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We will present some dynamical and geometrical properties of Chen-Lee system from the Poisson
geometry point of view.

1. Introduction

Let us consider the Chen-Lee’s system (see [1, 2]) given by the following differential
equations system on R

3:

ẋ = ax − yz,

ẏ = − by + xz,

ż = − cz +
xy

3
,

(1.1)

where a, b, c are real parameters.
In this paper we consider a special case of the Chen-Lee system, realizing this system

as a Hamiltonian system and then study it from the mechanical geometry point of view. This
means the study of the nonlinear stability, the existence of periodic solutions, and numerical
integration. The paper is structured as follows: Section 2 presents the special case of Chen-Lee
system for which it admits a Hamilton-Poisson structure; in Section 3 we study the nonlinear
stability of the equilibrium states of our dynamics using energy-Casimir method. Periodical
orbits are the subject of Section 4. In Section 5 of the paper we give a Lax formulation of
the system; Section 6 discusses numerical integration of the system using Poisson and non-
Poisson integrators. Numerical simulations using MATHEMATICA 8.0 are presented, too.

For details on Possion geometry and Hamiltonian dynamics, (see [3–5]).
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2. The Poisson Geometry Associated to the Chen-Lee’s System

In this section we will find the parameters values for which Chen-Lee’s system admits a
Poisson structure. In order to do this, we need to find the system’s Hamiltonians. Due to the
existence of a numerous parameters, we are looking for polynomial Hamiltonians.

Proposition 2.1. The following smooth real functions H are two-degree polynomial constants of the
motion defined by the system (1.1).

(i) If a ∈ R
∗, b = c = 0, then the function

H
(
x, y, z

)
= α
(
y2 − 3z2

)
+ β, α, β ∈ R (2.1)

is the Hamiltonian of the system (1.1).

(ii) If b ∈ R
∗, a = c = 0, then the function

H
(
x, y, z

)
= α
(
x2 + 3z2

)
+ β, α, β ∈ R (2.2)

is the Hamiltonian of the system (1.1).

(iii) If c ∈ R
∗, a = b = 0, then the function

H
(
x, y, z

)
= α
(
x2 + y2

)
+ β, α, β ∈ R (2.3)

is the Hamiltonian of the system (1.1).

Let us focus now on the first case; if a ∈ R
∗, b = c = 0, the system (1.1) becomes

ẋ = ax − yz,

ẏ = xz,

ż =
xy

3
,

(2.4)

and we will consider the Hamiltonian given by

H
(
x, y, z

)
=

1
2

(
y2 − 3z2

)
. (2.5)

In order to find the Poisson structure in this case we will use a method described by Haas
and Goedert (see [6] for details). Let us consider the skew-symmetric matrix given by

Π :=

⎡

⎣
0 p1

(
x, y, z

)
p2
(
x, y, z

)

−p1
(
x, y, z

)
0 p3

(
x, y, z

)

−p2
(
x, y, z

) −p3
(
x, y, z

)
0

⎤

⎦. (2.6)
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In the beginning, let us denote

v1 := ax − yz,

v2 := xz,

v3 :=
xy

3
.

(2.7)

The function p is the solution of the following first order ODE:

v1
∂p

∂x
+ v2

∂p

∂y
+ v3

∂p

∂z
= A · p + B, (2.8)

where

A =
∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z
− (∂v1/∂z)(∂H/∂x) + (∂v2/∂z)

(
∂H/∂y

)
+ (∂v3/∂z)(∂H/∂z)

∂H/∂z
,

B =
v1(∂v2/∂z) − v2(∂v1/∂z)

∂H/∂z
.

(2.9)

the Equation (2.8) becomes

(
ax − yz

)∂p
∂x

+ xz
∂p

∂y
+
xy

3
∂p

∂z
=
(
−a +

xy

3z

)
p − ax2

3z
. (2.10)

If a = 0 then (2.10) has the solution p(x, y, z) = −z.
If a/= 0 then finding the solution of (2.10) remains an open problem.
If a = 0 then the system (2.4) becomes

ẋ = − yz,

ẏ = xz,

ż =
xy

3
.

