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The paper presents an investigation of the generation, evolution of Rossby solitary waves gen-
erated by topography in finite depth fluids. The forced ILW- (Intermediate Long Waves-) Burgers
equation as a model governing the amplitude of solitary waves is first derived and shown to
reduce to the KdV- (Korteweg-de Vries-) Burgers equation in shallow fluids and BO- (Benjamin-
Ono-) Burgers equation in deep fluids. By analysis and calculation, the perturbation solution and
some conservation relations of the ILW-Burgers equation are obtained. Finally, with the help of
pseudospectral method, the numerical solutions of the forced ILW-Burgers equation are given. The
results demonstrate that the detuning parameter α holds important implications for the generation
of the solitary waves. By comparing with the solitary waves governed by ILW-Burgers equation
and BO-Burgers equation, we can conclude that the solitary waves generated by topography in
finite depth fluids are different from that in deep fluids.

1. Introduction

Solitary waves are finite-amplitude waves of permanent form which own their existence to a
balance between nonlinear wave-steepening processes and linear wave dispersion. Typically,
they consist of a single isolated wave, whose speed is an increasing function of the amplitude.
The theoretical description of nonlinear solitary waves that have emerged in the mathematics
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and physics has received a great deal of attention in the last decades [1]. In atmospheric and
oceanic circulation dynamics, Long [2] and Benney [3] first studied the barotropic Rossby
waves employing horizontal shear velocity and obtained the conclusion that the amplitude
of nonlinear solitary waves satisfied the KdV equation. The research on baroclinic Rossby
waves was carried out by Redekopp in [4], the modified KdV (MKdV) equation as a model
governing the amplitude of solitary waves was derived. Furthermore, Yamagata, Grimshaw,
Boyd, and so on also discussed the solitary waves by virtue of the KdV equation [5–7]. Yano
and Tsujimura classified the KdV-type Rossby solitary waves which were governed by the
KdV and MKdV equations, this kind of solitary waves were also called classical solitary
waves [8]. With the development of solitary waves theory, people realized that in addition to
the classical solitary waves, there were other types of solitary waves. Hiroaki Ono considered
the solitary waves in stratified fluids and found that in the case of great of depth, the behavior
of long nonlinear waves was governed by an integrodifferential equation of dispersive type
(BO equation) instead of the KdV equation [9]. This kind of solitary waves was called
algebraic solitary waves. After the KdV theory and BO theory, a more general evolution
equation for solitary waves in a finite-depth fluid, which reduces to the KdV equation in
the shallow-fluid limit and to the BO equation in the infinitely-deep-fluid limit, was given
by Kubota et al. [10]. The equation was called intermediate long waves (ILW) equation.
Based on the above researches, many people carried on the research of solitary waves and
explained some phenomena that occur in ocean and atmosphere, such as blocking and dipole
[11–15].

As everyone knows ocean and atmosphere are driven by external forcing. The motion
of ocean and atmosphere must be taken as a forced nonlinear system. Here the forcing factors
include topographic forcing and external source forcing and so on. There have been lots of
researches on the effect of topographic forcing on Rossby waves [12–18]. On the other hand,
the real oceanic and atmospheric motion is dissipative, otherwise the motion would grow
explosively because of the constant injecting of the external forcing energy. In particular,
when the long-time evolution is considered, the small dissipation effects can become of
crucial importance. They can stop self-similar expansion of the shock so that it tends to some
stationary wave structure which propagates as a whole with constant velocity. But in many
researches dissipation effect is ignored.

