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We introduce a new iterative algorithm for finding a common element of the set of solutions of a
system of generalized mixed equilibrium problems, zero set of the sum of a maximal monotone
operators and inverse-strongly monotone mappings, and the set of common fixed points of an
infinite family of nonexpansive mappings with infinite real number. Furthermore, we prove under
some mild conditions that the proposed iterative algorithm converges strongly to a common
element of the above four sets, which is a solution of the optimization problem related to a strongly
positive bounded linear operator. The results presented in the paper improve and extend the recent
ones announced by many others.

1. Introduction

Throughout this paper, we denoted by N and R* the set of all positive integers and all
positive real numbers, respectively. We always assume that H is a real Hilbert space with
inner product (:,-) and norm || - ||, respectively, and C is a nonempty closed convex subset of
H.Let ¢ : C — R be a real-valued function, © : C x C — R be an equilibrium bifunction,
and ¥,® : C — H be two nonlinear mappings. The generalized mixed equilibrium problem with
perturbed mapping is to find x* € C such that

O(x*, y) +9(y) —p(x*) + (¥ + D)x*,y -x*) >0, VyeC. (1.1)
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The set of solutions of the problem (1.1) is denoted by GMEP(©, ¢, ¥ + ®). As special cases
of the problem (1.1), we have the following.

(1) If @ = O, then the problem (1.1) reduces to the generalized mixed equilibrium problem
of finding x* € C such that

O(x*, y) +p(y) —p(x*) + (¥x*,y —x*) >0, VyeC, (1.2)

which was introduced and studied by Peng and Yao [1]. The set of solutions of the
problem (1.2) is denoted by GMEP (O, ¢, ¥).

2) If ¥ = @ = 0, then the problem (1.1) reduces to the mixed equilibrium problem of
finding x* € C such that

O(x*y) +9(y) —p(x*) >0, VyeC (1.3)

which was consider by Ceng and Yao [2]. The set of solutions of the problem (1.3)
is denoted by MEP ().

(3) If @ = ¢ = 0, then the problem (1.1) reduces to the generalized equilibrium problem of
finding x* € C such that

O(x*,y) + (¥x*,y-x*) >0, VyeC, (1.4)

which was consider by S. Takahashi and W. Takahashi [3]. The set of solutions of
the problem (1.4) is denoted by GEP(©, ¥).

(4) f ¥ = ® = ¢ = 0, then the problem (1.1) reduces to the equilibrium problem of finding
x* € C such that

O(x*,y) >0, VYyeC (1.5)

The set of solutions of the problem (1.5) is denoted by EP(©).

(5) If © = @ = ¢ =0, then the problem (1.1) reduces to the classical variational inequality
problem of finding x* € C such that

(¥x*,y-x*)>0, VyeC (1.6)

The set of solutions of the problem (1.6) is denoted by VI(C, ¥). It is known that
x* € C is a solution of the problem (1.6) if and only if x* is a fixed point of the
mapping Pc(I — A\W), where A > 0 is a constant and I is the identity mapping.
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The generalized mixed equilibrium problems with perturbation is very general in the sense
that it includes fixed point problems, optimization problems, variational inequality problems,
Nash equilibrium problems, and equilibrium problems as special cases (see, e.g., [4, 5]).
Numerous problems in physics, optimization, and economics reduce to find a solution of
problem (1.2). Several methods have been proposed to solve the fixed point problems,
variational inequality problems, and equilibrium problems in the literature (see, e.g., [6-34]).

Let A be a strongly positive bounded linear operator on H; that is, there exists a
constant y > 0 such that

(Ax,x) >¥||lx|>, VYxe€H. (1.7)

Recall that a mapping f : C — C is said to be contractive if there exists a constant
a € (0,1) such that

/) =f@)ll < allx-yll, ¥xyeC (1.8)
A mapping T : C — Cis said to be
(1) nonexpansive if
ITx-Ty|| <|lx-y|, VYxyeC (1.9)
(2) firmly nonexpansive if
|Tx - Ty||> < (Tx-Ty,x-y), Vx,yeC, (1.10)

(3) k-strictly pseudocontractive if there exists a constant k € [0, 1) such that
| Tx - Ty||2 <|lx- y||2 +k||(I-T)x-I- T)y||2, Vx,y € C. (1.11)

We denote by F(T) the set of fixed points of T, thatis, F(T) = {x € C: x = Tx}.
Recall the following definitions of a nonlinear mapping B : C — H; the following is
mentioned.

Definition 1.1. The nonlinear mapping B : C — H is said to be
(i) monotone if

(Bx-By,x-y)>0, VYx,yeC, (1.12)
(ii) p-strongly monotone if there exists a constant > 0 such that

(Bx - By, x-y) > p|lx - y||2, Vx,y €C, (1.13)
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(iii) v-inverse-strongly monotone if there exists a constant v > 0 such that

(Bx - By,x—y) >v||Bx - By 2 Vx,y € C. (1.14)

LetW : H — 2H be a set-valued mapping. The set D(W) defined by D(W) = {x € H :
Wx #@} is said to be the domain of W. The set R(W) defined by R(W) = ey Wx is said to
be the range of W. The set G(W) defined by G(W) = {(x,y) e HxH : x € D(W),y € R(W)}
is said to be the graph of W.

