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A new Rössler-like system is constructed by the linear feedback control scheme in this paper. As
well, it exhibits complex dynamical behaviors, such as bifurcation, chaos, and strange attractor.
By virtue of the normal form theory, its Hopf bifurcation and stability are investigated in detail.
Consequently, the stable periodic orbits are bifurcated. Furthermore, the anticontrol of Hopf circles
is achieved between the new Rössler-like system and the original Rössler one via a modified
projective synchronization scheme. As a result, a stable Hopf circle is created in the controlled
Rössler system. The corresponding numerical simulations are presented, which agree with the
theoretical analysis.

1. Introduction

In the last three decades, chaos has been studied extensively and attracted increasing interests
from mathematicians, physicists, engineers, and so on. Since chaotic systems not only admit
abundant complex and interesting dynamical behaviors, such as bifurcations, chaos, and
strange attractors, but also have many potential practical applications, great efforts have been
devoted to investigating chaotic systems, for example, Lorenz system [1] and Rössler system
[2, 3], and there has been an increasing effort to construct different types of chaotic systems.
During the last few years, some new Lorenz-like chaotic systems [4], including Chen system
[5], Lü system [6], Liu system [7], and T system [8], were proposed and studied.

Research on bifurcation, such as Hopf bifurcation, homoclinic bifurcation, and period
doubling bifurcation, is one of the most hot topics in the field of nonlinear science [9]. It
has been found that bifurcation will frequently lead to chaos in nonlinear systems. So it is
necessary to explore the bifurcation of dynamical systems so as to understand the complex
dynamical behaviors. Recently, Hopf bifurcation of some famous chaotic systems has been
investigated and it has been becoming one of the most active topics in the field of chaotic
systems.
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In this paper, a new Rössler-like system is constructed by adding a linear feedback
control term to the original Rössler system [2]. It is found that the new system admits complex
dynamical behaviors with varying parameters, such as bifurcation, chaos, and strange
attractors. Now its basic dynamical behaviors are analyzed, especially its Hopf bifurcation
is investigated in detail via theoretical as well as numerical analysis. The bifurcated periodic
solutions will be created under some parameter conditions.

As is well known, Hopf bifurcation gives rise to limit circles, which are typical
oscillatory behaviors of many nonlinear systems in physical, social, economic, biological, and
chemical fields. These oscillatory behaviors [10–12] can be beneficial in practical applications,
such as in mixing, monitoring, and fault diagnosis in electromechanical systems. Also, the
properties of limit cycles are very useful in modern control engineering, such as autotuning
of PID controller [13] and process identification [14]. Early efforts in Hopf bifurcation
control focused on delaying the onset of this bifurcation [15] or stabilizing an existing
bifurcation [16]. In this paper, we propose a control method based on modified projective
synchronization (MPS) [17] to generate a Hopf limit circle in the original Rössler system. The
proposedMPS involves less calculations. Furthermore, the shape and size of the created Hopf
circle can be adjusted by choosing different scaling factors.

The paper is organized as follows. In Section 2, a new Rössler-like system is
constructed by the linear feedback control. In Section 3, its dissipation and fractal dimension
are analyzed. The local stability and existence of Hopf bifurcation, as well as the direction and
stability of bifurcating periodic solutions, are discussed in detail by the normal form theory in
Section 4. In Section 5, the anticontrol of Hopf circles is achieved between the new Rössler-like
system and the original Rössler system via the modified projective synchronization scheme,
and a stable Hopf limit circle is created in the original Rössler system successfully. Finally,
some conclusions are drawn in Section 6.

2. The New Modified Rössler System

The Rössler system [2] is described by

ẋ = −y − z,

ẏ = x,

ż = a
(
y − y2

)
− bz,

(2.1)

which is chaotic when a = b = 0.5, and its strange attractor is shown in Figure 1.
Based on this Rössler system, by adding a linear term to the second equation and

changing the third equation of system (2.1), a new Rössler-like system is obtained and given
by

ẋ = −y − z,

ẏ = x + cz,

ż = ay − bz − y2,

(2.2)

where x, y, z are state variables, and a, b, c are parameters. In order to ensure that system (2.2)
is a dissipative system, assume that the parameter b is positive in the following discussions.
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Figure 1: Chaotic attractor of system (2.1).