In the present paper, wewill study the Rossby solitarywaves generated by topography
in finite depth fluids, especially we will consider the dissipation effect. Here we need
emphasis that it seems very few ones on Rossby solitary waves excited by topography with
a small dissipation in finite deep fluids by employing the forced ILW-Burgers equation are
available up to now. This paper is organized as follows: in Section 2, a forced ILW-Burgers
equation will be derived by using a perturbation method from the geostrophic potential
vorticity equation with dissipation and topography effect. It will reduce to the KdV-Burgers
equation in shallow fluids and to the BO-Burgers equation when the depth h → ∞. So
it is easy to find that the ILW-Burgers equation is an extension of the former researches.
This is followed in Section 3 by the generation of the perturbation solution of the ILW-
Burgers equation and the discussion of dissipation effect. Section 4 is devoted to a study
of the conservation relations associated with the equation and the conservation quantities
of Rossby solitary waves. The numerical solutions of the forced ILW-Burgers equation are
given for a topographic forcing by using the pseudospectral method in Section 5. The solitary
waves generated by topography are simulated, the effect of detuning parameter is analyzed.
Especially, we carry out the comparison of Rossby solitary waves in finite deep fluids with
that in infinite deep fluids. Finally, some conclusions are given in Section 6.
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2. Mathematics Model

The theoretical basis is found in the paper of Pedlosky [19] treating a model on a beta plane.
In this model the vorticity equation governing the inviscid, quasi-geostrophic fluid motion
with topography and turbulent dissipation, in the nondimensional form, is given by

(
∂

∂t
+
∂Ψ
∂x

∂

∂y
− ∂Ψ
∂y

∂

∂x

)(
∇2Ψ + βy + h

)
= −λ0∇2Ψ +Q, (2.1)

where Ψ is the dimensionless stream function; ∇2 = ∂2/∂x2 + ∂2/∂y2 denotes the two-
dimensional Laplace operator; β = β0(L2/U), β0 is the northward gradient of the planetary
vorticity, L and U are the characteristic horizontal length and velocity scales; ∇2Ψ expresses
the vorticity dissipation which is caused by the Ekman boundary layer; λ0 is a dissipative
coefficient and 0 ≤ λ0 � 1; Q is the external source, which is taken to be a function of y.

To restrict our consideration to a near-resonant system, we assume

Ψ = −
∫y

(U(s) − c + εα)ds + εψ, (2.2)

where α is a small disturbance in the basic flow and reflects the proximity of the system to a
resonate state; c is a constant, which is regarded as a Rossby waves phase speed; ψ denotes
disturbance stream-function. The substitution of (2.2) into (2.1) yields

[
∂

∂t
+ (U − c + εα) ∂

∂x

]
∇2ψ +

(
β −U′′)∂ψ

∂x
+ εJ

(
ψ,∇2ψ

)
+ J
(
ψ, h
)
= −λ0∇2ψ. (2.3)

Here, we divide the region into two parts: the domain [0, h0] and the domain [h0, h1].
In the domain [0, h0], in order to consider the role of nonlinearity, we must assume that shear
of zonal flow exists, that isU = u(y); while in the domain [h0, h1], the parameter β is smaller
than that in the domain [0, h0], we can neglect constant β in the domain [h0, h1], meanwhile
the zonal flow is assumed to be uniform, that is U = u1, here u1 is constant. Furthermore, in
the domain [h0, h1] the topography and turbulent dissipation is absent and only consider the
features of disturbances generated. For simplicity, u(y) is assumed to be smooth across y = h0.

In the domain [0, h0], in order to achieve a balance among topography effect, turbulent
dissipation and nonlinearity, we take

h
(
x, y
)
= ε2H

(
x, y
)
, λ0 = ε2λ. (2.4)

Substituting (2.4) into (2.3), yields

[
∂

∂t
+ (u − c + εα) ∂

∂x

]
∇2ψ(1) +

(
β − u′′)∂ψ(1)

∂x
+ εJ

(
ψ(1),∇2ψ(1) + εH

)

= −ε2λ∇2ψ(1), y ∈ [0, h0].

(2.5)
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In the domain [h0, h1], the governing equations is

[
∂

∂t
+ (u1 − c + εα) ∂

∂x

]
∇2ψ(2) + εJ

(
ψ(2),∇2ψ(2)

)
= 0, y ∈ [h0, h1]. (2.6)

The boundary conditions are

ψ(1)/y=0 = ψ(2)/y=h1 = 0, ψ(1)/y=h0 = ψ
(2)/y=h0 ,

∂2ψ(1)

∂x∂y
/y=h0 =

∂2ψ(2)

∂x∂y
/y=h0 , (2.7)

where ψ(1) denotes the disturbance streamfunction in the domain [0, h0], ψ(2) is that in the
domain [h0, h1].