Recall that W is said to be monotone if

(x-y,f-8 >0, Y(x,f) (v.8) € GW). (1.15)

W is said to be maximal monotone if it is not properly contained in any other monotone
operator. Equivalently, W is maximal monotone if R(I + rW) = H for all » > 0. For a
maximal monotone operator M on H and r > 0, we may define the single-valued resolvent
J, =T +rW)': H - D(W). It is known that J, is firmly nonexpansive W=1(0) = F(J,),
where F(J,) denotes the fixed point set of .

We discuss the following algorithms for solving the solutions of variational inequality
problems and fixed point problems for a nonexpansive mapping (see, e.g., [29, 35-43]).

In 2010, Chantarangsi et al. [44] introduced a new viscosity hybrid steepest descent
method for solving the generalized mixed equilibrium problems (1.2), variational inequality
problems, and fixed point problems of nonexpansive mappings in a real Hilbert space. More
precisely, they proved the following theorem.

Theorem CCK [see [44]]

Let C be a nonempty closed and convex subset of a real Hilbert space H. Let ©;, ©; be
two bifunctions satisfying condition (H1)-(H5), let ¥;, ¥, be ¢-inverse-strongly monotone
mapping and p-inverse-strongly monotone mapping, respectively, and let T : C — C be
a nonexpansive mapping. Let B be an w-Lipschitz continuous and relaxed (v, v) cocoercive
mapping, f : C — C a contraction mapping with coefficient & € (0,1), and A a strongly
positive linear bounded self-adjoint operator with coefficient y > 0 and 0 < y < y/a. Suppose
that Q := F(T) N GMEP(©4, ¢, ¥1) N GMEP(O,, ¢, ¥,) N VI(C, B). Let {z,}, {un}, {ya}, and
{x,} be generated by

tn = VO (x, = 1 ¥ax),
0 = VO (uy - 1, Winy),
zn = Pc(v, — a,BTvy,), (1.16)
Yn = €xY [ (xXn) + Pt + (1= Pu)] - €,A)zp,
Xni1 = YuXn + (L= yu)Yn, Yn2>1,

where {y,} C [a,b] C [0,2¢], {sn} C [c,d] C [0,2f], {ya} C [h,j] C (0,1), {yn}, {€n}, and {fn}
are three sequences in (0, 1) satisfying the following conditions:
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(C1) lim,—, n€y =0 and 3,72 1€, = o0,
(C2) 0 < liminf,_, f, <limsup, B, <1,

)
)
(C3) 0 < liminf, _, opy < limsup,, _,  pn < 2 and limy, _, oo|pns1 — pu| = 0,
(C4) 0 < liminf, ., 1, < limsup, | 7, <2&and limy, oo |[rys1 — 74| = 0,

) {a

(C5) {an} C[e,g] € (0,2(v —vw?)/w?), v > vw?* and limy, _, o |ans1 — an| =0

Then, {x,} converges strongly to x* = Po(yf + (I — A)) (x*).

Very recently, Yu and Liang [45] proved the following convergence theorem of finding
a common element in the fixed point set of a strict pseudocontraction and in the zero set of a
nonlinear mapping which is the sum of a maximal monotone operator and inverse strongly
monotone mapping in a real Hilbert space.

Theorem YL [see [45]]

Let H be a real Hilbert space and C a nonempty close and convex subset of H. Let W :
H — 2" and W, : H — 2H be two maximal monotone operators such that D(W;) c C and
D(W,) C C, respectively. Let S : C — C be a k-strict pseudocontraction mapping, A: C — H
an a-inverse-strongly monotone mapping, and B : C — H an p-inverse-strongly monotone
mapping. Assume that Q := F(S) N (A + W1)7H(0) N (B + W,) 1 (0) #0. Let {x,} be a sequence
generated by

x1 € C,
Yn = J1,(xn — t,Bxy), (1.17)

Xnt+l = AuU + ,ann + Yn [6n]s,, (yn - SnA]/n) + (]- - 671)]5,, (yn - SnA]/n)]/ VTl 2 1/

where u € C is a fixed element, J;, = (I + snwl)f1 ]t,, =(I+t Wz)fl, {sn} is a sequence
in (0,2a), {t,} is a sequence in (0,2f), and {a,}, {f.}, {yx}, and {6,} are sequences in [0, 1]
satisfying the following conditions:

(C1) limy—, oy, = 0 and 3,7y = o0,

(C2) 0 < liminf, , f, <limsup, ,_ p, <1,

(C3)0<a<s,<b<2aandlim, ., (Sus1—S,) =0,

(C4)0<c<ty<d<2fand limy o (tp1 —tn) =0,

(C5) 0<c<k<b,<e<landlim,_ (6,41 —6,) =0.
Then, the sequence {x,} converges strongly to x* = Pox™.

On the other hand, the following optimization problem has been studied extensively
by many authors:

min = (Ax,x)+—||x ul)? - h(x), (1.18)
xeQ 2

where Q = Niei Cn, C1,Cy, ... are infinitely many closed convex subsets of H such that
M1 Cn#0, u € H, p > 0 is a real number, A is a strongly positive linear bounded operator
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on H, and h is a potential function for yf (i.e., W'(x) = yf(x) for all x € H). This kind of
optimization problem has been studied extensively by many authors (see, e.g., [5, 46-52]) for
when Q = (N, C, and h(x) = (x,b), where bis a given point in H.

