f,} converges to L > 0. We
aim to show that L = 0. Suppose on the contrary that L > 0. Letting n — oo in (2.9), we get
that

L<L- lim¢(t,) < L. (2.10)
Thus, we obtain that
11113010¢(tn) =0. (2.11)

Since L = inf{t, = p(xy, Xp+1) :n €N}, then0< L <t, forn=0,1,2,.... Taking n — oo in the
previous inequality, we derive

0< (L) < lim (t,), (2.12)

which contradicts with (2.11). Thus, we have lim,, _, ,p(x+1, X5) = 0.
We claim that {t,} is a 0-Cauchy sequence. In order to prove this assertion, we first
prove the following statement.

(A) For every € > 0, there exists nyp € N such that if s,q > ng with s — g = 1(m), then
p(xs, x4) <e.
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Assume the contrary that there exists € > 0 such that for any n € N we can find s > g > n with
s — q = 1(m) satisfying the inequality p(xs, x;) > €. Then, we have

€ <p(xs,xq) <Pp(Xs, Xs11) + P(Xos1, Xge1) + P (X401, %)
I ' T R 2.13)

= p(xs, x511) + p(Txs, Txg) + p(xg01, Xg),

by the triangular inequality. Since x; and x, lie in different adjacently labeled sets A; and A;;;
for certain 1 < i < m, from (2.13) we get

€< P(xsrxq) < plxs, xs41) + M (x5, %5) — ‘l’(M(xerq)) + P(xq+1'xq)

(2.14)
< P(xs, xs+1) + M(x51 xq) - ¢(p(xs, Xq)) + p(xq+1,xq)
by using the contractive condition in (2.1), where
M(xs,x4) = max{p(xs,x4),p(xs, Xs11), P (Xge1,Xq) }- (2.15)

If M(xs, x,) is equal to either p(x4:1,x4) or p(xs, xs:1), then letting 5,4 — oo in (2.14)
yields that

e< lim p(xs,xg) < - lim (p(xs %)) (2.16)

54— o0
is a contradiction. Hence, M(xs, x,;) = p(xs, x;) and inequality (2.14) give
P(p(xs,x4)) < p(xs, Xs41) +p(xg41, %) (2.17)
As € < p(xs,x4) and ¢ is nondecreasing, we have
0<pe) <P(p(xs,xq)) (2.18)
Inequalities (2.17) and (2.18) give us
0 < p(e) < P(p(xs,x4)) < p(xs, Xs41) + p(xg41, %g).- (2.19)
Letting s,q — oo with s — g = 1(m) and since lim,, _, ,p(xy, Xn+1) = 0, we have

0<¢(e) < lim ¢(p(xs,x4)) <O
v (2.20)

s—q=1(m),

which is a contradiction. Therefore, (A) is proved.
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Now, in order to prove that {x,} is a Cauchy sequence, we fix an € > 0. Using (A), we
find ny € N such thatif s, g > ng with s — g =1(m),

€
p(xs,xq) < po. (2.21)
On the other hand, since lim,, _, ,,p(xp, X4+1) = 0, we also find n; € N such that
€
pQn, Xmi1) < (2.22)

for any n > ny. We take k,I > max{ng, n;} with [ > k. Then, there exists K € {1,2,...,m} such
that [ — k = K(m). Therefore, | - k + j = 1(m) for j =m - K + 1, and so

p(xi, x1) < p(xic, X14j) + P (Xiwj, Xpajr) + - + p(Xpa1, X1). (2.23)

From (2.21) and (2.22) and the last inequality,

p(xk, x1) < % +(j - 1)% =j—<e. (2.24)

€
m
Hence,

li =0.
krllglwp(xerl) 0 (2.25)

This prove that {t,} is a 0-Cauchy sequence.

Since X is a O-complete partial metric space, there exists x € X such that
limy, ., p(xn, x) = p(x,x). Now, we will prove that x is a fixed point of T. In fact, since
{xn} converges to x and ¥ = U A; is a cyclic representation of Y with respect to T, the
sequence {x,} has infinite number of terms in each A; fori € {1,2,...,m}. Regarding that
A is closed for i € {1,2,...,m}, we have x € Nn"; A;. Now fix i € {1,2,...,m} such that
x € Aj and Tx € Aj1. We take a subsequence {x,, } of {x,,} with x,, € A;_; (the existence
of this subsequence is guaranteed by the mentioned comment above). Using the triangular
inequality and the contractive conditions, we can obtain

P(x/ Tx) < P(x/ xnkn) + P(xnkm Tx)
=p(x, xpn,,,) +p(Txy,, Tx) (2.26)

S p(x/xnk+1) + M(xnk/x) - (i)(M(lek/x))/

where M(x,x,) = {p(x,Tx),p(xn, Xn.41), (X, %) }. If M(x,x,,.) is equal to either
p(Xpn, Xn+1) OF p(x, x4, ), then by letting k — oo, inequality (2.26) implies

p(x,Tx) <0. (2.27)
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Therefore, p(x, Tx) = 0, that is, x is a fixed point of T by Lemma 1.12. If M(x, x,,,) = p(x, Tx)
then (2.26) turns into

p(x,Tx) < p(x, Xn,) + p(x, Tx) = $(p(x, Tx)) & ¢(p(x, Tx)) <p(x,xn,).  (2.28)

Letting k — oo, we get that limy_. ¢ (p(x,Tx)) = 0. Hence, by the properties of ¢ we have
p(x,Tx) =0. O

Theorem 2.4. Let T : Y — Y be a self~mapping as in Theorem 2.3. Then, the fixed point problem for
T is well posed, that is, if there exists a sequence {y,} in Y with p(y,, Ty,) — 0,as n — oo, then
P(Yn,z) — 0asn — oo.

