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By applying Mawhin’s continuation theorem of coincidence degree theory, we study the existence
of multiple positive periodic solutions for a Gilpin-Ayala competition predator-prey system with
harvesting terms and obtain some sufficient conditions for the existence of multiple positive
periodic solutions for the system under consideration. The result of this paper is completely new.
An example is employed to illustrate our result.

1. Introduction

In 1973, Ayala et al. [1] conducted experiments on fruit fly dynamics to test the validity of
ten models of competition. One of the models accounting best for the experimental results is
given by

y′
1 = r1y1

(
1 −

(
y1

K1

)θ1

− a12
y2

K2

)
,

y′
2 = r2y2

(
1 −

(
y2

K2

)θ2

− a21
y1

K1

)
.

(1.1)
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In order to fit data in their experiments and to yield significantly more accurate
results, Gilpin and Ayala [2] claimed that a slightly more complicated model was needed
and proposed the following competition model:

x′
i(t) = rixi

⎛
⎝1 −

(
xi

Ki

)θi

−
n∑

j=1,j /= i

aij

xj

Kj

⎞
⎠, i = 1, 2, . . . , n, (1.2)

where xi is the population density of the ith species, ri is the intrinsic exponential growth
rate of the ith species, Ki is the environmental carrying capacity of species i in the absence of
competition, θi provides a nonlinear measure of interspecific interference, and αij provides a
measure of interspecific interference.

During the past decade, many generalizations and modifications of systems (1.1) and
(1.2) have been proposed and studied; see, for example, [3–10].

Virtually all biological systems exist in environments which vary with time, frequently
in a periodic way. Ecosystem effects and environmental variability are very important factors,
and mathematical models cannot ignore, for example, year-to-year changes in weather,
habitat destruction and exploitation, the expanding food surplus, and other factors that affect
the population growth.

Since biological and environmental parameters are naturally subjected to fluctuation
in time, the effects of a periodically varying environment are considered as important
selective forces on systems in a fluctuating environment. Therefore, on the one hand, models
should take into account the seasonality of the periodically changing environment. Also,
the exploitation of biological resources and the harvest of population species are commonly
practiced in fishery, forestry, and wildlife management; the study of population dynamics
with harvesting is an important subject in mathematical bioeconomics, which is related to
the optimal management of renewable resources and some other issues including control
issues to regulate populations (see [11–16]).

Motivated by above, in this paper, we will investigate the following two species
Gilpin-Ayala competition predator-prey system with harvesting terms:

y′
1(t) = r1(t)y1(t)

{
1 −

(
y1(t)
k1(t)

)θ1

− a12(t)
y2(t)
k2(t)

}
− h1(t),

y′
2(t) = r2(t)y2(t)

{
1 −

(
y2(t)
k2(t)

)θ2

− a21(t)
y1(t)
k1(t)

}
− h2(t),

(1.3)

where ri(t) > 0, ki(t) > 0, hi(t) > 0, i = 1, 2, a12(t) and a21(t) ∈ C([0,+∞), (0,+∞)) are ω-
periodic functions, θi, i = 1, 2 are positive constants, and y1 and y2 represent the number of
individuals in the prey and predator population.

A very basic and important problem in the study of a population growth model with a
periodic environment is the global existence and stability of a positive periodic, which plays
a similar role as a globally stable equilibrium does in an autonomous model; also, on the
existence of positive periodic solutions to system (1.2), few results are found in literatures.
This motivates us to investigate the existence of a positive periodic or multiple positive
periodic solutions for system (1.2). In fact, it is more likely for some biological species to take
on multiple periodic change regulations and have multiple local stable periodic phenomena.
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Therefore, it is essential for us to investigate the existence of multiple positive periodic
solutions for population models. Our main purpose of this paper is, by using Mawhin’s
continuation theorem of coincidence degree theory [17], to establish the existence of four
positive periodic solutions for system (1.3). Our method used in this paper can be used
to study the multiple existence of positive periodic solutions for n-species Gilpin-Ayala
competition predator-prey system with harvesting terms.

The organization of this paper is as follows. In Section 2, we make some preparations.
In Section 3, by using Mawhin’s continuation theorem of coincidence degree theory, we
establish sufficient conditions for the existence of multiple positive periodic solutions to
system (1.3). An illustrative example is given in Section 3.