The following questions naturally arise in connection with above the results.

Question 1. Could we weaken the control conditions of Theorems CCK and YL in (C3) and
(C4)?

Question 2. Can Theorem YL be extended to finding a common element of the set of solutions
of a system generalized mixed equilibrium problems and the set of common fixed points of
infinite family of nonexpansive mappings?

The purpose of this paper is to give the affirmative answers to these questions
mentioned above. Motivated by the iterative process (1.16) and (1.17), we introduce a new
iterative algorithm (3.2) below, for finding a common element of the set of solutions of
a system of generalized mixed equilibrium problems, zero set of the sum of a maximal
monotone operators and inverse-strongly monotone mappings, and the set of common fixed
points of an infinite family of nonexpansive mappings with infinite real number. Then, we
prove the strong convergence theorem of these iterative process in a real Hilbert space. The
results presented in the paper improve and extend the recent ones announced by many
others.

2. Preliminaries

Definition 2.1 (see [53]). Let C be a nonempty convex subset of a real Hilbert space H. Let T;,
i=1,2,..., be mappings of C into itself. For each j = 1,2,..., let aj = (zx{,aé, ag) elIxIxlI,

where I = [0,1] and zx{ +al+ aé = 1. For every n € N, we define the mapping S,, : C — C as

follows:

un,n+1 = I/
— N n n
un,n - [Xl Tnun,n+1 + d2 un,n+l + “3 I/

n-1 n-1 n-1
Un,n_l =o Tn—l un,n + a, Un,n + ag I,

k+1 k+1 k+1
Upke = ay Tl ko + 0(2+ U + L% I, (2.1)

k k k
un,k =0 Tkun,k+1 +a, un,k+1 +ag I,

2 2 2
ung = aszung + azll,ls + (X3I,

Sp=Upu1 = a1l + agU o + a1
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Such a mapping S, is nonexpansive from C into itself, and it is called S-mapping generated
by Tn, Ty-1,...,Th and ay, apq, ..., a1.

Lemma 2.2 (see [53]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{Ti}2, be nonexpansive mappings of.C into itself with E(Ty) f(b and let aj = (), ab,al) e IxIxI,
where I = [0,1], “]1 + zxé + a]3 =1, “]1 + zxé <b<1,and zx]l,zxé,aé € (0,1) forall j =1,2,.... Forall

n €N, let S, and S be S-mappings generated by T,,, Ty—1,..., Ty and ay, a1, ..., a1 and Ty, Ty, . ...
and a,, &y_1, . .., respectively. Then,

(i) Sy is nonexpansive and F(S,) = N, F(T;), foralln >1,
(ii) for all x € C and for all positive integer k, the lim,, _, U, k exists,
(iii) the mapping S : C — C defined by

Sx:=lim S,x = limU,1x, VxeC (2.2)

n— oo n—oo

is a nonexpansive mapping such that F(S) = (2 F(T;), and it is called the S-mapping
generated by Ty, Ty—1, ... and oy, ayq, ...,

(iv) if K is any bounded subset of C, then

lim sup||S,x - Sx|| = 0. (2.3)

n—=% yeK

Lemma 2.3 (see [54]). Let {x,} and {1} be bounded sequences in a Banach space X and let {f,} be
a sequence in [0,1] with 0 < liminf, ., p, < limsup,_, B, < 1. Suppose that x,.1 = (1 - ), +
Puxn forall integersn > 0 and limsup,, _,  (|lns1=Inll=llXns1—Xnll) < 0. Then, limy, _, o [|I,—x,|| = 0.

Lemma 2.4 (see [55]). Let H be a real Hilbert space. Then, the following inequalities hold:
@) lAx + (1= Dyl = Mx|? + (1 = Dllyl* = A1 = Vllx - yl?, Vx,y € H and L €[0,1],
(i) [lx + y|* < [Ix|> + 2(y, x + y), Vx,y € H.

Lemma 2.5 (see [56]). Let C be a nonempty closed convex subset of a real Hilbert space H, A : C —
H a mapping, and W : H — 2H a maximal monotone mapping. Then,

F(J,(I-rA)) = (A+W)0), V¥r>O0. (2.4)

Lemma 2.6 (see [57]). Let H be a real Hilbert space and let M be a maximal monotone operator on
H. Forr > 0and x € H, define the resolvent J,x. Then, the following holds:

o= Jig Jox =) 2 1o~ il 25)

forall s,t >0and x € H.

For solving the equilibrium problem for bifunction © : C x C — R, let us assume that
O satisfies the following conditions:
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(H1) ©(x,x) =0forall x € C,
(H2) © is monotone; that is, O(x,y) + O(y,x) < 0forall x,y € C,

)
)
(H3) for each y € C, x — O(x, y) is concave and upper semicontinuous,
(H4) for each y € C, x — O(x, y) is convex,

)

(H5) for each y € C, x — O(x, y) is lower semicontinuous.