Following, let us consider the asymptotic expansions of (2.5) and (2.6). We introduce
the following stretching transformation and the perturbation expansion in (2.5):

X = εx, T = ε2t,

ψ(1) = ψ1
(
X, y, T

)
+ εψ2

(
X, y, T

)
+ · · · .

(2.8)

Substituting (2.8) into (2.5) leads to the following perturbation equations:

ε1 :
∂

∂X

(
∂2ψ1

∂y2
+
β − u′′
u − c ψ1

)
= 0, (2.9)

ε2 :
∂

∂X

(
∂2ψ2

∂y2
+
β − u′′
u − c ψ2

)
=

−1
u − c

[(
∂

∂T
+ α

∂

∂X
+ λ
)
∂2ψ1

∂y2
− ∂ψ1

∂y

∂3ψ1

∂y2∂X

]
− ∂H

∂X
. (2.10)

For the linear solution to be separable, we take the solution of (2.9) in the form

ψ1 = A(X, T)φ
(
y
)
, (2.11)

then from (2.9) we can obtain

(
d2

dy2
+
β − u′′
u − c

)
φ
(
y
)
= 0. (2.12)

The Equation (2.12) is an eigenvalue problem and describes the space structure of the wave
along direction. The boundary conditions can be obtained from (2.6). Equation (2.12) will be
solved in the latter section.

For (2.10), we have

∂

∂X

(
∂2ψ2

∂y2
+
β − u′′
u − c ψ2

)
=

1
u − c

[(
∂A

∂T
+ α

∂A

∂X
+ λA

)
β − u′′
u − c φ +

(
β − u′′
u − c

)′
φ2A

∂A

∂X

]
− ∂H

∂X
.

(2.13)
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Multiplying the both sides of (2.13) by φ and integrating it with respect to y from 0 to h0,
utilizing the boundary conditions (2.7), we get

∂

∂X

[
φ
∂ψ2

∂y
− dφ

dy
ψ2

]
h0

=
(
∂A

∂T
+ α

∂A

∂X
+ λA

)∫h0
0

β − u′′
(u − c)2

φ2dy − ∂3A

∂X3

∫h0
0
φ2dy

+A
∂A

∂X

∫h0
0

(
β − u′′
u − c

)′
φ3dy −

∫h0
0
φ
∂H

∂X
dy.

(2.14)

The left hand of (2.14) can be determined by employing (2.6).
In the domain [h0, h1], we adopt the transformations in the following forms:

ξ = x, T = ε2t, (2.15)

and the disturbance streamfunction ψ(2) may be expressed by

ψ(2) = ψ̃
(
ξ, y, T, ε

)
. (2.16)

Introducing (2.15) and (2.16) into (2.6), we can get the lowest-order equation for the domain
[h0, h1] as follows:

(u1 − c) ∂
∂ξ

(
∂2

∂ξ2
+

∂2

∂y2

)
ψ̃ = 0. (2.17)

When taking the integration constant zero, we have

(
∂2

∂ξ2
+

∂2

∂y2

)
ψ̃ = 0. (2.18)

According to Zhou [20], by virtue of the boundary condition ψ̃/y=h1 = 0, we can obtain the
solution of (2.18) as following:

ψ̃
(
ξ, y, T

)
=

1
2π

∫+∞

−∞
F
(
ψ̃/y=h0

) sinh p
(
h1 − y

)
sinh p(h1 − h0)e

ipξdp, (2.19)

where F(ψ̃/y=h0) denotes the Fourier transformation of ψ̃/y=h0 . Differentiating (2.19) with
respect to y, we can obtain

∂ψ̃
(
ξ, y, T

)
∂y

=
−1
2π

∫+∞

−∞
F
(
ψ̃/y=h0

)
p
cosh p

(
h1 − y

)
sinh p(h1 − h0)e

ipξdp. (2.20)
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Assuming that the solution matches smoothly at y = h0, then from (2.19) and (2.20), we get

ψ1(X, h0, T) + εψ2(X, h0, T) = ψ̃(ξ, h0, T) +O
(
ε2
)
, (2.21)