2. Preliminaries

For the readers’ convenience, we first summarize a few concepts from [17].
Let X and Z Banach spaces. Let L : DomL ⊂ X → Z be a linear mapping andN : X →

Z be a continuous mapping. The mapping Lwill be called a Fredholmmapping of index zero
if ImL is a closed subspace of Z and

dim KerL = codim ImL < ∞. (2.1)

If L is a Fredholm mapping of index zero, then there exist continuous projectors P : X → Z

and Q : Z → Z such that ImP = KerL and ImL = KerQ = Im(I −Q). It follows that

L|DomL∩KerP : (I − P)X −→ ImL (2.2)

is invertible and its inverse is denoted byKP . IfΩ is a bounded open subset of X, the mapping
N is called L-compact on X, if QN(Ω) is bounded and KP (I − Q)N : Ω → X is compact.
Because ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ → KerL.

In the proof of our existence result, we need the following continuation theorem cited
from [17].

Lemma 2.1 (see [17]). Let L be a Fredholm mapping of index zero, and let N be L-compact on X.
Suppose

(a) for each λ ∈ (0, 1), x ∈ ∂Ω, Lx/=λNx;

(b) for each x ∈ ∂Ω, QNx/= 0;

(c) the Browner deg{JQN,Ω ∩ KerL, 0}/= 0.

Then Lx = Nx has at least one solution in Ω ∩DomL.
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By making the substitutions y1(t) = ex1(t) and y2(t) = ex2(t), then system (1.2) is
reformulated as

x′
1(t) = r1(t)

⎧⎨
⎩1 −

(
ex1(t)

k1(t)

)θ1

− a12(t)
ex2(t)

k2(t)

⎫⎬
⎭ − h1(t)e−x1(t),

x′
2(t) = r2(t)

⎧⎨
⎩1 −

(
ex2(t)

k2(t)

)θ2

− a21(t)
ex1(t)

k1(t)

⎫⎬
⎭ − h2(t)e−x2(t).

(2.3)

It is obvious that periodic solutions of (2.3) are positive periodic solutions of (1.3).
For the sake of convenience, we introduce notations as follows:

fL = max
t∈[0,ω]

f(t), f l = min
t∈[0,ω]

f(t), (2.4)

where f is a continuous ω-periodic function.
We also introduce four assumptions and eight positive numbers as follows.

Assumption (H1) (1 − a12(kL
2/k2))

l
> 2

√
(h1/r1)

L/(kθ1
1 )

l
[(h1/r1)

l]
1−θ1 .

Assumption (H2) (1 − a21(kL
1/k1))

l
> 2

√
(h2/r2)

L/(kθ2
2 )

l
[(h2/r2)

l]
1−θ2 .

Assumption (H3) (1 − a12(kL
2/k2))

l
> 2

√
(h1/r1)

L((kL
1 )

θ1−1/(kl
1)

θ1).

Assumption (H4) (1 − a21(kL
1/k1))

l
> 2

√
(h2/r2)

L((kL
2 )

θ1−2/(kl
2)

θ2).

u± =

(
1 − a12(kL

2/k2)
)l ±

√[(
1 − a12(kL

2/k2)
)l]2 − 4

(
(h1/r1)

L/
(
kθ1
1

)l[
(h1/r1)

l
]1−θ1)

2/
{(

kθ1
1

)l
[(h1/r1)

l]
1−θ1

} ,

l± =

(
1 − a21(kL

1/k1)
)l ±

√[(
1 − a21(kL

1/k1)
)l]2 − 4

(
(h2/r2)

L/
(
kθ2
2

)l[
(h2/r2)

l
]1−θ2)

2/
{
(kθ2

2 )
l
[(h2/r2)

l]
1−θ2

} ,

u± =

(
1 − a12(kL

2/k2)
)l ±

√[(
1 − a12(kL

2/k2)
)l]2 − 4(h1/r1)

L
((

kL
1

)θ1−1/(kl
1

)θ1
)

2
(
kL
1

)θ1−1/(kl
1

)θ1
,

l± =

(
1 − a21(kL

1/k1)
)l ±

√[(
1 − a21(kL

1/k1)
)l]2 − 4(h2/r2)

L
((

kL
2

)θ2−1/(kl
2

)θ2
)

2
(
kL
2

)θ2−1/(kl
2

)θ2
.