Definition 2.7. A differentiable function K : C — R on a convex set C is called

(i) convex [2] if

K(y)-K(x) > (K'(x),y-x), Vx,yeC, (2.6)

where K'(x) is the Fréchet differentiable of K at x;

(ii) strongly convex [2] if there exists a constant o > 0 such that

K(y) - K(x) - (K'(x),x - y) > <g>||x— y||2, Vx,y € C. (2.7)

It is easy to see that if K : C — R is a differentiable strongly convex function with
constant o > 0, then K' : C — H is strongly monotone with constant ¢ > 0.

Let© : C x C — R be an equilibrium bifunction satisfying the conditions (H1)-(H5).
Let r be any given positive number. For a given point x € C, consider the auxiliary mixed
equilibrium problem to finding y € C such that

O(y,z) +o(z) —p(y) + %(K’(y) -K'(x),z-y) >0, VzeC, (2.8)

where K'(x) is the Fréchet differentiable of K at x. Let Vr(e"p) : C — C be the mapping such
that for each x € C, V,(e"p) (x) is the set of solutions of MEP(x, y), that is,

V9 (x) = {y €C:0(y,z) +9(z) —p(y) + %(K’(y) -K'(x),z-y)20, vz ¢ C}'
(2.9)

Then, the following conclusion holds.

Lemma 2.8 (see [58]). Let C be a nonempty closed convex subset of a real Hilbert space H, and let
¢ : C — R be a lower semicontinuous and convex functional. Let © : C x C — R be a bifunction
satisfying the conditions (H1)-(H5). Assume that

(i) K : C — Ris strongly convex with constant o > 0 and the function x — (y — x, K'(x))
is weakly upper semicontinuous for each y € C;

(ii) for each x € C, there exist a bounded subset D, C C and z, such that for all y ¢ Dy,

O(y, zx) + p(zx) —p(y) + %<K'(y> - K'(x),zx - y) <0. (2.10)
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Then, the following holds:

(a) V,(e’lp) is single-valued mapping;

(b) Vr(e"p) is nonexpansive if K' is Lipschitz continuous with constant v > 0 and

(K'(x1) = K'(x2), u1 — uz) 2 (K'(u1) = K'(u2), 11 —u2), Vx1,x2 €C, (2.11)

where u; = Vr(@’q’) (x;) fori=1,2;
() F(V,*") = MEP(©, ¢);
(d) MEP(O©, ¢) is closed and convex.

In particular, whenever © : C x C — R s a bifunction satisfying the conditions (H1)-
(H5) and K(x) = ||x|?>/2, for all x € C, then Vr(e’w) is firmly nonexpansive; that is, for any
x,yeC,

2
ViOPx vy | < (VO vy, x -y ). (2.12)

In this case, Vr(e"’J) is rewritten as Tr(e’(p). If, in addition, ¢ = 0, then Tr(e’(p) is rewritten as Tr@
(see [59, Lemma 2.1] for more details).

Remark 2.9. We remark that Lemma 2.8 is not a consequence of [2, Lemma 3.1] because the
condition of the sequential continuity from the weak topology to the strong topology for the
derivative K’ of the function K : C — R does not cover the case K (x) = ||x||>/2.

Lemma 2.10. Let C, H, O, ¢, and V" be as in Lemma 2.8. Then, the following holds:
< K’ (Vs(@,qJ) x) _K <Vt(@,<p) x), Vs(@,tp) x— Vt(@,tp) x>

(2.13)

< S (K (VIO R) - K/ (), VIO x - VO,

forall s,t >0and x € C.

Proof. By similar argument as in the proof of Proposition 1 in [58], for all 5, > 0 and x € C,
letu =V ""xand v = Vt(@’@ x; we have

O(u,y) +¢(y) —pu) + §<K’(u) ~K'(x),y-u) >0, VxeC, (2.14)

O(v,y) +9(y) - (o) + %(K’(v) - K'(x),y-v)>0, VxeC (2.15)
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Lety =vin (2.14) and y = u in (2.15); we have

O(u,0) + (o) ~ p(u) + (K'(w) ~ K'(x),0 - u) 20,

(2.16)
@wﬂn+¢@n—¢w)+%ucw)—meﬂ—v>za
Adding up the last two inequalities and from the monotonicity of ©, we obtain that
%(K’(u) ~K'(x),0—u) + %(K’(v) ~K'(x),u—v) >0. (2.17)
It follows that
<K’(v) ;K’(x) B K'(u) ;K'(x),u_v> >0. (2.18)
We derive from (2.18) that
os<Kﬁo—K%m—£(K@o—K%myu—v>
:<Kﬁ»—Kﬁ0+qu—Kx@—E(Kuo—K%@)u—v> (2.19)
=<wa-4vw)+(1-2)@(@)-K«@)u—v>
Hence, we obtain that
(K'() = K'(0),u~) < Z (K@) - K'(x),u ). (2.20)
O

The following lemma can be found in [60, 61] (see also [62, Lemma 2.2]).

Lemma 2.11. Let C be a nonempty closed convex subset of a real Hilbert space H and g : C —
RU{+o0} a proper lower semicontinuous differentiable convex function differentiable convex function.
If x* is a solution to the minimization problem

g(x") = inf g(x), (2.21)

then

(8'(x),x-x") 20, xeC. (2.22)
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In particular, if x* solves the optimization problem

o 1 )
= Slx—ul* - 2.23
min & (Ax, x) + 3 x - ulf - hx), (223)
then
(u+ (yf-(I+pA))x*,x-x*) <0, x€C, (2.24)

where h is a potential function for y f.