When a = 0.5, b = 1, c = 1.2, system (2.2) is chaotic, which is shown in Figure 2. The
bifurcation diagram of state variable y versus parameter c is shown in Figure 3. Figure 4
is the state trajectory of y.

3. Analysis of Basic Dynamic Behaviors

3.1. Dissipation and Existence of Attractor

The divergence of system (2.2) is defined by

∇V =
∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
= −b = −1 < 0. (3.1)

Since ∇V < 0, system (2.2) is a dissipative system and converges with an index rate of e−t.
Volume element V0 shrinks to V0e

−t at the time t. When t → ∞, volume element V0 shrinks to
0. Therefore, all trajectories of system (2.2)will be confined to a congregation, whose volume
is 0. Its gradual movement behaviors are fixed in an attractor.

3.2. The Lyapunov Dimension

As we know, the Lyapunov exponents measure the exponential rates of divergence or
convergence of nearby trajectories in phase space. UsingMatlab software, the three Lyapunov
exponents of system (2.2) are, respectively, λ1 = 0.0701, λ2 = 0, λ3 = −1.0796 when a = 0.5, b =
1, c = 1.2. The Lyapunov dimension of chaotic attractor of this new Rössler-like system is
fractional, which is described as

DL = j +
1∣∣λj+1
∣∣

j∑
i=1

λi = 2 +
1

|−1.0796| (0.0701 + 0) = 2.0649. (3.2)
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Figure 2: Chaotic attractor of system (2.2).
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Figure 3: Bifurcation diagram of system (2.2).
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3.3. Local Stability

By simple computation, it is easy to obtain that system (2.2) has two equilibria O(0, 0, 0) and
E(cy0, y0,−y0), where y0 = a + b. The Jacobian matrix for system (2.2) at the equilibrium
O(0, 0, 0) and the equilibrium E(cy0, y0,−y0) are, respectively, given by

J =

⎛
⎜⎜⎝

0 −1 −1
1 0 c
0 a −b

⎞
⎟⎟⎠, J̃ =

⎛
⎜⎜⎝

0 −1 −1
1 0 c
0 −a − 2b −b

⎞
⎟⎟⎠, (3.3)

and their corresponding characteristic equation are, respectively,

f(λ) = λ3 + bλ2 + (1 − ac)λ + a + b = 0, (3.4)

f̃(λ) = λ3 + bλ2 + (1 + 2bc + ac)λ − a − b = 0. (3.5)

According to Routh-Hurwitz’s criterion, the real parts of the roots of (3.4) are all negative if
and only if

b > 0, a + abc < 0, a + b > 0, (3.6)

and the real parts of the roots of (3.5) are all negative if and only if

b > 0, (bc + 1)(a + 2b) > 0, a + b < 0. (3.7)

The above analysis is summarized as follows.

Theorem 3.1. For the two equilibria O and E of the new Rössler-like system (2.2),

(1) when b > 0, a + abc < 0, a + b > 0, the equilibrium O is asymptotically stable.

(2) when b > 0, (bc + 1)(a + 2b) > 0, a + b < 0, the equilibrium E is asymptotically stable.

4. Hopf Bifurcation Analysis of the New System

4.1. Hopf Bifurcation Analysis about O(0, 0, 0)

Let us assume that the solutions to the new Rössler-like system (2.2) undergo a Hopf
bifurcation on some submanifold in parameter space corresponding to fixed c = c0. Then
the characteristic equation (3.4) has roots λ0 ∈ R and λ± = ±iω0, where ω0 ∈ R+. Then, one
can obtain that

f(λ) = (λ − λ0)
(
λ2 +ω2

0

)
= λ3 + bλ2 + (1 − ac)λ + a + b. (4.1)
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Clearly,

λ0 = −b, ω2
0 = 1 − ac, −λ0ω2

0 = a + b. (4.2)

From (4.2), it is easy to get that (3.4) has a pair of purely imaginary conjugate roots λ± =
±i
√
1 + a/b ≡ ±iω0 and a real root λ0 = −b if and only if

c = c0 =
−1
b
, 1 +

a

b
> 0. (4.3)