(2.5)



Abstract and Applied Analysis 5

3. Main Result

Our main result of this paper is as follows.

Theorem 3.1. Assume that one of the following conditions holds.

(i) If 0 < θi < 1, i = 1, 2, then (H1)-(H2).

(ii) If θi ≥ 1, i = 1, 2, then (H3)-(H4).

(iii) If θ1 ≥ 1 and 0 < θ2 < 1, then (H2)-(H3).

(iv) If θ2 ≥ 1 and 0 < θ1 < 1, then (H1)-(H4).

Then system (1.3) has at least four positive periodic solutions.

Proof. Let

X = Z =
{
z = (x1, x2)T ∈ C(R,Rn) : z(t +ω) = z(t)

}
, (3.1)

and define

‖z‖ = max
t∈[0,ω]

|x1(t)| + max
t∈[0,ω]

|x2(t)|, z ∈ X orZ. (3.2)

Equipped with the above norm ‖ · ‖, X and Z are Banach spaces. Let

N : X −→ Z, Nz(t) =
(
F1(z(t))
F2(z(t))

)
, (3.3)

where

F1(z(t)) = r1(t)

⎧⎨
⎩1 −

(
ex1(t)

k1(t)

)θ1

− a12(t)
ex2(t)

k2(t)

⎫⎬
⎭ − h1(t)e−x1(t),

F2(z(t)) = r2(t)

⎧⎨
⎩1 −

(
ex2(t)

k2(t)

)θ2

− a21(t)
ex1(t)

k1(t)

⎫⎬
⎭ − h2(t)e−x2(t),

(3.4)

and Lu = ż = dz(t)/dt. We put Pz = (1/ω)
∫ω
0 z(t)dt, z ∈ X; Qz = (1/ω)

∫ω
0 z(t)dt, z ∈ Z.

Thus it follows that KerL = R2, ImL = {z ∈ Z :
∫ω
0 z(t)dt = 0} is closed in Z,dim KerL = 2 =

codim ImL, and P,Q are continuous projectors such that

ImP = KerL, KerQ = ImL = Im(I −Q). (3.5)
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Hence, L is a Fredholm mapping of index zero. Furthermore, the generalized inverse (to L)
KP : ImL → KerP ∩DomL is given by

KP (z) =
∫ t

0
z(s)ds − 1

ω

∫ω

0

∫s

0
z(s)ds. (3.6)

Then

QNz =

⎛
⎜⎜⎜⎜⎝

1
ω

∫ω

0
F1(z(s))ds

1
ω

∫ω

0
F2(z(s))ds

⎞
⎟⎟⎟⎟⎠,

KP (I −Q)N(z) =

⎛
⎜⎜⎜⎜⎝

∫ t

0
F1(z(s))ds − 1

ω

∫ω

0

∫ t

0
F1(z(s))dsdt +

(
1
2
− t

ω

)∫ω

0
F1(z(s))ds

∫ t

0
F2(z(s))ds − 1

ω

∫ω

0

∫ t

0
F2(z(s))dsdt +

(
1
2
− t

ω

)∫ω

0
F2(z(s))ds

⎞
⎟⎟⎟⎟⎠.

(3.7)

Obviously, QN andKP (I −Q)N are continuous. It is not difficult to show thatKP (I −
Q)N(Ω) is compact for any open bounded set Ω ⊂ X by using the Arzela-Ascoli theorem.
Moreover, QN(Ω) is clearly bounded. Thus, N is L-compact on Ω with any open bounded
set Ω ⊂ X.

Now, we are in the position of searching for an appropriate open, bounded subset Ω
for the application of Lemma 2.1. Corresponding to the operator equation

Lx = λNx, λ ∈ (0, 1), (3.8)

we obtain

x′
1(t) = λr1(t)

⎧⎨
⎩1 −

(
ex1(t)

k1(t)

)θ1

− a12(t)
ex2(t)

k2(t)

⎫⎬
⎭ − λh1(t)e−x1(t),

x′
2(t) = λr2(t)

⎧⎨
⎩1 −

(
ex2(t)

k2(t)

)θ2

− a21(t)
ex1(t)

k1(t)

⎫⎬
⎭ − λh2(t)e−x2(t).