(2.11)

Now, one can reach the following result.

Proposition 2.2. The system (2.11) has the Hamilton-Poisson realization:

(
R

3,Π :=
[
Πij
]
,H
)
, (2.12)
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where

Π =

⎡

⎢⎢
⎢
⎢
⎣

0 −z 0

z 0 −x
3

0
x

3
0

⎤

⎥⎥
⎥
⎥
⎦
,

H
(
x, y, z

)
=

1
2

(
y2 − 3z2

)
.

(2.13)

Proof. Indeed, we have

Π · ∇H =

⎡

⎣
ẋ
ẏ
ż

⎤

⎦, (2.14)

and the matrix Π is a Poisson matrix, see [7].

It is easy to see that the Poisson structure is degenerate, so we can proceed to find the
Casimir functions of our configuration.

Proposition 2.3. The real smooth function C : R
3 → R,

C
(
x, y, z

)
=

1
2

(
x2 + 3z2

)
, (2.15)

is the only one functionally independent Casimir of the Hamilton-Poisson realization given by
Proposition 2.2.

Proof. Indeed, we have (∇C)tΠ = 0 and rank Π = 2, as required.

The phase curves of the dynamics (2.11) are the intersections of the surfaces:

H
(
x, y, z

)
= const.,

C
(
x, y, z

)
= const.,

(2.16)

see the Figure 1.
The next proposition gives other Hamilton-Poisson realizations of the system (2.11).

Proposition 2.4. The system (2.11) may be modeled as a Hamilton-Poisson system in an infinite
number of different ways, that is, there exist infinitely more different (in general nonisomorphic)
Poisson structures on R

3 such that the system (2.11) is induced by an appropriate Hamiltonian.

Proof. The triplets

(
R3{·, ·}αβ,Hγδ

)
, (2.17)
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Figure 1: The phase curves of the system (2.11).

where

{
f, g
}
αβ = −∇Cαβ ·

(∇f × ∇g
)
, ∀f, g ∈ C∞

(
R

3,R
)
,

Cαβ = αC + βH, Hγδ = γC + δH, α, β, γ, δ ∈ R, αδ − βγ =
1
3
,

H =
1
2

(
y2 − 3z2

)
, C =

1
2

(
x2 + 3z2

)
,

(2.18)

define Hamilton-Poisson realizations of the dynamics (2.11).

3. The Stability Problem

Let us pass now to discuss the stability problem of the system (2.11). It is not difficult to see
that the equilibrium states of our dynamics are

eM1 = (M, 0, 0), eM2 = (0,M, 0), eM3 = (0, 0,M), M ∈ R. (3.1)

Let A be the matrix of the linear part of our system, that is,

A =

⎡

⎢⎢⎢
⎣

0 −z −y
z 0 x
y

3
x

3
0

⎤

⎥⎥⎥
⎦
. (3.2)
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Then the characteristic roots of A(eM1 ) (resp., A(eM2 ), resp. A(eM3 ) )are given by,

λ1 = 0, λ2,3 = ±M√
3
, (3.3)

(resp., λ1 = 0, λ2,3 = (±iM/
√
3), resp., λ1 = 0, λ2,3 = ±iM), so one gets that the following.

Proposition 3.1. The equilibrium states eM1 , eM2 , eM3 ,M ∈ R, have the following behavior:

(i) eM1 are unstable for any M ∈ R;

(ii) eM2 are spectrally stable for any M ∈ R;

(iii) eM3 are spectrally stable for any M ∈ R.

Let us begin the nonlinear stability analysis using the energy-Casimir method for the
equilibrium state eM2 and eM3 .

Proposition 3.2. The equilibrium states eM2 ,M ∈ R, are nonlinearly stable for any M ∈ R.