∂ψ1(X, h0, T)
∂y

+ ε
∂ψ2(X, h0, T)

∂y
=
∂ψ̃(ξ, h0, T)

∂y
+O
(
ε2
)
. (2.22)

From (2.21), it is easy to find that

A(X, T)φ
(
y0
)
= ψ̃(ξ, h0, T), ψ2(X, h0, T) = 0. (2.23)

Based on (2.20) and (2.23), we get

∂ψ̃
(
ξ, y0, T

)
∂y

= − ε

R0

∂

∂X

∫∞

−∞
A
(
X′, T

)
φ
(
y0
)
coth

π

R0

(
X −X′)dX′, (2.24)

where R0 = 2(h1 − h0)ε, and we take h1 − h0 big enough to satisfy R0 ≥ O(1). So it is easy to
obtain ∂ψ̃/∂y/y=h0 = O(ε). Then we obtain from (2.22) and (2.24)

φ′(h0) = 0,
∂ψ2(X, h0, T)

∂y
= − 1

R0

∂

∂X

∫∞

−∞
A
(
X′, T

)
φ(h0) coth

π

R0

(
X −X′)dX′. (2.25)

Substituting (2.23) and (2.25) into (2.14) leads to

∂A

∂T
+ α

∂A

∂X
+ a1A

∂A

∂X
+ a2

∂2

∂X2

∫∞

−∞
A
(
X′, T

)
coth

π

R0

(
X −X′)dX′ + λA = a3

∂H

∂X
, (2.26)

where a =
∫h0
0 φ2(β − u′′)/(u − c)dy, a1 =

∫h0
0 φ3[(β − u′′)/(u − c)]′dy/a, a2 = φ2(h0)/(R0a),

a3 =
∫h0
0 φdy/a. Equation (2.26) is a forced integrodifferential equation including dissipation

and topography terms. In the absence of the topographic forcing and dissipation effect, (2.26)
becomes the ILW equation. Here the term λA denotes the dissipation effect and has the same
physical meaning with the term ∂2A/∂X2 in Burgers equation, so we call (2.26) forced ILW-
Burgers equation. As we know that the so-called ILW-Burgers equation is first obtained here.
In the absence of forcing and dissipation, (2.26) becomes the normal ILW equation

∂A

∂T
+ α

∂A

∂X
+ a1A

∂A

∂X
+ a2

∂2

∂X2

∫∞

−∞
A
(
X′, T

)
coth

π

R0

(
X −X′)dX′ = 0. (2.27)

The solitary wave solution of (2.27) is

A(X, T) =
A0sin2γ

cosh2τ1(X − VT) − cos2γ
, (2.28)
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where A0 = −4R0a2γcotγ/πa1, τ1 = −R0γ/π , V = α − (2a2R0γcot2γ/π) is the propagation
speed of the solitary waves, γ is an amplitude parameter.

Here it should be noted that in some atmospheric and oceanic applications, the depth
h1 → ∞, coth(1/R0)(X − X′) → 1/(X − X′), (2.26) reduces to the BO-Burgers equation; in
the opposite limit, (2.26) reduces to the KdV-Burgers equation. So we can conclude that the
conditions describe by the KdV-Burgers equation and the BO-Burgers equation are special
cases in the paper.

3. Perturbation Solution of ILW-Burgers Equation

In this section, in order to study the evolutional characters of Rossby solitary waves under
the influence of dissipation, we need to seek for the solution of ILW-Burgers equation and
the topography effect will be studied in the latter section. In the absence of the topographic
forcing, (2.26) is reduced to the ILW-Burgers equation

∂A

∂T
+ α

∂A

∂X
+ a1A

∂A

∂X
+ a2

∂2

∂X2
L(A(X, T)) + λA = 0, (3.1)

where

L(A) =
∫∞

−∞
A
(
X′, T

)
coth

π

R0

(
X −X′)dX′. (3.2)

Next we study the perturbation solution of (3.1). Assume λ � 1, λ � a1 ∼ a2, let us take a
new space coordinate