(3.9)

Assume that x ∈ X is a solution of system (3.9) for some λ ∈ (0, 1). Let ξi, ηi ∈ [0, ω] such that

xi(ξi) = max
t∈[0,ω]

xi(t), xi

(
ηi
)
= min

t∈[0,ω]
xi(t), i = 1, 2. (3.10)
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It is clear that x′
i(ξi) = 0 and x′

i(ηi) = 0, i = 1, 2. From this and system (3.9), we have

r1(ξ1)

⎧⎨
⎩1 −

(
ex1(ξ1)

k1(ξ1)

)θ1

− a12(ξ1)
ex2(ξ1)

k2(ξ1)

⎫⎬
⎭ − h1(ξ1)e−x1(ξ1) = 0,

r2(ξ2)

⎧⎨
⎩1 −

(
ex2(ξ2)

k2(ξ2)

)θ2

− a21(ξ2)
ex1(ξ2)

k1(ξ2)

⎫⎬
⎭ − h2(ξ2)e−x2(ξ2) = 0,

(3.11)

r1
(
η1
)⎧⎨⎩1 −

(
ex1(η1)

k1
(
η1
)
)θ1

− a12
(
η1
) ex2(η1)

k2
(
η1
)
⎫⎬
⎭ − h1

(
η1
)
e−x1(η1) = 0,

r2
(
η2
)⎧⎨⎩1 −

(
ex2(η2)

k2
(
η2
)
)θ2

− a21
(
η2
) ex1(η2)

k1
(
η2
)
⎫⎬
⎭ − h2

(
η2
)
e−x2(η2) = 0.

(3.12)

The first equation of (3.11) implies

1 −
(

ex1(ξ1)

k1(ξ1)

)θ1

=
h1ξ1
r1(ξ1)

e−x1(ξ1) + a12(ξ1)
ex2(ξ1)

k2(ξ1)
> 0; (3.13)

that is,

x1(ξ1) < ln kL
1 . (3.14)

Similarly from the second equation of (3.11), we have

x2(ξ2) < ln kL
2 . (3.15)

And, the first equation of (3.12) implies

h1
(
η1
)

r1
(
η1
) e−x1(η1) = 1 −

(
ex1(η1)

k1
(
η1
)
)θ1

− a12
(
η1
) ex2(η1)

k2
(
η1
) < 1; (3.16)

that is,

x1
(
η1
)
> ln

(
h1

r1

)l

. (3.17)

Similarly from the second equation of (3.12), we have

x2
(
η2
)
> ln

(
h2

r2

)l

. (3.18)
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Case i (for 0 < θi < 1, i = 1, 2). In view of (3.15), we have

ex2(ξ1) < ex2(ξ2) < kL
2 . (3.19)

Then, the first equation of (3.11) can be reduced to

(
ex1(ξ1)

k1(ξ1)

)θ1

+ a12(ξ1)
kL
2

k2(ξ1)
+
h1(ξ1)
r1(ξ1)

e−x1(ξ1) − 1 > 0. (3.20)

Multiplying inequality (3.20) by ex1(ξ1) gives

ex1(ξ1)(θ1−1)

[k1(ξ1)]
θ1

e2x1(ξ1) −
[
1 − a12(ξ1)

kL
2

k2(ξ1)

]
ex1(ξ1) +

h1(ξ1)
r1(ξ1)

> 0. (3.21)

Because

ex1(ξ1)(θ1−1) =
1

ex1(ξ1)(1−θ1) <
1

[(h1/r1)
l]
1−θ1 , (3.22)

then we have

1(
kθ1
1

)l
[(h1/r1)

l]
1−θ1

e2x1(ξ1) −
(
1 − a12

kL
2

k2

)l

ex1(ξ1) +
(
h1

r1

)L

> 0, (3.23)

which implies

x1(ξ1) > lnu+ or x1(ξ1) < lnu−. (3.24)

Similarly from the first equation of (3.12), we have

x1
(
η1
)
> lnu+ or x1

(
η1
)
< lnu−. (3.25)

From the second equations of (3.11) and (3.12), by a parallel argument to (3.24) and (3.25),
we obtain

x2(ξ2) > ln l+ or x2(ξ2) < ln l−,

x2
(
η2
)
> ln l+ or x2

(
η2
)
< ln l−.

