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The stable difference schemes for the fractional parabolic equation with Dirichlet and Neumann
boundary conditions are presented. Stability estimates and almost coercive stability estimates
with In (1/(7 + |h|)) for the solution of these difference schemes are obtained. A procedure
of modified Gauss elimination method is used for solving these difference schemes of one-
dimensional fractional parabolic partial differential equations.

1. Introduction

Theory and applications, methods of solutions of problems for fractional differential equa-
tions have been studied extensively by many researchers [1-18]. In this study, initial-
boundary-value problem for the fractional parabolic equation

ou(t,x -z
% + Dtl/zu(t,x) - Z(ap(x)uxp> +ou(t,x) = f(t, x),
p=1 x”
x=(x1,...,xm) €Q, 0<t<T, a1
ut,x)ls, =0, % -0, 0<t<T, S1US,=S=0Q,
Sz

u(0,x)=0, xe€ ﬁ,
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with Dirichlet and Neumann conditions is considered. Here Dtl/ z = DéiZ is the standard
Riemann-Liouville’s derivative of order 1/2 and € is the open cube in the m-dimensional
Euclidean space

R":{xeQ:x=(x1,...,xm); 0<xj<1, 1<j<m}, (1.2)

with boundary 5Q=QuUS, ay(x) (x € Q) and f(t,x) (t € (0,T),x € Q) are given smooth
functions, a,(x) > a >0, 0 > 0, and 7 is the normal vector to Q.

The first and second orders of accuracy stable difference schemes for the numerical
solution of problem (1.1) are presented. Stability estimates and almost coercive stability
estimates with In(1/(7 + |h|)) for the solution of these difference schemes are obtained. The
method is illustrated by numerical examples.

2. The First and Second Orders of Accuracy Stable Difference Schemes
and Stability Estimates

The discretization of problem (1.1) is carried out in two steps. In the first step, let us define
the grid space

ﬁh: {x:xp: (hlplr-'-/hmpm)/ P: (Plr---rpm)/ OSPJSM]/ h]M] :1, jzl,...,m},
Qh=§hﬁg, Sh=§th.
2.1)

We introduce the Hilbert space Ly, = L (ﬁh) of the grid function (ph (x) = {o(hp1, ..., huwpm)}
defined on Q, equipped with the norm

1/2
Il (Sl o

xeQy,

To the differential operator A* generated by problem (1.1), we assign the difference operator
Aj by the formula

m
x b _ h h
Ayu’ = ’; <ap (x)u;p)ijp + ouy, (2.3)

acting in the space of grid functions u"(x), satisfying the conditions u"(x) = 0 forall x € S},
and D"u"(x) = 0 forall x € Si. Here D"u"(x) is the approximation of du/ 7. It is known that
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A7 is a self-adjoint positive definite operator in L, (Qy). With the help of Ay we arrive at the
initial-boundary-value problem

don(t,
M + Dtl/zvh(t,x) + A;l‘vh(t, x) = fh(t,x), 0<t<T, xeQy,
dt (2.4)

vh(O,x) =0, xe€e ﬁh,

for a finite system of ordinary fractional differential equations.
In the second step, applying the first order of approximation formula

ir(k—r+1/2) <ur — Uy

T 7 > 1<k<N, (2.5)

1
1/2
DT/ Uy = \/_J?
r=1

for

2
(te — s) %/ (s)ds, (2.6)

D;ut) = 773y |

(see [19]) and using the first order of accuracy stable difference scheme for parabolic
equations, one can present the first order of accuracy difference scheme with respect to ¢

h h
u(x)—u pe —
k( ) - k—l( ) +D}-/2uZ+AiuZ(x) :f}:(x), xEQh,

fix) = f'(tox), te=kr, 1<k<N, Nr=T, 27)

ug(x) =0, xe€ ﬁh,

for the approximate solution of problem (2.4). Here

F(k -7+ %) = J' o207t gy, (2.8)

0
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Moreover, applying the second order of approximation formula