According to (3.4), one has

λ′(c) =
aλ

3λ2 + 2bλ − ac + 1
. (4.4)

Therefore,

Re(λ′(c0)) =
ab3ω2

0

2(a + b)2 + 2b4ω2
0

. (4.5)

By Hopf bifurcation theorem [18] and the above analysis, we have the following

Theorem 4.1 (Existence of Hopf bifurcation). When a/= 0, b > 0, a + b > 0 and c passes through
the critical value c0 = −1/b, system (2.2) undergoes a Hopf bifurcation at the equilibrium point
O(0, 0, 0).

4.2. Direction and Stability of Bifurcating Periodic Orbits

In this section, we apply the normal form theory [18] to study the direction, stability, and
period of bifurcating periodic solutions for system (2.2).

The eigenvectors υ1, υ0 associated with λ+ = iω0, λ0 = −b are, respectively,

υ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 1
a
−
√
b2 + ab

a
i

b

a
−
√
b2 + ab

ab
i

1

⎞
⎟⎟⎟⎟⎟⎟⎠

, υ0 =

⎛
⎜⎜⎜⎜⎜⎝

1
b

0

1

⎞
⎟⎟⎟⎟⎟⎠

. (4.6)
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Define

P = (Reυ1, Imυ1, υ0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 1
a

−
√
b2 + ab

a

1
b

b

a
−
√
b2 + ab

ab
0

1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(
x, y, z

)T =
(
x1, y1, z1

)T
.

(4.7)

Then system (2.2) can be written into

ẋ1 = −ω0y1 + F1
(
x1, y1, z1

)
,

ẏ1 = ω0x1 + F2
(
x1, y1, z1

)
,

ż1 = −bz1 + F3
(
x1, y1, z1

)
,

(4.8)

where

F1
(
x1, y1, z1

)
= k

(
−b2x2

1 +

√
b2 + ab

2
x1y1 − a + b

b
y2
1

)
,

F2
(
x1, y1, z1

)
=

b2√
b2 + ab

F1
(
x1, y1, z1

)
,

F3
(
x1, y1, z1

)
=

b3 + b

a
F1
(
x1, y1, z1

)
,

(4.9)

in which

k =
1

a(b3 + b + a)
. (4.10)



8 Abstract and Applied Analysis

In the following, we will follow the procedures proposed by Hassard et al. [18] to figure out
the necessary quantities. One can get

g11 =
1
4

[
∂2F1

∂x2
1

+
∂2F1

∂y2
1

+ i

(
∂2F2

∂x2
1

+
∂2F2

∂y2
1

)]

=
k
(
a + b + b3

)

2b
+ i

k
(
ab + b2 − b4

)

2
√
b2 + ab

,

g02 =
1
4

[
∂2F1

∂x2
1

− ∂2F1

∂y2
1

− 2
∂2F2

∂x1∂y1
+ i

(
∂2F1

∂x2
1

− ∂2F1

∂y2
1

+ 2
∂2F2

∂x1∂y1

)]

= − k
(
b3 + 2a + 2b

)

4b
− i

k
(
2b4 + 3b2 + 3ab

)

4
√
b2 + ab

,

g20 =
1
4

[
∂2F1

∂x2
1

− ∂2F1

∂y2
1

+ 2
∂2F2

∂x1∂y1
+ i

(
∂2F1

∂x2
1

− ∂2F1

∂y2
1

− 2
∂2F2

∂x1∂y1

)]

= − k
(
3b3 + 2a + 2b

)

4b
− i

k
(
2b4 + b2 + ab

)

4
√
b2 + ab

,

G21 =
1
8

[
∂3F1

∂x3
1

+
∂3F1

∂x1∂y
2
1

+
∂3F2

∂x2
1∂y1

+
∂3F2

∂y3
1

+ i

(
∂3F2

∂x3
1

+
∂3F2

∂x1∂y
2
1

− ∂3F1

∂x2
1∂y1

− ∂3F1

∂y3
1

)]
= 0,

G110 =
1
2

[
∂2F1

∂x1∂z1
+

∂2F2

∂y1∂z1
+ i

(
∂2F2

∂x1∂z1
− ∂2F1

∂y1∂z1

)]
= 0,

G101 =
1
2

[
∂2F1

∂x1∂z1
− ∂2F2

∂y1∂z1
+ i

(
∂2F2

∂x1∂z1
+

∂2F1

∂y1∂z1

)]
= 0.