(3.26)

From (3.14), (3.17), (3.24), and (3.25), we obtain that, for all t ∈ R,

ln
(
h1

r1

)l

< x1(t) < lnu− or lnu+ < x1(t) < ln kL
1 . (3.27)
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Similarly, from (3.15), (3.18), and (3.26), we obtain that, for all t ∈ R,

ln
(
h2

r2

)l

< x2(t) < ln l− or ln l+ < x2(t) < ln kL
2 . (3.28)

Obviously, lnu±, ln l±, ln kL
1 , ln k

L
2 , ln(h1/r1)

l, and ln(h2/r2)
l are independent of λ. Now let

Ω1 =

{
x = (x1, x2)T ∈ X : ln

(
h1

r1

)l

< x1(t) < lnu−, ln
(
h2

r2

)l

< x2(t) < ln l−

}
,

Ω2 =

{
x = (x1, x2)T ∈ X : ln

(
h1

r1

)l

< x1(t) < lnu−, ln l+ < x2(t) < ln kL
2

}
,

Ω3 =

{
x = (x1, x2)T ∈ X : lnu+ < x1(t) < ln kL

1 , ln
(
h2

r2

)l

< x2(t) < ln l−

}
,

Ω4 =
{
x = (x1, x2)T ∈ X : lnu+ < x1(t) < ln kL

1 , ln l+ < x2(t) < ln kL
2

}
.

(3.29)

Then Ωi, i = 1, 2, 3, 4, are bounded open subsets of X, Ωi ∩Ωj = ∅, i /= j, i, j = 1, 2, 3, 4. Thus
Ωi, i = 1, 2, 3, 4, satisfy the requirement (a) in Lemma 2.1.

Case ii (for θi ≥ 1, i = 1, 2). From (3.20), it follows that

ex1(ξ1)(θ1−1)

[k1(ξ1)]
θ1

e2x1(ξ1) −
[
1 − a12(ξ1)

kL
2

k2(ξ1)

]
ex1(ξ1) +

h1(ξ1)
r1(ξ1)

> 0. (3.30)

Because

ex1(ξ1)(θ1−1) <
(
kL
1

)θ1−1
, (3.31)

then we have

(
kL
1

)θ1−1
(
kl
1

)θ1
e2x1(ξ1) −

(
1 − a12

kL
2

k2

)l

ex1(ξ1) +
(
h1

r1

)L

> 0, (3.32)

which implies

x1(ξ1) > lnu+ or x1(ξ1) < lnu−. (3.33)

Similarly from the first equation of (3.12), we have

x1
(
η1
)
> lnu+ or x1

(
η1
)
< lnu−. (3.34)
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From the second equations of (3.11) and (3.12), by a parallel argument to (3.33) and (3.34),
we obtain

x2(ξ2) > ln l+ or x2(ξ2) < ln l−,

x2
(
η2
)
> ln l+ or x2

(
η2
)
< ln l−.

(3.35)

From (3.14), (3.17), (3.33), and (3.34), we obtain that, for all t ∈ R,

ln
(
h1

r1

)l

< x1(t) < lnu− or lnu+ < x1(t) < ln kL
1 . (3.36)

Similarly, from (3.15), (3.18), and (3.35) we obtain that, for all t ∈ R,

ln
(
h2

r2

)l

< x2(t) < ln l− or ln l+ < x2(t) < ln kL
2 . (3.37)

Obviously, lnu±, ln l±, ln kL
1 , ln k

L
2 , ln(h1/r1)

l, and ln(h2/r2)
l are independent of λ. Now let

Ω1 =

{
x = (x1, x2)T ∈ X : ln

(
h1

r1

)l

< x1(t) < lnu−, ln
(
h2

r2

)l

< x2(t) < ln l−

}
,

Ω2 =

{
x = (x1, x2)T ∈ X : ln

(
h1

r1

)l

< x1(t) < lnu−, ln l+ < x2(t) < ln kL
2

}
,

Ω3 =

{
x = (x1, x2)T ∈ X : lnu+ < x1(t) < ln kL

1 , ln
(
h2

r2

)l

< x2(t) < ln l−

}
,

Ω4 =
{
x = (x1, x2)T ∈ X : lnu+ < x1(t) < ln kL

1 , ln l+ < x2(t) < ln kL
2

}
.