52 [5
28] [445] [ 4] -
5 5 5 ’ -
DYy = { ka1 (2.9)
d ) {[(k =m)bi(k —m) + ba(k — m)]um-—2
m=2
+[(2m - 2k — 1)by (k — m) — 2by(k — m) 1
+[(k —=m +1)by (k — m) + by(k — m)]u)
+m[—uk_2—4uk_1 +5uk], 35 k SN/
for
1/2 T 1 /2 T 72,
D] u(tk - §> S e fo <tk -5 s) W (s)ds (2.10)

and the Crank-Nicholson difference scheme for parabolic equations, one can present the sec-
ond order of accuracy difference scheme with respect to t and to x and

Wiy o h
S N T A () (@) = S, xeDy,

T
fie) = f(te-3.x), =kt 1<k<N, NT=T, 11)
ul(x) =0, xe Qp,
for the approximate solution of problem (2.4). Here
2 1 1 1 1 3/2 1 3/2
d= — bl(r)—‘\lr+§— Y bz(r)——§<<r+§> —(r—§> .
(2.12)

Theorem 2.1. Let T and |h| = \/h? + -+ + k3 be sufficiently small numbers. Then, the solutions of
difference scheme (2.7) and (2.11) satisfy the following stability estimate:

< C; max (2.13)

Lop 1<k<N

max If,i’

1<k<N

u |
Lon

Here Cy does not depend on T, h, and f,i’, 1<k<N.
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Proof. For the solution of difference scheme (2.7), we have the following formulas:

k
ul(x) = > R*'Fl(x)r, 1<k<N, (2.14)
s=1
where
R=(I+TAf )
Fe(x) = i (x) - Dy %u(x), 215)
1 F(k m+ 1/2) _
1/2 h 12[_pl/2yh h
The proof of (2.13) for (2.7) is based on (2.14) and estimate
1
X Rk < — k < <k<
”AhR o ST ||R Sl 1<k<N, (2.16)
and the triangle inequality.
In the same manner, we can obtain (2.13) for (2.11) using the inequality
AXBFC? — k <1, 1<k<N. 2.17
| h c Ly—Ly ~ kT’ || Lov—Loy ~ -7 ( [)]

Theorem 2.2. Let 7 and |h| = \/h3 + - + h, be sufficiently small numbers. Then, the solutions of
difference scheme (2.7) satisfy the following almost coercive stability estimate:

(45,
XpXp/p

Here C, is independent of T, h, and f,f, 1<k<N.

Z B ”Z—l B
+ max

1<k<N
p=1

u
C2 In ——

max
Lo T+ |h| 1<k<N

1<k<N

| fh (2.18)

T Lo

Lon

Proof. The proof of (2.18) for (2.7) is based on (2.14) and estimate (2.16) and the triangle
inequality. O

Theorem 2.3. Let 7 and |h| = \/h? + - - + h%, be sufficiently small numbers. Then, the solutions of
difference scheme (2.11) satisfy the following almost coercive stability estimate:

h_ o h
U — U 4

C3 In——

max
Lo T+ |h| 1<k<N

1<k<N

x|, @19

T

h
<u +u >
k k-1)= :
-1 XpXp/lp

Here C3 does not depend on T, h, and f,i’, 1<k<N.
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Proof. The proof of (2.19) for (2.11) is based on (2.14) and estimate (2.17) and the triangle
inequality. O

Remark 2.4. The method of proofs of Theorems 2.1-2.3 enables us to obtain the estimate of
convergence of difference schemes of the first and second orders of accuracy for approximate
solutions of the initial-boundary-value problem

ou(ot, x)

T D ap(X)thy,x, + D by(X) 1, + Dfu(t, x) = f(t,x;u(t, x), 1x, (£, X), ..., 1y, (£, %)),

p=1 p=1
x=(x1,...,x,) €Q, 0<t<T,

u(0,x)=0, xe€ Q,

ou(t, x)

t =
u( rx)|51 0' o s

=0
(2.20)

for semilinear fractional parabolic partial differential equations.

Note that one has not been able to obtain a sharp estimate for the constants figuring
in the stability estimates of Theorems 2.1, 2.2, and 2.3. Therefore, our interest in the
present paper is studying the difference schemes (2.7) and (2.11) by numerical experiments.
Applying these difference schemes, the numerical methods are proposed in the following
section for solving the one-dimensional fractional parabolic partial differential equation. The
method is illustrated by numerical experiments.