Proof. To study the nonlinear stability of the equilibrium state eM we are using energy-
Casimir method ([8]). To do that, let Hϕ ∈ C∞(R3,R) be defined by

Hϕ := C + ϕ(H), (3.4)

where ϕ : R → R is a smooth real valued function defined on R.
Now, the first variation of Hϕ at the equilibrium of interest equals zero if and only if

ϕ̇

(
M2

2

)

= 0. (3.5)

Using (3.5), the second variation of Hϕ at the equilibrium of interest is given by

δ2Hϕ

(
eM2

)
= (δx)2 + 3(δz)2 +M2 ..

ϕ

(
M2

2

)
(
δy
)2
. (3.6)

If we choose now the function ϕ such that

ϕ̇

(
M2

2

)

= 0,
..
ϕ

(
M2

2

)

> 0 (3.7)

we can conclude that the second variation of Hϕ at the equilibrium of interest is positively
defined for any M ∈ R and thus eM2 are nonlinear stable for any M ∈ R.

Proposition 3.3. The equilibrium states eM3 ,M ∈ R, are nonlinearly stable for any M ∈ R.
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Proof. To study the nonlinear stability of the equilibrium state eM we are using energy-
Casimir method ([8]). To do that, let Hϕ ∈ C∞(R3,R) be defined by

Hϕ := C + ϕ(H), (3.8)

where ϕ : R → R is a smooth real valued function defined on R.
Now, the first variation of Hϕ at the equilibrium of interest equals zero if and only if

ϕ̇

(

−3M
2

2

)

= 1. (3.9)

Using (3.9), the second variation of Hϕ at the equilibrium of interest is given by

δ2Hϕ

(
eM2

)
= (δx)2 +

(
δy
)2 + 9M2 ..

ϕ

(
−3M2

2

)

(δz)2. (3.10)

If we choose now the function ϕ such that

ϕ̇

(
−3M2

2

)

= 1,
..
ϕ

(
−3M2

2

)

> 0 (3.11)

we can conclude that the second variation of Hϕ at the equilibrium of interest is positively
defined for any M ∈ R and thus eM3 are nonlinear stable for any M ∈ R.

4. Periodical Orbits

As we have proved in the previous section, the equilibrium states eM2 are nonlinear stable so
we can try to find the periodic orbits around them. As we know, the dynamics described by
a Hamilton-Poisson system take place on the symplectic leaves of the Poisson configuration.
In order to do this we consider the system restricted to a regular coadjoint orbit of (R3)∗ that
contains eM2 ; we will obtain the existence of periodic solutions for the restricted system; these
are, also, the periodic solutions for the unrestricted system.

Proposition 4.1. Near to eM2 the reduced dynamics has for each sufficiently small value of the reduced
energy at least 1-periodic solution whose period is close to (2π

√
3/M).

Proof. Indeed, we have successively the following.

(i) The reduction of the system (2.11) to the regular coadjoint orbit:

ΩeM2
=
{(

x, y, z
) ∈ R, y2 − 3z2 = M2

}
(4.1)

gives rise to a classical Hamiltonian system.
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(ii) The matrix of the linear part of the reduced dynamics has purely imaginary roots.
More exactly,

λ2,3 = ±iM√
3
. (4.2)

(iii) One has span (∇C(eM2 )) = V0, where

V0 = ker
(
A
(
eM2

))
. (4.3)

(iv) The equilibrium state eM2 are nonlinear stable for any M ∈ R.

Then our assertion follows via the Moser-Weinstein theorem with zero eigenvalue, see [9] for
details.

Similar arguments lead us to the following result.

Proposition 4.2. Near to eM3 the reduced dynamics has for each sufficiently small value of the reduced
energy at least 1-periodic solution whose period is close to 2π/M.

5. Lax Formulation of the Dynamics (2.11)

Proposition 5.1. The dynamics (2.11) allows a formulation in terms of Lax pairs.

Proof. Let us take the following.

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 2ix − i√
3
y − 3z

2√
3
x − y + i

√
3z

−2ix +
i√
3
y + 3z 0 −2x − 2iz

− 2√
3
x + y − i

√
3z 2x + 2iz

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

B =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 −ix +
i√
3
y − 1√

3
x + y

ix − i√
3
y 0 x

1√
3
x − y −x 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

.