(3.38)

Then Ωi, i = 1, 2, 3, 4, are bounded open subsets of X, Ωi ∩Ωj = ∅, i /= j, i, j = 1, 2, 3, 4. Thus
Ωi, i = 1, 2, 3, 4, satisfy the requirement (a) in Lemma 2.1.

Case iii (for θ1 ≥ 1 and 0 < θ2 < 1). From Case i and Case ii, we can easily obtain that

Ω1 =

{
x = (x1, x2)T ∈ X : ln

(
h1

r1

)l

< x1(t) < lnu−, ln
(
h2

r2

)l

< x2(t) < ln l−

}
,

Ω2 =

{
x = (x1, x2)T ∈ X : ln

(
h1

r1

)l

< x1(t) < lnu−, ln l+ < x2(t) < ln kL
2

}
,

Ω3 =

{
x = (x1, x2)T ∈ X : lnu+ < x1(t) < ln kL

1 , ln
(
h2

r2

)l

< x2(t) < ln l−

}
,

Ω4 =
{
x = (x1, x2)T ∈ X : lnu+ < x1(t) < ln kL

1 , ln l+ < x2(t) < ln kL
2

}
.

(3.39)
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Then Ωi, i = 1, 2, 3, 4, are bounded open subsets of X, Ωi ∩Ωj = ∅, i /= j, i, j = 1, 2, 3, 4. Thus
Ωi, i = 1, 2, 3, 4, satisfy the requirement (a) in Lemma 2.1.

Case iv (for θ2 ≥ 1 and 0 < θ1 < 1). From Case i and Case ii, we can easily obtain that

Ω1 =

{
x = (x1, x2)T ∈ X : ln

(
h1

r1

)l

< x1(t) < lnu−, ln
(
h2

r2

)l

< x2(t) < ln l−

}
,

Ω2 =

{
x = (x1, x2)T ∈ X : ln

(
h1

r1

)l

< x1(t) < lnu−, ln l+ < x2(t) < ln kL
2

}
,

Ω3 =

{
x = (x1, x2)T ∈ X : lnu+ < x1(t) < ln kL

1 , ln
(
h2

r2

)l

< x2(t) < ln l−

}
,

Ω4 =
{
x = (x1, x2)T ∈ X : lnu+ < x1(t) < ln kL

1 , ln l+ < x2(t) < ln kL
2

}
.

(3.40)

Then Ωi, i = 1, 2, 3, 4, are bounded open subsets of X, Ωi ∩Ωj = ∅, i /= j, i, j = 1, 2, 3, 4. Thus
Ωi, i = 1, 2, 3, 4, satisfy the requirement (a) in Lemma 2.1.

Now, we prove that (b) of Lemma 2.1 holds; that is, we prove that, when x ∈ ∂Ωi ∩
KerL = ∂Ωi ∩ R

2, QNu/= (0, 0)T (i = 1, 2, 3, 4). If it is not true, then, when x = (x1, x2)
T ∈

∂Ωi ∩ R
2, i = 1, 2, 3, 4, x = (x1, x2)

T is constant vector satisfying

QNx = m
(
(Nx1,Nx2)T

)
= m

⎛
⎜⎜⎜⎜⎜⎝

r1(t)

{
1 −

(
ex1

k1(t)

)θ1

− a12(t)
ex2

k2(t)

}
− h1(t)e−x1

r2(t)

{
1 −

(
ex2

k2(t)

)θ2

− a21(t)
ex1

k1

}
− h2(t)e−x2

⎞
⎟⎟⎟⎟⎟⎠ = (0, 0)T .