3. Numerical Applications
For numerical results we consider two examples.

Example 3.1. We consider the initial-boundary-value problem

% + D} u(t, x) - % <(1 + x)%) +u(t,x) = f(t,x),
f(t,x) = [3 +t+ ;f\fﬁ +(1+ x)2m'2t] ?sin®rx — (1 + x)27*t3cos®rx 31)

2713 sinorx cosaorx, O<t<1l O<x<l,
u(t,0) =u,(t,1) =0, 0<t<1,
u(0,x)=0, 0<x<1,

for the one-dimensional fractional parabolic partial differential equation. The exact solution
of problem (3.1) is

u(t, x) = sin®rx. (3.2)
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First, applying difference scheme (2.7), we obtain

uk — k1 . LZ
T ﬁr:l
1 uk —uk
% [(1 + xn+1)%

‘PZ = f(tkr xn)/

We get the system of equations in the matrix form

KT(k-r+1/2)ul, —u

(k—r)!

71/2

k
uk —u
= — (14 x0)— hn_1:|+ufl:(Pﬁ/

tr=kt, 1<k<N, x,=nh, 1<n<M-1,

0<k<N,

Alln+1 + BU, + Clln_l = D(Pn/

where

bni

o O O

bno

o O O

o

U, =0,

bns

| bN+11 b2 Dz

0 0
c, O
0 ¢,
0 0
0 0

o

'CTl

o]

Cn

1 S n S M - 1/
UM—l = uM/
0 0
0 0
0 0
a, 0
0 an] (N+1)x(N+1)
0
0
0
bnn 0
o bNN BN N (e

4 (N+1)x(N+1)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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[0 0 0 - 0 0]
0 1 0 0 0
p= |00 1 00 , (3.8)
0 0 O 1 0
8 00001 d (N+1)x(N+1)
_ 5 - 170 A
o ol
¥n gg
Pn = (P:n , Ug= :q , g=nxlmn, (3.9)
(Pr]:}_l U];Ifl
. L
L P d (e - 4 S (N+1)x1
_ Ttxpn o T4xy,
ap = — h2 ’ Cp = — h2 ’
1 1 1 1 2+4xu1+x,
:1 = - — — = — — - 1
bu=1  bxn T b VA 2 +1,
T(1+1/2) T(1+1/2)-T(1/2) 1 1 1 24 % + X
by = -8 N S B b L B
a1 N 2 NG T wEETTT T e T
( T(i-2+1/2) o
VrT(i-2)! 7 J="
T(i-j+1/2) T(i-j-1+1/2)
- 7 S.S._Zl
”[ i) (i-j- D =
o= 1 1 1
W= (o) T (5)] -+ j=i-1
1 1 2+xu1+x, L
A i=i
L0, i<j<N+1,
(3.10)
fori=4,5,...,N+1and
16Vk
o = |34 k7 + 28YKT (4 4 nhy2mkr | (kr)sin? (o)
Svm 3.11)

— (1 + nh)2x?(k7)3cos? (ornh) - 27 (k)° sin(arnh) cos(rnh).
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So, we have the second-order difference equation with respect to n matrix coefficients.
This type system was developed by Samarskii and Nikolaev [20]. To solve this difference
equation we have applied a procedure for difference equation with respect to k matrix
coefficients. Hence, we seek a solution of the matrix equation in the following form:

Uj=ajUpa +fje1, Un=T—am) Py, j=M-1,...,21, (3.12)

where a; (j =1,2,..., M) are (N +1) x (N + 1) square matrices and f; (j = 1,2,..., M) are
(N +1) x 1 column matrices defined by

Xjy1 = —(B + Ca]-)_lA,

" (3.13)
i1 = (B+Ca;) " (Dp; - CB;), j=12,....M-1,

wherej=1,2,...,M -1, a; is the (N +1) x (N + 1) zero matrix and f; is the (N + 1) x 1 zero
matrix.

Second, applying difference scheme (2.11), we obtain the second order of accuracy
difference scheme in t and in x

k_ k-1 ko ok ok kK k
Uy, — Uy 1/2, k 1 [ un+1 Uy + un—l un+1 un—l k
S Tn e DYk - 2 (14 xy) + —uk 4+ (1+x,)
T n n 2 n n
T h 2h
k-1 _n, k-1 k-1 k=1 _ k-1
MUy — 22Uy Uy T 'S B o
h? 2h " "

(3.14)
(p,’jzf(tk—g,xn>, tk =kt, x,=nh, 1<k<N,1<n<M-1,

ub=0, 3uk,—4uk,  +uk, ,=0, 0<k<N,

=0, 0<n<M.