Lemma 2.12 (see [49]). Assume that {a,} is a sequence of nonnegative real numbers such that

a1 < (1-o0y)a, +6,, (2.25)

where {0y} is a sequence in (0,1) and {6,} is a sequence in R such that

(i) ZZO:OO-n = O,

(ii) imsup, ,  6,/0n < 00r 3724|6,] < o0.

Then, lim,, . a, = 0.

3. Main Results
Now, we give our main results in this paper.

Theorem 3.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let ¢1,¢, : C — R
be two lower semicontinuous and convex functionals, and let ©1,0; : C x C — R be two bifunctions
satisfying conditions (H1)-(H5). Let ¥, W), @1, D, : C — H be ﬁl—inverse—strongly monotone
mapping, ﬁz—inverse—strongly monotone mapping, y1-inverse-strongly monotone mapping, and y-
inverse-strongly monotone mapping, respectively, and let B1,B, : C — H be gl-inverse-strongly
monotone mapping and gg—inverse-strongly monotone mapping, respectively. Let {T;};2; : C — C be
an infinite family of nonexpansive mappings, and let a; = (zx{,aé, zxé) €1 x1IxI, wherel = [0,1],
ai +a£ +aé =1, (x{ +a£ <b<1,and a’l',ajz',aé' € (0,1) forall j =1,2,.... Foralln € N, let S,, and
S be S-mappings generated by T,,, Ty—1, ..., Ty and ay, ap_1, ..., 00 and T, Ty, ... and ay, oy, . . .,
respectively. Let Wi, W, : H — 2H pe two maximal monotone operators such that D(W;) C C and
D(W,) c C, respectively. Assume that

Q= (F(T;) N\GMEP (O, 1, ¥1 + @1)
- (3.1)

NGMEP(0,, 2, ¥, + @) N (By + W1) ™' (0) N (By + W)™ (0) #0.
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Let f : C — H be a contraction mapping with a coefficient a € (0,1), and let A : C — H bea
strongly positive linear bounded operator with a coefficient y € (0,1). Let y > 0 and y > 0 be two
constants such that 0 <y < (1 + p)y/a. Let {x,} be a sequence defined by u, x; € H and

O,,
1y = VO (st = 10 (W + D) x),

o,
Uy = V,fn ! W(un — pn (P11 + 1) uty),
Yn = ]tn (Un - tnBZUn)/

Xns1 = €n(U+Yf(Snvn)) + Buxn + (1= )] — €x(I + pA))SuJs, (Yn — SuBiyn), V¥n>1,
(3.2)

where Jo, = (I+s,W0)7™, Ji, = (I+ W2)™, {sa) € (0,28), {ta} C (0,2&), {ua)} C
(O,min{pi,11}), {rn} C (0,min{p,»}), {€n} and {B,} C (0,1). Assume that the following
conditions are satisfied:

(C1) foralli=1,2, K; : C — R is strongly convex with constant o; > 0 and its derivative K;
is Lipschitz continuous with constant v; > 0 such that the function x — (y — x, K(x)) is
weakly upper semicontinuous for each y € C,

(C2) for all i = 1,2 and for each x € C, there exist a bounded subset Dy C C and z, € C such
that, for all y & Dy,

0i(y, zx) + pi(zx) — i(y) + %(Ké (v) - Ki(x),zx —y) <0, (3.3)

(C3) lim, _ ,al, =0,

(C4) limy,_, o€, = 0and 3,77 1€y = o0,

(C5) 0 < liminf, , f, < limsup, ,_ p. <1,

(C6) 0 < liminf, , opy, <limsup, | pn < min{ﬁl,ﬁ} and imy, o pin / Pns1 = 1,
(C7) 0 < liminf, 1, < limsup, , 7, < min{ﬁz,?z} and limy, _, o7, /Ths1 = 1,
(C8) 0 < liminf, s, <limsup, , s, < 251 and limy, ., .S/ Sni1 = 1,

(C9) 0 < liminf,_, t, <limsup, , _t, < 252 and lim,, _, o t,,/tpe1 = 1.

Then, the sequence {x,} defined by (3.2) converges strongly to x* € Q, provided Vr(fl)"p) is firmly
nonexpansive, where x* solves the following optimization problem:

. . 2
r£1€1£§<Ax,x)+§||x ul|* = h(x). (3.4)

Proof. By the conditions (C4) and (C5), we may assume, without loss of generality, that €, <
1-p)1+ y||A||)_1 for all n € N. Since A is a linear bounded self-adjoint operator on C, we
have

IAll = sup{[{Aw, )| : u € C, [lul| =1} (3.5)
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Observe that

(A =Pu)] —en(I+pA))iL, i) =1 - Py — € — €np( All, 1)
> 1= fu - e enpllAl (36)

> 0.

This shows that (1 — ,)I — €,(I + pA) is positive. It follows that

(1= )T = en(T + pA) || = sup{[(((1 = fu) T - en(I + pA))it, )| - 5 € C, [il| = 1}
=sup{l - P — €n — enp(All, i) : i € C, |lii]| = 1}
S1=fn—en(l+py)
<1-Pn-e,(1+p)y.