(3.41)

Thus there exists a point t0 such that

⎛
⎜⎜⎜⎜⎜⎝

r1(t0)

{
1 −

(
ex1

k1(t0)

)θ1

− a12(t0)
ex2

k2(t0)

}
− h1(t0)e−x1

r2(t0)

{
1 −

(
ex2

k2(t0)

)θ2

− a21(t0)
ex1

k1(t0)

}
− h2(t0)e−x2

⎞
⎟⎟⎟⎟⎟⎠ = (0, 0)T . (3.42)

For 0 < θi < 1, i = 1, 2, following the arguments of (3.11)–(3.26), we obtain

ln
(
h1

r1

)l

< x1(t) < lnu− or lnu+ < x1(t) < ln kL
1 ,

ln
(
h2

r2

)l

< x2(t) < ln l− or ln l+ < x2(t) < ln kL
2 .

(3.43)

Hence x ∈ Ω1 ∩ R
2 or x ∈ Ω2 ∩ R

2 or x ∈ Ω3 ∩ R
2 or x ∈ Ω4 ∩ R

2. This contradicts the
fact that x = (x1, x2)

T ∈ ∂Ωi ∩ R
2 (i = 1, 2, 3, 4). This proves that (b) in Lemma 2.1 holds. By
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a similar argument as above process, for θi ≥ 1 (i = 1, 2) or θ1 ≥ 1 and 0 < θ2 < 1 or θ2 ≥ 1 and
0 < θ1 < 1, we can easily prove that (b) in Lemma 2.1 holds.

A direct computation gives

deg{JQN,Ωi ∩ kerL, 0} = −1 or 1/= 0, i = 1, 2, 3, 4. (3.44)

Here J is taken as the identity mapping. So far we have proved that Ωi (i = 1, 2, 3, 4) satisfies
all the conditions in Lemma 2.1. Hence system (2.3) has at least four periodic solutions
in Ωi (i = 1, 2, 3, 4); that is, system (1.3) has at least four positive periodic solutions. This
completes the proof.

An Example

In system (1.2), let

r1(t) = k1(t) = sin t + 2, r2(t) = k2(t) = cos t + 2, h1(t) =
1

10000(sin t + 2)
,

h2(t) =
1

10000(cos t + 2)
, a12(t) =

1
100(cos t + 2)

, a21(t) =
1

100(sin t + 2)
.

(3.45)

(i) If θ1 = θ2 = 1/2, then system (1.2) has at least four positive 2π-periodic solutions.

(ii) If θ1 = θ2 = 1, then system (1.2) has at least four positive 2π-periodic solutions.

(iii) If θ1 = 1 and θ2 = 1/2 or θ2 = 1 and θ1 = 1/2, then system (1.2) has at least four
positive 2π-periodic solutions.

Proof. By calculation, for θ1 = θ2 = 1/2,

(
1 − a12

kL
2

k2

)l

=
299
300

> 2

√
3
100

= 2

√√√√√ (h1/r1)
L(

kθ1
1

)l
[(h1/r1)

l]
1−θ1

,

(
1 − a21

kL
1

k1

)l

=
299
300

> 2

√
3
100

= 2

√√√√√ (h2/r2)
L(

kθ2
2

)l
[(h2/r2)

l]
1−θ2

.

(3.46)

It is obvious that (H1)-(H2) hold. By Theorem 3.1 and system (1.2) have at least four positive
almost periodic solutions. For θ1 = θ2 = 1,

(
1 − a12

kL
2

k2

)l

=
299
300

>
2

100
= 2

√√√√√√
(
h1

r1

)L
(
kL
1

)θ1−1
(
kl
1

)θ1
, (3.47)

(
1 − a21

kL
1

k1

)l

=
299
300

>
2

100
= 2

√√√√√
(
h2

r2

)L
(
kL
2

)θ2−1
(
kl
2

)θ2
. (3.48)
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It is obvious that (H3)-(H4) hold. By Theorem 3.1, system (1.2) has at least four positive 2π-
periodic solutions. For θ1 = 1 and θ2 = 1/2 or θ2 = 1 and θ1 = 1/2, from (i) and (ii), the result
follows from Theorem 3.1. This completes the proof.
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