ρ = X −
∫T
0
α − 2a2R0γcot2γ

π
dT. (3.3)

Assuming A0 = A0(λT), then we have

∂A

∂T
+
2a2R0γcot2γ

π

∂A

∂ρ
+ a1A

∂A

∂ρ
+ a2

∂2L(A)
∂ρ2

+ λA = 0. (3.4)

Taking two time scales

τ = T, η = λT, (3.5)

and expanding the solution as follows:

A
(
ρ, T
)
= A1

(
ρ, τ, η

)
+ λA2

(
ρ, τ
)
+ · · ·, (3.6)
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we can obtain the following approximate equations:

λ0 :
∂A1

∂τ
+
2a2R0γcot2γ

π

∂A1

∂ρ
+ a1A1

∂A1

∂ρ
+ a2

∂2L(A1)
∂ρ2

= 0,

λ1 :
∂A2

∂τ
+
2a2R0γcot2γ

π

∂A2

∂ρ
+ a1A1

∂A2

∂ρ
+ a1A2

∂A1

∂ρ
+ a2

∂2L(A2)
∂ρ2

= −∂A1

∂η
−A1.

(3.7)

Putting ζ = ρ − (2a2R0γcot2γ/π)τ into (3.7) gives

λ0 :
∂A1

∂τ
+ a1A1

∂A1

∂ζ
+ a2

∂2L(A1)
∂ζ2

= 0, (3.8)

λ1 :
∂A2

∂τ
+ a1A1

∂A2

∂ζ
+ a1A2

∂A1

∂ζ
+ a2

∂2L(A2)
∂ζ2

= −∂A1

∂η
−A1. (3.9)

Equation (3.8) is a normal ILW equation, based on (2.28), its solution is

A1(ζ, τ) =
A0(λT)sin2γ

cosh2τ1(ζ − Vτ) − cos2γ
, (3.10)

where A0(λT) = f(γ) = −4R0a2γcotγ/πa1. So we can obtain the perturbation solution of the
ILW-Burgers equation (3.1) as follows:

A(X, T) =
A0(λT)sin2γ

cosh2τ1
(
X − ∫T0 α − (2a2R0γcot2γ/π

)
dT
)
− cos2γ

. (3.11)

In order to seek the expression of A0(λT), we must consider the λ1 equation (3.9).
Assuming

A2 = B(Y ), Y = ζ − Vτ, (3.12)

from (3.9), we get

−V dB

dY
+ a1

∂

∂Y

(
A1B +

a2
a1

L
(
∂B

∂Y

))
=M(A1), (3.13)

whereM(A1) = −∂A1/∂η −A1. Equation (3.13) can be solved only when it satisfies

∫+∞

−∞
G(Y )M(A1)dY = 0. (3.14)
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Here G(Y ) satisfies the equation

−V dG
dY

+ a1A1
dG

dY
− a2L

(
d2G

dY 2

)
= 0. (3.15)

It is easy to find that in the case of G(±∞) = 0, the solution of (3.15) is G(Y ) = A0sin2γ
/(cosh2τ1Y − cos2γ). By employing the expression of G(Y ) and (3.14), we obtain

A0 = A0e
−λT , (3.16)

where A0 is initial amplitude. So the perturbation solution of ILW-Burgers equation is

A(X, T) =
A0e

−λTsin2γ

cosh2τ1
(
X − ∫T0 α − (2a2R0γcot2γ/π

)
dT
)
− cos2γ

, (3.17)

where

γ = f−1
(
A0e

−λT
)
, τ1 = −R0γ

π
. (3.18)

From Figures 1 and 2, it is obvious to find that the effect of a small dissipation is to cause the
amplitude and moving speed of the solitary waves to decrease slowly with time.

In this section, we get the perturbation solution of ILW-Burgers equation and analyze
the effect of dissipation on the amplitude and moving speed of solitary waves. While there
are many methods to solve the nonlinear partial differential equation, both integrable and
nonintegrable equation. In [21], a kind of new solutions of KdV equation called complexitons
is presented; in [22, 23], the multiple expfunction method is successfully applied to many
nonlinear partial differential equation, the rational function combinations of exponential
functions will present good approximates to exact solutions; in [24, 25], a linear superposition
principle of exponential traveling waves is analyzed for Hirota bilinear equations, with an
aim to construct a specific subclass of N-soliton solutions formed by linear combinations of
exponential traveling waves. We wonder if the above-mentioned methods can be applied to
obtain the exact solution of ILW-Burgers equation.Wewill study these problems in the future.