Here D21k is defined same as in (2.9). We get the system of equations in the matrix form

AUy + BU, +CU, =Dyp,, 1<n<M-1,
(3.15)

U,=0, 3UpM — 4UM_1 +Upn- =0,



10

where

Pn =

[0 0 0
a, a, 0
A _ O 'Ll.rl. an oo
0O 0 O
0 0 0
[ b 0 0
by by 0

b3 by  bss

bni bz bws

[bN+1,1 DNs12 BNes

0 0 O 0 0
¢, ¢, O 0 0
C= 0 ¢, ¢, --- 0 O ,
0 0 O ¢, O
[0 0 0 e el (npayeena
[0 0 O 0 0]
0 1 0 0 0
p-|% 2 Y :
0 0 O 1 0
[0 0 0 0 1] (N+1)x(N+1)
- - - 170 ~
‘P% ufli
u
(P.n 7 uq: .q 7 q:nilrnr
yn ' ugy™!
L Pn 1 (ns1)a uy

Abstract and Applied Analysis

P oo
oo

-a, O
©ay Qn

0 0
0 0
0 0
byN 0

o+ bNy,N bniiN+1]

- g A (N+1)x1

d (N+1)x(N+1)

(N+1)x(N+1)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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1<1+xn+i) C__1<1+xn_l> g 2
h? 2h )’ T2\ R 2h)’ N

= d-fr-d 0= ) (1)
dv2

ap=-—

1 1+x, 1 dv2 1 1+x, 1
bu=1 bxn=- R =Y by = s trt ety
b _d2\/6 b _d\/5_1+1+xn 1 b \/5+1 1+x, 1
31 — 5 7 32 — 5 T h2 7 33 — 5 T hz 7

d

by =d[1b1(1) + by(1)], by =d[-3b1(1) = 2by(1)] - —,
41 =d[1b1(1) + ba(1)] 1 = d[-3b1(1) - 2by(1)] i

d 1 1+x, 1 d 1 1+x, 1

= —4 -z Z -5 4 = -

b43 d[2b1(1)+b2(1)] 6\@ T+ h2 +2, b44 56\f2+T+ h2 +2,

bs1 = d[2b1(2) + b2(2)], bsy = d[-5b1(2) — 2b2(2) + 1b1 (1) + ba(1)],

bss = d[3b1(2) + by(2) — 3b1 (1) — 2by(1)] - i,

6v/2
d 1 1+x, 1 d 1 1+x, 1
b54:d[2b1(1)+b2(1)]_46\/2_;+ h2 +§, b55:5ﬁi+;+ h2 +§,
d[(i-3)b1(i—3) + ba(i - 3)], j=1
dl(5-20)b1(i—-3) —2by(i—-3)+ (i—4)b1(i—-4) + ba(i-4)], j=2,
d[(i—j+1)b1(i—j)+b2(i—j)+(2j—2i+1)b1(i—j—1)
—2b2(i—j—1)+(i—j—2)b1(i—j—2)+b2(i—j—2)], 3<j<i=3,
d .
b;j = 4 A1301(2) +b2(2) = 3b1(1) - 2b2(1)] - P j=i-2,

d 1 1+x, 1 .
d[2b](1)+b2(1)]—4m—;+ h2 +§, ]—l—].,
5d+1+1+x”+1 i
6v2 T h2 2 =t
L0, i<j<N+1,

(3.21)
fori=6,7,...,N+1and
16vkt
kK= |3+kr+ + (1 + nh)2x2kr | (kT)%sin?(rnh
% [ s (Ut n2rkr | (kr)sin? (rnh) 5

-1+ nh)27?(kt)>cos? (ornh) — 27r(k’r)3 sin(sornh) cos(arnh).