(3.7)

First, we show that {x,} is bounded. Take x € Q. Since 0 < p, < min{ ﬁl,?l} and by
Lemma 2.4 (i), we have

lon — x|
2
[ 81+ 0110~ U G 1 05|

<t = (¥ + ©1)1a) = (T = (¥ + )T ||

= [t = %) = pu[ (¥ + D)1y — (%1 + D)F] ||

2
= ” % ((tn = %) = 240 (W11, — ¥1X)) + %((un = X) = 2 (P1uy — D1X))

1 _ 2] _ _
< 5 | e = %) = 2p4 (¥114, — ¥1 ) ||2 *5 || (n = %) = 2pt0 (@101, - (I>13c)||2
1 . ~ o i (3.8)
= 5 (ltn = X7 = g (10 = X, W11, = 1) + 405 W10, - 017
1 =12 - = 2 =112
t5 <||un = X||I” —4pp(un — x, Druy, — O1x) + 4, || D11y, — D1 x| )
1 —_ ~ —
< 5 (M =317 + (= ) 110~ W17
1 _ y _
+ 5 (14 =3I + 4 (= 72) | D110, — D17

= Yutn =TI + 2t (gt = ) W1t = BT + 240 (i — 1) | D110 — O

—2
<l = X%
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In a similar way, we can get

— ¥ ,, _ 2
= FIP = [| VAT (e = 7 (B + 2)2) = Vi @ = 1, (s + D))

< Mlen = %I + 27 (10 = B2 ) 220, = WX + 27, (1 = T ) | D2, — %]

< Jloen = %I
It follows from (3.8), and (3.9) that

lon = x| < [lun = x| < [l2¢n = X]|.

Setting z,, == Js, (Yn — SuB1yx). Since 0 < s, < 2§~1, we have

20 = X% = | Js (Y = $B1yn) = Jo, (X = 5B D) ||
< || (Y = $uB1yn) — (X~ 5:B1%) ||
= || (yn = %) = su(Biyn — Bi%)|”

= |yn = %||* = 2504 (yn — X, Biyu - BiX) + 52| By — Bix||*

< |y = |7 + $u(su = 281) | Biyn - BiX||”

<l = =II"
In a similar way, we can get

e = %\ = 1, @n = £aB2v) = J1, (X — £, Bo )|
< Nlon =X + ta(tn — 2&) | Bovn — BoX|?

< Jlon - x|
It follows from (3.10), (3.11) and (3.12) that

llzn =%l < [[yn = X|| < llon = %I < lun = || < [lx0 = ]|.

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

Since xp41 = €, (U + Y f(5n0n)) + Prnxn + (1 = Pu)] — €, (I + pA))Syzy, it follows from (3.13) that

l[o6n1 = ]|

= ||lentt + €n(y f (Snvn) = (I + pA)X) + Br(xn = %) + (1 = Bn)] — €, (I + pA)) (Snzn = X)||
< en”u” + €n||Yf(SnUn) - (I +/1A)E” + ﬁn“xn —§|| + (1 _ﬁn - €n(1 + l"?))”snzn _E”
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<enllull + eny || f(Suvn) = @) + enllyf ) = (T + pA)x|| + Pullxn - ]|
+ (1= By en(1+ 0T) 20 - 7
< enl|ull + enya||Snvn — X|| + €u|y f (%) = (I + pA)X|| + Bullxn — x|
+ (1= pu a1+ D) s~ )
< (U= ((U+ )Y —ya)en) loxn =Xl + enlly f () = (I + pA)X]| + enllull
I 60) (1 ey +

= (1= (A + w7y -ra)en)llxn =%l + ((L+ )Y —ya)en

(1+p)y-ya
(3.14)
By induction, we have
x)— (I +puA)x|| +
%0 - X|| < max{nx1 = lyf o) - (L pA)]| + el } V> 1. (3.15)
(L+p)y-ra

Hence, {x,} is bounded, so are {v,}, {y,}, and {z,}.

Next, we show that lim,,_, oo||Xps1 — X4 Since u, = Vr(nez’lm (xp — 1, (W + @y)x,) and

(©2,42)
Une1 = Vi (Xna1 = T (W2 + Do) xp41), we have

”un+1 - un”

O, (S7F
VAN (41 = Te1 (W2 + Do) xpi1) — Vr(,, : (PZ)(xn -1, (W2 + D) xy)

Tn+1

Q,, O,
<[V (a1 = Pt (% + @2)x001) = Vi (20 = 10 (¥ + D)%)
O,, O,
[ VAT o = (W2 + @2)0) = VEP (o0 = 1 (W + )

<Gt = Tt (W + Do) xpi1) — (X5 = 7 (P2 + Do) xp) ||

o, ¥
y(©: le)(xn — 1 (¥ + D) xy,) — Vr(n 2/42) (xn = 10 (W2 + D2)xp)

Tn+l

+

= |lxns1 = X = a1 [(W2 + Do) xpi1 — (W + Do) x ] + (17 = 701) (W2 + D) x4 |

e, O
V( 2,4p2) (xn _ rn(qu + @2)xn) _ Vr(,, 2/4p2) (xn - Tn(q‘rz + CD2)xn)

Tn+1

‘|

= ||xpa1 = T (Wo + Do) X1 — (x5 = Tt (W2 + Do) xp) + (1 — Ta1) (W2 + Do) x|

O,, Oy,
VO () = 1y (B + D)) = Vi) (2, — 10 (% + D) x,)

Tn+1

‘|

1-
.

n+1

< llxner = Xl + T [[ (W2 + @2) x|

Oy, ©2
V( 2/4p2) (xn — rn(lpz + (Dz)xn) - Vr(n 242) (xn - rn(IPZ + (DZ)xn) .