4. Conservation Laws

Conservation laws are a common feature of mathematical physics, where they describe
the conservation of fundamental physical quantities. The role played in the science by
linear and nonlinear evolution equations, in particular, by conservation laws thereof, is
hard to overestimate. It is well known that the KdV equation has an infinite number of
conserved quantities, somemulticomponent Burgers type equations, which possess infinitely
many symmetries but not infinitely many conservation laws [26]. While four conservation
quantities of BO equation are found by Ono in [9]. Next we will derive the conservation
relations associated with (3.1).
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Figure 1: Perturbation solution of ILW-Burgers equation.
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Figure 2: The trace of the vertex of solitary waves.

Following the general procedure of Ono [9], we assume that A, AX , AXX vanish as
|X| → ∞ and integrating (3.1) and (3.1) by multiplying with powers of A(X, T), we find the
following two conservation relations:

E1 =
∫+∞

−∞
AdX = exp(−λT)

∫+∞

−∞
A(X, 0)dX,

E2 =
∫+∞

−∞
A2dX = exp(−2λT)

∫+∞

−∞
A2(X, 0)dX,

(4.1)

where we employ the property of operator L :
∫+∞
−∞ f(X)L(g(X))dX =

− ∫+∞−∞ g(X)L(f(X))dX. Equation (4.1) show that E1 and E2 are two time-invariant quantities
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as the dissipation effect is neglected, that is λ = 0. By analogy with the KdV equation, E1 and
E2 are regarded as the mass and momentum of the solitary waves, respectively. So we con-
clude that the mass and momentum of the solitary waves are conserved without dissipation.
Meanwhile, we can also get that the mass and momentum of the waves decrease exponen-
tially with the increasing of time T and the dissipative coefficient λ in the presence of dissi-
pation effect. Furthermore, the rate of decline of momentum is faster than the rate of mass.

Assume λ = 0 and construct

E3 =
∫+∞

−∞

[
1
3
A3 +

a2
a1

∂A

∂X
L(A)

]
dX (4.2)

by adding (A2 − (a2/a1)L(AX)) × Equation (3.1) to (∂/∂X) Equation (3.1) × [AX +
(a2/a1)L(A)] and integrating it, by virtue of the relation ∂2L(A)/∂X2 = L(∂2A/∂X2), after
tedious calculation, we find that dE3/dT = 0. Here E3 expresses the energy of the solitary
waves. So we can conclude that the energy of the solitary waves is conserved without
dissipation.

Defining a quantity related to the phase of the solitary waves

Ẽ4 =
d

dT

∫+∞

−∞
XAdX, (4.3)

we can deduce dẼ4/dT = 0. While here we are interested in the quantity E4 = Ẽ4/E1, which
expresses the velocity of the center of gravity for the ensemble of such waves according to
[9]. Then by using dE1/dT = 0 and dẼ4/dT = 0, we obtain dE4/dT = 0, which shows that
the velocity of the center of gravity is conserved without dissipation.

In fact, beside the above four conservation relations, we can also verify the invariance
of the following quantity:

E5 =
∫+∞

−∞

[
1
4
A4 +

3a2
2a1

A2 ∂

∂X
L(A) +

1
18

(
∂A

∂X

)2
]
dX. (4.4)

In this section, we obtain five conservation relations of ILW-Burgers equation and
draw the conclusion that the dissipation effect causes the mass, the momentum, the energy,
and the velocity of the center of gravity to vary. In fact, after the above five conservation laws
are given, we can wonder whether there exist other conservation laws? Is there an infinite
number of conservation laws like the KdV equation? What deserves to be studied in the
future?