(4.11)

Then we have

g21 = G21 + (2G110w11 +G101w20) = 0, (4.12)

where w11, w20 can be obtained by solving the following equations:

λ3w11 = −h11,

(λ3 − 2iω0)w20 = −h20,
(4.13)

in which

h11 =
1
4

(
∂2F3

∂x2
1

+
∂2F3

∂y2
1

)
, h20 =

1
4

(
∂2F3

∂x2
1

− ∂2F3

∂y2
1

− 2i
∂2F3

∂x1∂y1

)
, (4.14)

here, it is not necessary to calculate w11, w20, h11, h20 for obtaining the value of g21.
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From the above analysis, one can compute the following quantities:

C1(0) =
i

2ω0

[
g20g11 − 2

∣∣g11
∣∣2 − 1

3
∣∣g02
∣∣2
]

+
1
2
g21

=
11b6 − 35b4 − 35ab3 + 39b2 − 78ab + 39a2

48ω0a2
√
b2 + ab

+ i

[
16b9 − 37(b − a)b6 + (77b + 106a − 48)b4

96ω0a2b2(a + b)(b3 + b + a)

+

(
72a2b − 36b − 120a

)
b2 − (105a2 + 12

)
b − 40a3

96ω0a2b2(a + b)(b3 + b + a)

]
,

β2 = 2ReC1(0)

=
11b6 − 35b4 − 35ab3 + 39b2 − 78ab + 39a2

24ω0a2
√
b2 + ab

,

μ2 =
−ReC1(0)

α′(0)

=
−(a + b)

(
b3 + a + b

)(
11b6 − 35b4 − 35b3 + 39b2 − 78ab + 39a2)

24a3b4ω4
0

,

τ2 =
−(ImC1(0) + μ2ω

′(0)
)

ω0

=
2(a + b)

(
b3 + b + a

)(
11b6 − 35b4 − 35ab3 + 39b2 − 78ab + 39a2)

96ω2
0a

2b2(a + b)

−
[
16b9 − 37(b − a)b6 + (77b + 106a − 48)b4

96ω2
0a

2b2(a + b)(b3 + b + a)

−
(
72a2b − 36b − 120a

)
b2 − (105a2 + 12

)
b − 40a3

96ω2
0a

2b2(a + b)(b3 + b + a)

]
.

(4.15)

Now we can get the following theorem.

Theorem 4.2. System (2.2) exhibits a Hopf bifurcation at the equilibrium O(0, 0, 0) as c passes
through c0, with the following properties:

(a) if μ2 > 0(<0), the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic
solutions exist for c > c0(< c0);

(b) if β2 < 0(>0), the bifurcating periodic solutions are orbitally stable (unstable);

(c) if τ2 > 0(<0), the period of bifurcating periodic solutions increases (decreases).
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Figure 5: Phase diagram for system (2.2)with c = −1.2.

Remark 4.3. Here we only study the Hopf bifurcation about the equilibrium O(0, 0, 0). For
the Hopf bifurcation of system (2.2) at the equilibrium E(cy0, y0,−y0), We first introduce the
transformation x = x + cy0, y = y + y0, and z = z − y0. Then, system (2.2) becomes

ẋ = −y − z,

ẏ = x + cz,

ż = −(a + 2b)y − bz − y2;

(4.16)

hence, the discussion about the Hopf bifurcation of system (2.2) at the equilibrium
E(cy0, y0,−y0) is equivalent to the case of system (4.16) at (0, 0, 0). So the Hopf bifurcation
of the equilibrium point E(cy0, y0,−y0) can be treated similarly.