Proof. Due to Theorem 2.3, we know that for any initial value y € Y, z € N, A; is the unique
fixed point of T. Thus, p(y,, z) is well defined. Consider

P(Yn 2) SPYnsTYn) +P(TYn, T2) < p(Yn, Tyn) + M(Yn, 2) = p(M(yn,2)),  (229)

where M(yn,z) = {p(Wn 2),p(Wn, Tyn),p(z,Tz)}. There are three cases to consider: if
M(yy, z) = p(Yn, z), then (2.29) is equivalent to

0<pYn Tyn) =9 (P(¥n 2)) = $(p(Yn 2)) <P(Yn TYn)- (2.30)

Since we are given p(y,, Ty,) — 0asn — oo, we derive that ¢§(p(y,, z)) — 0. Regarding
the definition of ¢, we obtain that p(y,, z) — 0. The theorem follows.

If it is the case that M(yx, z) = p(Yn, Tyy), then the right-hand side of (2.29) tends to 0
as n tends to infinity. Hence, the theorem follows again.

As the last case, we have M(y,, z) = p(z,Tz). Similarly we conclude that the right-
hand side of (2.29) tends to 0 as n tends to infinity because we know that p(z,Tz) = 0 by
Theorem 2.3 and p(y,, Ty,) — 0, which completes the proof. O

Theorem 2.5. Let T : Y — Y be a self-mapping as in Theorem 2.3. Then, T has the limit shadowing
property, that is, if there exists a convergent sequence {y,} in Y with p(yns1,Ty,) — 0 and
PWn, Ty,) — 0,as n — oo, then there exists x € Y such that p(y,,T"x) — 0asn — co.

Proof. As in the proof of Theorem 2.4, we observe that for any initial value x € Y, z € N, A;

is the unique fixed point of T. Thus, p(yx, z), p(Yn+1, z) are well defined. Set y as a limit of a
convergent sequence {1, } in Y. Consider

P(Yni1,2) SPYns1, TYn) + P(TYn, TZ) < p(Yns1, Tyn) + M(Yn, z) = (M (yn,z)), (2.31)

where M(yn,z) = (p(Wn, 2),P(Yn, Ty,),p(z,Tz)}. There are three cases to consider: If
M(yy, z) = p(Yn, z), then (2.31) is equivalent to

p(v.z) <p(y,z) - 9(p(v, 2)), (2.32)

as n — oo. This is possible only if ¢(p(y,z)) = 0, which implies that p(y,z) = 0 and thus
y = z. Thus, we have p(y,, T"x) — p(y,z) =0,asn — co.
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If it is the case that M (yy, z) = p(Yn, Tyy), then the right-hand side of (2.31) tends to 0
as n tends to infinity. Hence, the theorem follows again.

As the last case, we have M(y,, z) = p(z,Tz). Similarly we conclude that the right-
hand side of (2.31) tends to 0 as n tends to infinity because we know that p(z,Tz) = 0 by
Theorem 2.3 and p(yu+1,Ty,) — 0, which completes the proof. ]

Theorem 2.6. Let X be a non-empty set, (X, p) and (X, p) partial metric spaces, m a positive integer,
and Ay, Ay, ..., Ap closed non-empty subsets of X and Y = U"| A;. Suppose that

(1) Y = U, A; is a cyclic representation of Y with respect to T.
(2) p(x,y) < p(x,y) forallx,y €Y,
(3) (Y, p) is a complete partial metric space,
4) T:(Y,p) — (Y,p) is continuous,
)

5)T : (Y,p) — (Y,p) is a cyclic weak ¢-contraction where ¢ : [0,00) — [0, 00) with
@(t) > 0 is a lower semicontinuous function for t € (0, 00) and ¢(0) = 0.

Then, {T"x} converges to z in (Y, p) for any xo € Y and z is the unique fixed point of T.

Proof. Let xo € Y. As in Theorem 2.3, assumption (5) implies that {T"xy} is a Cauchy
sequence in (Y, p). Taking (2) into account, {T"x} is a Cauchy sequence in (Y, d), and due
to (3) it converges to z in (Y, p) for any xy € Y. Condition (4) implies the uniqueness of z. [

Definition 2.7 (cf. [2]). Let (X, p) be a partial metric space, m a positive integer, and Ay, ..., A,
closed non-empty subsets of X and Y = U, A;. An operator T : ¥ — Y is called a cyclic
generalized ¢-contraction if

(1) U, A; is a cyclic representation of Y with respect to T, and

(2) there exists a continuous, non-decreasing function ¢ : [0,00) — [0, oo0) with ¢(f) > 0
for every t € (0,00) and ¢(0) = 0, such that

p(Tx,Ty) < p(M(x,y)), (2.33)

where

M(x,y) = max{p(x,y),p(Tx,x),p(y, Ty)} (2.34)

forany x € Aj,y € Ajy fori=1,2,...,mwith A, = A;.
The following is an analog of the main theorem in [2].

Corollary 2.8. Let (X, p) be a O-complete partial metric space, m a positive integer, and A, ..., Am
closed non-empty subsets of X. Let Y = U, A; be a cyclic representation of Y with respect to T.
Suppose that T is a cyclic generalized ¢-contraction. Then, T has a unique fixed point z € N A;.

Proof. 1t follows from Theorem 2.3 by taking ¢(t) =t — ¢(t). O
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