5. Numerical Simulation and Discussion

In Section 4, we have obtained the conservation relations of the homogenous ILW-Burgers
equation. In this section, we will take into account the influence of topography for the Rossby
solitary waves. Rossby solitary waves excited by topography with dissipation will be dis-
cussed. In order to resolve the above problems, we need to solve the forced ILW-Burgers equa-
tion. There is no analytical solution for this equation, here wewill present numerical solutions
of (2.26) by using the pseudospectral method [27]. First, let us simply introduce the method.
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The pseudospectral method uses a Fourier transform treatment of the space depend-
ence together with a leap-forg scheme in time. For ease of presentation the spatial period is
normalized to [0, 2π]. This interval is divided into 2N points, then ΔT = π/N. The function
A(X, T) can be transformed to the Fourier space by

Â(v, T) = FA =
1√
2N

2N−1∑
j=0

A
(
jΔX, T

)
e−πijv/N, v = 0,±1, . . . ,±N. (5.1)

The inversion formula is

A
(
jΔX, T

)
= F−1Â =

1√
2N

∑
v

Â(v, T)eπijv/N. (5.2)

These transformations can use fast Fourier Transform algorithm to efficiently perform. With
this scheme, ∂A/∂X can be evaluated as F−1{ivFA}, ∂2A/∂X2 as −F−1{v2FA}, ∂H/∂X as
F−1{ivFH} and so on. Combinedwith a leap-frog time step, (2.26)would be approximated by

A(X, T + ΔT) −A(X, T −ΔT) + iαF−1{vFA}ΔT + ia1AF−1{vFA}ΔT + λA

− a2ΔTF−1
{
v2FL(A)

}
= ia3F−1{vFH}ΔT.

(5.3)

The computational cost for (5.3) is six fast Fourier transforms per time step.
Before solving (2.26) by using the pseudospectral method, we need to obtain the

coefficients a1, a2, and a3.
Taking φ1/y=h0 = −1, combining (2.12) and the boundary conditions (2.7), we can obtain

the following eigenvalue problem:

(
d2

dy2
+
β − u′′
u − c

)
φ
(
y
)
= 0,

φ(0) = 0, φ/y=h0 = −1.
(5.4)

Assume the weak shear flow to be u = u0 + δy, where u0 is a constant, δ ≤ 1 shows that
the flow shear is weak. We may get approximate expressions for φ and c0 in powers of δ as
follows:

φ = φ1 + δφ2 + · · · ,
c = c1 + δc2 + · · · .

(5.5)
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Substituting (5.5) into (5.4), we obtain

δ0 :

⎧⎪⎨
⎪⎩

(
d2

dy2
+
β − u′′
u − c1

)
φ1 = 0,

φ1(0) = 0, φ1/y=h0 = −1,

δ1 :

⎧⎪⎨
⎪⎩

(
d2

dy2
+
β − u′′
u − c1

)
φ2 =

c2 − y
u0 − c1

d2φ1

dy2
,

φ2(0) = 0, φ2/y=h0 = 0.

(5.6)

The solutions of φ1 in (5.6)

φ1 = − sinmy,

c1 = u0 −
β

m2
, m =

(
2n +

1
2

)
π

h0
, n = 0,±1,±2, . . . .

(5.7)

Substituting them into (5.6), we have

φ2 = −m
2

4β
y sinmy +

m3

4β

(
y2 − y

)
cosmy,

c2 =
1
2
, m =

(
2n +

1
2

)
π

h0
, n = 0,±1,±2, . . . .

(5.8)

Taking approximately φ � φ1 + δφ2, c � c1 + δc2. Employing (5.7) and (5.8), we can get the
approximate solutions for φ and c.