For the solution of the matrix equation (3.15), we use the same algorithm as in the first order
of accuracy difference scheme, where uy; = [3] — 4ap + aM_lzxM]_l * [(4] — api-1) v — Pyi-1].
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Example 3.2. We consider the initial-boundary-value problem

ou(t, x)

T D} *u(t, x) - a% ((1 + x)%> +u(t,x) = f(t,x),

f(t,x) = [3+t+ ;f%i

+(1+ x)27r2t] t?sinorx — (1 + x)2? 3 cos®rx
o

(3.23)
2rtsinrxcosax, 0<t<1l, 0<x<l1,
we(t,0)=0, u(t,1)=0, 0<t<1,
u(0,x)=0, 0<x<1,

for the one-dimensional fractional parabolic partial differential equation. The exact solution
of problem (3.23) is

u(t, x) = ’sin®rx. (3.24)
First, applying difference scheme (2.7), we obtain

u’;—u’;-1+ 1 &Tk-r+1/2) ul, —u?

T 7%2 (k-nt 712

k k k k
1 ut  —u uk —u
_E[(l +xn+1)M — (1 +xn)n—‘rl—1] +u1’§ = (Pl:l’

h h
(3.25)
(p’,‘l=f(tk,xn), tr=kr, 1<k<N, x,=nh, 1<n<M-1,
uézu’f, u’]‘w:O, 0<k<N,
u?l =0, 0<n<M.
We get the system of equations in the matrix form
AU, +BU, +CU,1 =Dy, 1<n<M-1,
- (3.26)
Up=U, Um=0,

where matrices A, B, C, D, ¢,, U, (9 = n ¥ 1,n) are defined same as in (3.5), (3.6), (3.7),
(3.8), (3.9), respectively.

So, we have the second-order difference equation with respect to n matrix coefficients.
To solve this difference equation we have applied a procedure for difference equation with
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respect to k matrix coefficients. Hence, we seek a solution of the matrix equation in the fol-
lowing form:

u]' = a]-+1llj+1 +ﬂj+1/ Uy =0, ] =M-1,...,2,1, (327)

where a; (j =1,2,..., M) are (N + 1) x (N + 1) square matrices and f; (j = 1,2,..., M) are
(N +1) x 1 column matrices defined by

a1 =—(B+Ca; _1A,
" ( 2 (3.28)
ﬂj+1=(B+Caj) (D(p]—Cﬁ]), j=1,2,...,M—1,

wherej=1,2,...,M -1, a; is the (N + 1) x (N + 1) identity matrix and g is the (N +1) x 1
zero matrix.
Second, applying the formulas

”llc_”g h 2
12t 0) = === = St (11, 0) +o<h ) 0<k<N,
3uk — 4wk +uk
Uy (te, M) = —M é‘;l—l M2 | o<h2>, 0<k<N,
29
ut(tk,0)=%+0<’l'2>, 1§kSN—1,
3ulN — 4y N-1 4 N2
u(tn,0) = 0 ;T 0 +o<7‘2>, k=N,

and applying difference scheme (2.11), we obtain the second order of accuracy difference
scheme in t and in x

_ k k k k
u’,‘l—u’;1+D1/2 k_l (1+ un+1_2u1’§l+un—1+un+l_un—l_ k
—T T ) x") h2 2h M
k-1 k-1 k-1 k-1 k-1
u o -2uy o +u U —u
+(1+xn) n+1 hnz n-1 + n+12h n—1 _uicl—1:| :(Pﬁ/
k T
gh=f(te-3%), ti=kr, xo=nh 1<k<N, 1<n<M-1,
=0, k=0, (3.30)
Wy [1 houp h h 1. h
e [ gD g gt = g 1skan
h ono hona [1 3k hoyp h 1 h
Eué\lz—;ué\ll‘i‘[z‘i‘E'FEDt +§]ué\1_zui\] Z(PéV, k:N/

=0, 0<n<M.

n
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Here Dy/?u¥ is defined similar to (2.9). We get the system of equations in the matrix form

AUy +BU, +CU,1 =Dy, 1<n<M-1,

(3.31)
EUOZFU1+R(p0, LIM =

o

7

where matrices A, B, C, D, ¢,, U, (9 = nF1,n) are defined same as in (3.16), (3.17), (3.18),
(3.19), (3.20), respectively.