Tn+1

‘|

(3.16)
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In a similar way, we can get

O, O,
||vn+1 - Un” = | V}Emi & (un+1 — Hn+l (lpl + @1)Mn+1) - V;En 1491 (un — HUn (qu + q’l)”n)

1- Mt
U

|(¥1 + Dp)uy|| (3.17)

< ||un+1 - un” + Un+l

n+1

+ ||V, Uy, — Uy 1+CI)1 Uy, -V, Uy, — Uy 1+CD1 Uy,
[V ™ (1t = pn (81 + @1)10,) = V7 (1 = i (%1 + D1y

Hn+1 n

Substitution (3.16) into (3.17), we obtain

1-
T,

n+l

1- M
U

lone1 = onll < X0t = Xnll + 70 (W2 + Do) x, + Hn+1 [|(W1 + D) us|

n+1

O, O,
VO (s = 10 (W + @) x) = VO (2 = 10 (¥ + D) x,)

Tn+1

|

+ ||V‘u(ne+i,‘ﬂl) (un - ,un (Ipl + (Dl)un) - V;"@h%) (un - ,un (11!1 + (I)l)un)
)i

O, O,
V9 (s = 10 (W + @) 1) = Vi (2 — 1y (B + D) x,)

Tn+1

"n

Hn
Hn+l

1-

+

< lxns1 = xull + <|1 -

Tntl

‘|

+ ||V‘u(,,e+il¢l) (un - ,un (Ipl + (Dl)un) - V‘u(,,@h%) (un - ,un (11!1 + (Dl)un)

7

(3.18)

where My = sup,.; { pus1 [[(F1 + ©1)unl], 1 [| (W2 + D) xnl[}-
On the other hand, notice from Lemma 2.6 that

[[yne1 =yl
= Jty (Uns1 = tns1Bovns1) = Ji, (0 = taBovy) ||
< Wby (Ons1 = tn1 B2vns1) = Jt (On = taB2vn) | + |t (On = taB2vy) = Js, (On — taBavy) ||
< (@ns1 = tna1 Bovns1) = (On = taBovn) || + | Jty (On = taB2vn) = Js, (Un — tnBovn) ||
= [[(Un+1 = tns1BaOns1) = (On = tna1 BoOn) + (tn — tne1) B2vn||

+ ||]t,,+1 (Un - tnBZUn) - ]t,, (Un - tnBZUn)”

t t
< ||Un+1 - Un” + i1 - “ ”BZUnH +[1-—= ||]tn+l (Un — tuBovy) = (v, — tnBZUn)”
tn+1 tn+1
tn
< ||Un+1 - vn” +2(1- My,
tn+1

(3.19)

where M, > 0 is an appropriate constant such that My = sup, . {tus1l|Bavnll, [|Jt,., (vn —
tnBavn) — (Un — tnBovy) |}
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In a similar way, we can get from Lemma 2.6 that

|zn+1 = zall

= ||]Sn+] (yn+1 - Sn+1B1yn+1) - ]sn (yn - SnBlyn) ”
Sn

1= o 0 = B = (v = 5B |
n+1

1= 2 B+
Sn+1

< ynsr = vl + snn

MS/

1- 2

<Y1 =yl +2
n+1

(3.20)

where M; > 0 is an appropriate constant such that M3 = sup,., {su1l|Biyall, [l Js,.. (¥n -
SnB1Yn) — (Yn — SuBiyy)||}. It follows from (3.18) and (3.19) that
>L

Hn
Hn+l

t
1-—

n+1

+2

+(1-

S
+2|1 - =
Sn+l

1zns1 = znll < llxns1 = xnll + <‘1 -
Tn+1

(3.21)

V(@z (PZ) (xn -1y, (1};2 + (I)Z)xn) _ Vr(HG-)ZI‘pZ) (xn —Tn (IPZ + (I)Z)xn)

T+l

+ ”Vﬂ(g 1) (un — pn(¥1 + O1)uy) — V;n@w)l) (tn = pn(¥1 + O1)uy) ||,

where L = max{ M, M,, M3}.
Define the sequence {I,} by I, := (xp
Pnxn + (1 = Bu)ly, for all n € N, we note that

— Puxn)/ (1 = By), for all n € N. Then, x,1 =

Xn42 — ﬁn+1xn+1 Xn+l — ,ann

lpyi =1, = 1_ ﬂn+l - 1_ ﬂn
_ En+l (u + Yf(sn+1vn+1)) + ((1 - ﬁn+1)I — €n+l (I + I/lA))Sn+1Zn+1
1- ﬂn+1
_en(u+yf(Suvn)) + (L= Pu)I = en(I + pA))Snzn (3.22)
1- ﬁn
€n+1 €n
=1 [5 - (u+yf(Sni1vns1)) — ﬂn (u+yf(Snvn)) + T-p, (I+pA)Syzn
S (I + ‘MA) Sn+1Zn+1 + Sne1Zn+1 — SnZn.
1- ﬁrﬁ—l
It follows that

bl s =5 — "” ||u+Yf(Sn+lvn+1)_(I HA) St Zns ||

L1 =
(3.23)