4.3. Numerical Simulations

When a = 0.5, b = 1, we can calculate c = −1 according to Theorem 4.1. It follows from the
results in Section 4.2 that μ2 = 21.5000, β2 = −3.5833, τ2 = −0.1052. In the light of Theorem 4.2,
since μ2 > 0, the Hopf bifurcation is supercritical, which means that the equilibriumO(0, 0, 0)
of system (2.2) is stable when c < c0 as shown in Figure 5. A Hopf bifurcation occurs when
c increases past c0, that is, a family of periodic solutions bifurcate from the equilibrium, as
shown in Figure 6. Since β2 < 0, each individual periodic solution is stable. Since τ2 < 0,
periods of bifurcating periodic solutions increase with increasing c.
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5. Anticontrol of Hopf Limit Circles Based on MPS

Next, we will design a stable Hopf limit circle into the Rössler system (2.1) via modified
projective synchronization (MPS) proposed by [17]. To this end, the closed-loop control
system based on MPS is formulated as follows:

ẋ = Ax + f(x) + u, (5.1)

ẏ = By + g
(
y
)
, (5.2)

where (5.1) denotes the response system and (5.2) stands for the drive system with a stable
Hopf limit circle. x = (x1, x2, . . . , xn)

T and y = (y1, y2, . . . , yn)
T are state variables of the

response system and the drive system, respectively. A,B are matrices, whereas f, g are
nonlinear functions. The vector u = (u1, u2, . . . , un)

T represents the controller to be designed,
with which the two systems can achieve synchronization by MPS. The symbols

ei = xi − αiyi, i = 1, 2, . . . , n (5.3)

stand for the errors between the state variables of the response system and those of the drive
one. α =diag(α1, α2, . . . , αn) denotes the scaling factor matrix of the MPS, which can change
the shape and size of the created Hopf limit circle. In order to achieve the modified projective
synchronization, the controller u for the active control [19] is chosen as

u = −Aαy − f(x) + α
(
By + g

(
y
)) − PKe, (5.4)

where P ∈ Rn×m,K ∈ Rm×n, and K is the feedback gain.
Then we obtain the error system

ė = (A − PK)e, (5.5)
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when the choice of K makes the real parts of all eigenvalues of (A − PK) negative by Routh-
Hurwitz criterion, the errors ei(i = 1, 2, . . . , n) exponentially converge to zero as time t → ∞
and the MPS between the response system (5.1) and the drive system (5.2) occurs.

Remark 5.1. For a feasible control, the feedback gain K can also be selected by the pole
placement technique [20] such that the real parts of all eigenvalues of (A − PK) are negative,
when the controllability matrix is of full rank. In addition, P can also be adjusted feasibly.

Remark 5.2. Notice that the values of the scaling factor components αi /= 0, i = 1, 2, . . . , n have
no effect on the controllability of the error system (5.5), because the eigenvalues of (A − PK)
are independent on the scaling factor matrix α. This implies that we can arbitrarily adjust the
scaling factor αi /= 0, i = 1, 2, . . . , n to change the shape of the created Hopf limit circle without
worrying about the robustness during control.

Now take the Rössler system (2.1) as the response system in which we want to create
a stable Hopf limit circle. First, rewrite system (2.1) as follows:

ẋ1 = −x2 − x3,

ẋ2 = x1,

ẋ3 = a
(
x2 − x2

2

)
− bx3.

(5.6)

Note that the system is chaotic with parameters (a, b) = (0.5, 0.5) and the chaotic attractor is
shown in Figure 1.

Next, choose the new Rössler-like system (2.2)with parameters (a, b, c) = (0.5, 1,−0.5)
as the drive system, and rewrite it as follows:

ẏ1 = −y2 − y3,

ẏ2 = y1 − 0.5y3,

ẏ3 = 0.5y2 − y3 − y2
2 .

(5.7)

According to dynamical analysis in Section 4, its stable Hopf limit circle surrounding the
equilibriumO(0, 0, 0)will appear, as shown in Figure 6. By the MPS scheme proposed above,
the signal of the stable Hopf circle is employed to drive the Rössler system (5.6) to generate
a stable Hopf circle surrounding the equilibrium O(0, 0, 0).