For the solution of the matrix equation (3.31), we use the same algorithm as in the first
order of accuracy difference scheme, where

upm =0, a, = E7'F, p1 = E"'Ryy,

o 0o 0 -0 0
1
0 7 0 - 0 O
0 0 2 0 0 00y
F- RO S T :
0 0 % 0 00 - Tl
1
0 0 0 -
| h 1 (N+D)x(N+1)
[ €11 0 0 0 0 1
én1 (=) 0 0 0
- | e e ey - 0 0 ,
eN1 eN2 eN3 ‘' EeNN 0
[EN+1,1 EN+12 EN+13 " EN+LN EN+LN+1] (Ni1)x(N+1)
enn1 =1 e ——ﬁ— 4h e —1+E+ 4h e —E
1 = 4, 21 — ar 3\/ﬁl 22 = h > 3\/.7?T, 23 — 4TI
b o 22N oo o T16V2h R oo L B 14V2R o
31 — 15 TI'TI 32 — 15 TZ'T 47" 33 — h 2 15 TFT’ 34 = 4:7"

en = — —<1 + %)bl(l) +by(1)

7

ey = — —4b1(1) - sz(l) + zibl(o) + bz(o)] ’

o= (24 D)) bt -2-2(-1)] - £,
h
5 +

dh [<1+ %)bl(O) +b2(0)], oo

1
ww=pt3t g =
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es) = dz—h :<2+ %>b1(2) + b2(2)],

esp = % —23b1(2) -2by(2) + <1 + %)bl(l) + b2(1)]/
e53=dz—h <2+1+ >b1(2)+b2(2) 22b1(1) = 2b(1) + 1(0)+bz(0) ,
s = O (1+1 + E)bla) +by(1) - 26, (0) —2b2<0>] -
e55=%+;+% <1+%>b1(0)+b2(0)], 356=£1
r%:<i-3+%> bl(i—3)+b2(i—3)], j=1,
d?h__z(i—z)bl(i—ez) 2bz(1—3)+< —4+ 5 >b1(1—4)+bz(1—4)] i=2
S |G-i+1+3) i)+ bati= ) -26- ) b= - 1)
—2b2(i—j—1)+<i—j—2+1> bl(i—j—2)+b2(i—j—2)], 3<j<i-2,
h dh
_4T 2 <2+;) b1(1)+ bz(l) 2b1(0) 2b2(0)] j=i—1,
1 h dh 1
ﬁ+§+7[<1+§> b1(0) + bz(O)], j=1i,
€i]'=< h -
ot j=i+
£+%[< -N+2+ = >b1(z—N+1)+ b(i-N+1)
2(i-N+1) bi(i- N)-2by(i - N)
( -N-1+ )bl(z— —1)+ bz(i—N—l)], i=N-1,
h dh
T 2 <2+ 1) b1(1)+ bz(l) Zbl(O) 2b2(0)] j=N,
1 h 3h dh 1 .
E+§+E+7 <1+§>b1(0)+ bz(O)], ]:N+1/
0, j>i+1,
(3.32)

fori=6,7,...,N+1and

gy = -2 (kt)°. (3.33)
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Table 1: Error analysis of first and second order of accuracy difference schemes for Example 3.1.

Method N=M=25 N =M =50 N =M =100
1st order of accuracy 0.2553 0.1256 0.0622
2nd order of accuracy 0.0062 9.771 x 107 1.963 x 107

Table 2: Error analysis of first and second order of accuracy difference schemes for Example 3.2.

Method N=M=25 N=M=50 N =M =100
1st order of accuracy 0.1653 0.0807 0.0399
2nd order of accuracy 0.0025 5943 x 107 1.453 x 107

3.1. Error Analysis

Finally, we give the results of the numerical analysis. The error is computed by the following
formula:

EN = max u(te, x —uk p 3.34
M k<N <n<M-1 (B ) = 14y (3.34)

where u(t, x,) represents the exact solution and u’,‘l represents the numerical solutions of
these difference schemes at (tx, x,,). The numerical solutions are recorded for different values
of N and M. Tables 1 and 2 are constructed for N = M = 25, 50, and 100, respectively.

The results in Tables 1 and 2 show that, by using the Crank-Nicholson difference
scheme, more accurate approximate results can be obtained rather than the first order of
accuracy difference scheme.
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