(5.1)

Then, usingMATHEMATICA 8.0, we can put the system (2.11) in the equivalent form:

L̇ = [L, B], (5.2)

as desired.
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6. Numerical Integration of the Dynamics (2.11)

We will discuss now the numerical integration of the dynamics (2.11) via the Lie-Trotter
integrator [7]. For the beginning, let us observe that the Hamiltonian vector fieldXH splits in
XH = XH1 +XH2 , where

H1 =
1
2
y2, H2 = −1

2
z2. (6.1)

Their corresponding integral curves are, respectively, given by

[
x1(t) x2(t) x3(t)

]
= Ai

[
x1(0) x2(0) x3(0)

]
, i = 1, 2, where

A1 =

⎡

⎢
⎢⎢⎢
⎣

cos
at√
3

0 −√3 sin
at√
3

0 1 0
1√
3
sin

at√
3

0 cos
at√
3

⎤

⎥
⎥⎥⎥
⎦
, A2 =

⎡

⎣
1 0 0
bt 1 0
0 0 1

⎤

⎦,
(6.2)

and a = x(0), b = z(0).
Then the Lie-Trotter integrator is given by

[
xn+1
1 xn+1

2 xn+1
3

]t = A1A2
[
xn
1 xn

2 xn
3

]t
, (6.3)

that is,

xn+1 = cos
at√
3
xn −

√
3 sin

at√
3
zn,

yn+1 = btxn + yn,

zn+1 =
1√
3
sin

at√
3
xn + cos

at√
3
zn,

(6.4)

The following proposition sketches the Lie-Trotter integrator properties.

Proposition 6.1. The Lie-Trotter integrator (6.4) has the following properties.

(i) It preserves the Poisson structureΠ.

(ii) It preserves the Casimir C of our Poisson configuration (R3,Π).

(iii) It does not preserve the Hamiltonian H of our system (2.11).

(iv) Its restriction to the coadjoint orbit (Ok, ωk), where

Ok =
{(

x, y, z
) ∈ R, y2 − 3z2 = k

}
(6.5)

andωk is the Kirilov-Kostant-Souriau symplectic structure onOk, gives rise to a symplectic
integrator.
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Figure 2: Runge-Kutta 4 steps, Lie-Trotter, and Kahan integrator, respectively (x(0) = y(0) = z(0) = 1).

We will discuss now the numerical integration of the dynamics (2.11) via the Kahan
integrator and also via Runge-Kutta 4th steps integrator and we will point out some
properties of Kahan integrator. The Kahan integrator [10] of the system (2.11) is given by

xn+1 − xn = − h

2

(
yn+1zn + zn+1yn

)
,

yn+1 − yn =
h

2

(
xn+1zn + zn+1xn

)
,

zn+1 − zn =
h

6

(
xn+1yn + yn+1xn

)
.

(6.6)

Using MATHEMATICA 8.0, we can prove the following proposition which shows the
incompatibility of the Kahan integrator with the Poisson structure of the system (2.11).

Proposition 6.2. The Kahan integrator (6.6) does not preserve the Poisson structure and does not
preserve the Hamiltonian and the Casimir of our configuration.

Remark 6.3. As we can see from Figure 2 the three integrators give us almost the same results.
However, Lie-Trotter and Kahan integrators have the advantage of being easily implemented.
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7. Conclusion

The Chen-Lee system is a system arisen from engineering field. Its chaotic behavior makes
it good to applied in secure communications, complete synchronization, or optimization of
nonlinear system performance. The geometric overview gives it a different perspective and
points out new properties. It is easy to see that, like other chaotic systems studied before—the
Rikitake system [11], the Lü system [12], the Lorenz system [13]—finding the corresponding
Poisson structure implies the study of particular values for its parameters. Unlike the other
studied systems, the Chen-Lee one needs to vanish all its parameters to admit a Hamilton-
Poisson realization. The connexion between the existence of a Hamilton-Poisson realization
and the number of the parameters which should be vanished of a chaotic system remains an
open problem.
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