In the controller u as stated in (5.4), we have

A =

⎛
⎝

0 −1 −1
1 0 0
0 0.5 −0.5

⎞
⎠, f(x) =

⎛
⎝

0
0

−0.5x2

⎞
⎠,

By + g
(
y
)
=

⎛
⎝

−y2 − y3

y1 − 0.5y3

0.5y2 − y3 − y2
2

⎞
⎠, P =

⎛
⎝

0
0
1

⎞
⎠.

(5.8)
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Let K = (k1, k2, k3), then

A − PK =

⎛
⎝

0 −1 −1
1 0 0

−k1 0.5 − k2 −0.5 − k3

⎞
⎠, (5.9)

and the corresponding characteristic equation is

f(λ) = λ3 +
(
k3 +

1
2

)
λ2 + (1 − k1)λ + k3 − k2 + 1 = 0. (5.10)

According to Routh-Hurwitz criterion, the real parts of the roots of (5.10) are all negative if
and only if

k3 +
1
2
> 0, k3 − k2 + 1 > 0, k2 − k1

(
1
2
− k3

)
− 1
2
> 0. (5.11)

As long as the feedback gain K = (k1, k2, k3) satisfying condition (5.11) is chosen, the MPS
between the response system (5.6) and the drive system (5.7) will be achieved according to
the analysis above, that is, we can successfully generate a stable Hopf limit circle surrounding
O(0, 0, 0) in Rössler system (5.6) and the scaling factor αi /= 0, i = 1, 2, 3, can be arbitrarily
adjusted to change the shape of the created Hopf circle.

Case 1. Choose α = diag(1, 2, 3) and K = (0, 1, 1). It is easy to verify that the feedback gain
K = (k1, k2, k3) satisfies condition (5.11). The time evolution of the errors is shown in Figure 7.
A stable Hopf limit circle surrounding O(0, 0, 0) is created as shown in Figure 8.

Case 2. Choose α = diag(−1,−1,−1) and K = (−1, 2, 3). It is easy to verify that the feedback
gain K = (k1, k2, k3) satisfies condition (5.11). The time evolution of the errors is shown
in Figure 9. Another stable Hopf limit circle surrounding O(0, 0, 0) is created as shown in
Figure 10.

The above numerical simulation results are presented to illustrate the effectiveness of
theMPS-based anticontrol of Hopf circles. Furthermore, the feedback gainK = (k1, k2, k3) can
change the speed of convergence of the error system, and the scaling factor αi /= 0, i = 1, 2, 3,
can be adjusted to change the shape and size of the created Hopf limit circle.

6. Conclusions

In this paper, a new Rössler-like system has been proposed and its dynamical behaviors are
analyzed. By choosing an appropriate bifurcation parameter, a Hopf bifurcation occurs at
the equilibrium point in this system when the bifurcation parameter exceeds a critical value.
The direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are
analyzed in detail. Further, a stable Hopf limit circle is generated surrounding the equilibrium
point in the response system (the original Rössler system) via a modified projective
synchronization. Numerical simulations illustrated the effectiveness of the anticontrol of
Hopf limit circles. There are still some unknown dynamical behaviors such as heteroclinic



14 Abstract and Applied Analysis

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

Time

E
rr
or
s

−0.2

−0.4

−0.6

e1(t)
e2(t)
e3(t)

Figure 7: Synchronization errors in Case 1.

0

1
1.5

0

2

4

0.5

0

−0.5

−1

−1.5

−2

−2 −1 −0.5
0.5

x
3

x2
x1

Figure 8: The created Hopf circle in Case 1.

(homoclinic) orbits about this system, as well as chaotic control to it, which deserve to be
further investigated.
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International Journal of Bifurcation and Chaos, vol. 16, no. 8, pp. 2395–2406, 2006.

[4] Y. Liu and Q. Yang, “Dynamics of a new Lorenz-like chaotic system,” Nonlinear Analysis, vol. 11, no.
4, pp. 2563–2572, 2010.

[5] G. Chen and T. Ueta, “Yet another chaotic attractor,” International Journal of Bifurcation and Chaos, vol.
9, no. 7, pp. 1465–1466, 1999.
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