As an example of calculation, we take u = 0.50 − 0.304y and the topography profile is
taken to be the Gaussian distribution as follows:

H = H0 ∗ exp
[
− (X −X0)2 +

(
y − y0

)2
d2

]
, (5.9)

where d = 2,H0 = 1, X0 = 0, y0 = 0.
The time evolutions of the solitary waves generated by the topography in the absence

of dissipation are shown in Figure 3 for different detuning parameter α. From Figure 3, it is
easy to find that the detuning parameter α holds important implications for the evolution
feature of the solitary waves. In the case of α > 0, the topographic forcing generates a steady
solitary wave in the forcing region. The amplitude of solitary waves increases slightly with
time at the beginning and then remains invariable. A modulated cnoidal wave-train with
small amplitude is in the downstream region and there is no wave in the upstream region.
Between the solitary wave and the modulated wave-train, there exists a buffer region. With
the decreasing of α, the modulated cnoidal wave-train approaches to the topographic forcing
region. The buffer region between the solitary wave and modulated cnoidal wave-train
disappears slowly.
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Figure 3: Solitary waves generated by topography in the absent of dissipation, (a) α = 1.5 × 10−2; (b) α = 0;
(c) α = −1.5 × 10−2.

When α = 0, the system gets to a resonant state (Figure 3(b)). In this case, a
nonsteady solitary wave is formed in the forcing region whose amplitude is larger than that
in Figure 3(a). There is also a modulated cnoidal wave-train in the downstream region and
there is no wave in the upstream region. The amplitude of modulated cnoidal wave-train
becomes larger and the wavelength becomes shorter.

As α decreases further and becomes to be negative value (Figure 3(c)), there generates
a complex nonsteady wave near the forcing region. The amplitude of wave in the forcing
region is larger than that in Figure 3(a) and smaller than that in Figure 3(b). The wavelength
of the modulated cnoidal wave-train which exists in the downstream region is the smallest
among the Figure 3. Similar with Figure 3(b), there is no buffer region between the wave in
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Figure 4: Solitary waves generated by topography in the presence of dissipation λ = 0.3×10−2, α = 1.5×10−2.

the forcing and modulated cnoidal wave-train. Unlike the Figures 3(a) and 3(b), there is also
modulated cnoidal wave-train in the upstream region.

In fact, by comparing the Figure 3 in this paper with the Figure 1 in [16], which the
amplitude of solitary waves is governed by the BO-Burgers equation, we can find that the
solitary waves governed by ILW-Burgers equation and BO-Burgers equation exist obvious
difference. For the case α = 0 in [16], there is still a standing solitary wave in the forcing
region, but it becomes a negative one, when α < 0, a negative standing solitary wave is
formed in the forcing region, which is a stationary solitary wave disturbance. Based on the
above discussion, we can conclude that the solitary waves generated by topography in finite
depth fluids are different from that in infinite depth fluids.

Next we will discuss the solitary waves generated by topography in the presence of
dissipation. Here we only consider the case that the detuning parameter α is positive, the
other cases are omitted. Comparing Figure 4with Figure 3(a), we can find that a solitarywave
is also generated in the forcing region, but it is nonsteady, its amplitude decreases with time
because of the dissipation effect. Meanwhile, the dissipation causes the modulated cnoidal
wave-train in the downstream region to be dissipated.

6. Summary

In the paper, a new governing equation (forced ILW-Burgers) is derived to describe the ampli-
tude of Rossby solitary waves generated by topography under the influence of dissipation.
Neglecting the topography effect, the perturbation solution of ILW-Burgers is given. From
the perturbation solution, we can find that the effect of a small dissipation is to cause the
amplitude and moving speed of the solitary waves to decrease slowly with time. Following,
five conserved quantities are obtained from the ILW equation. Based on these conserved
quantities, we can conclude that the mass, momentum, energy, velocity of the center of grav-
ity of Rossby solitary waves are conserved. Finally, the forced ILW-Burgers equation is solved
numerically by using the pseudospectral method. When the dissipation is absent, the numer-
ical results show that the detuning parameter have an important effect on the solitary waves
generated by topography. The smaller the parameter |α| is, the amplitude of solitary wave
in the forcing region is larger and the solitary wave is less steady. In addition, comparing
with the solitary waves governed by ILW-Burgers equation and BO-Burgers equation, we can
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conclude that the solitary waves generated by topography in deep fluids are different from
that in infinite depth fluids. By discussing the solitary waves generated by topography in the
presence of dissipation, we can find that the dissipation causes the amplitude of the solitary
wave in the forcing region to decrease and themodulated cnoidal wave-train to be dissipated.
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