‘Vlﬂ ” (I + #A)S"Zﬂ —u- Yf(Snvn)” + ”Sn+1zn+1 - Snzn”-
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Now, we estimate ||S;+12, — Spza||. By definition of S, for all n € N and for all w € Q, we
have

”Sn+lzn - Snzn” = ||un+1,lzn - un,lzn“

1 1 1 1 1 1
= ”alTl Upi12zn + aaUp10zn + a3z — ayTiU 0z, — ayU 02, — a3z,

al + lX%) 1T U220 — TiU 24|

IN

1= @) U1 220 = Unaz

1-a) (1 - @) Ui 520 = Unszall

(
(
(

IN

o

1l
—_

<1 - [Xé) IUns1,32zn = Unszall

1

n

< (1 - ag) ||un+1,n+1zn - un,n+1zn||
i=1

< ||un+l,n+1zn - Zn”

a{”lTnﬂzn + <1 - ai’”)zn -z,

a;H'l”TnHZn — Z|
< “?H(”Tnﬂzn = Thw|| + || Trw — z4))

< 20|z~ .

(3.24)
By the condition (C3), we obtain that
nILII;o”SnHZn = Snzul = 0. (3.25)

It follows from (3.21) that

1Sns1Zn41 = Suzall £ |Sns12n+1 = Sns1zZnll + [|Sne12n = Snzal|
< ||Zn+1 - Zn” + ||Sn+lzn - Snzn”

Tn tn

n+1

Hn
Hn+1

1- °n

+

< xns1 = Xl + <‘1 -

+2‘1—

+2‘1—

>L

Tn+1 Sn+l

O,, (S2¥
VO (= 10 (B + D) x) = Vi (2 — 10 (% + Do) )

Tn+1

+

+ ”V;ii"pl) (un — pn(¥1 + D1)uy) — V}En@”%)(un — pn(¥1 + D1)uy) ”
(3.26)
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It follows from (3.23) and (3.26) that

||ln+1 - ln” - ||xn+1 - xn”

< 1 nﬁ+1 ||u +Yf(Sns1Uns1) — (I P‘A)Smlznﬂ”

—u- Yf(snvn)” +[1Sns12Zn41 = Snzall = %1 — Xal|

"H ”u + Yf(s’”lv"“) (I - .uA) Sni1Zns1 ”

—1-
1 —u—yf(Sav,)|| (3.27)
Hn ty s
+2|1 - +2|1 - L
rn+1 ,un+1 n+1 Sn+1

+ [V (x, = 1, (W + Do) x) = VI (3, = 10 (W5 + D) x,,)

+ ||Vy(i1 ) (un Hn (Ipl + (Dl)un) V(el #) (un - /"n(lpl + (Dl)un>

+ ||Sn+12n — Suzull-

Note that 0 < liminf, .7, < limsup, 7, < min{ﬁz,?z} and limy, , 7, /7ns1 = 1. Since K}
is 01-strongly monotone and v;-Lipschitz continuous, then, from Lemma 2.10, we obtain that

lim (xn = 1 (¥ + D) x) = V. (2t = 10 (¥ + D) x) (3.28)
In a similar way, we can get
. (©, (Pl) (@MP])
lim ||v,w (1t = i (F1 + D1)1t) = Vi (14 = i (B1 + D)) (3.29)

Consequently, it follows from (3.25), (3.27), (3.28), (3.29), and the conditions (C4)—(C9) that

tim sup (st = Il = [Pne1 = xal)) <. (3.30)

n—oo
Hence, by Lemma 2.3, we have
lim |1, — x| = 0. (3.31)
Moreover, we have

Jim st = el = Jim (1= ) s~ 3] = 0. (332)
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Since

X1 — X = €q (U + Y f(Spon) — (I + pA)xy) + (1= Bu)I — €n(I + pA)) (Snzn — x4)

(3.33)
it follows that
(1= B —en(L+ p)7)1xn = Snznll < %01 = xXnll + €n ||t + ¥ £ (Snvn) = (I + pA) x|
(3.34)
It follows from (3.32) and the conditions (C4) and (C5) that
im [l = Spza|| = 0. (3.35)
Next, we show that
Jim [[¥iu, - ¥ix|| = lim [|@u, - D[] = 0,
im [[Wox, - Wox|| = lim [|[@2x, — Dox]| = 0, (3.36)

lim ”Blyn - B1§|| = lim ||B27)n - Blfu =0.
From (3.8), (3.9), (3.11), and (3.12), we have

1z = %I < [l = F[* + 50 (50— 28 1By - Bi[|”
< llon = I + b (tn = 262 ) 1B2ow = BaXI* + (50 = 281) | Buys - Bu|?
< ot = %1 + 24t (pin = B ) 1% 1 = WP + 2000 (ptn = 1) D110 = D1
by (tn = 282 ) 1B2vy = B + 50 (50 = 281 ) | Buyw - Bi%|’
< 1t =TI + 2 (1 = B ) W2 = o[ + 20 (i = o) [ Dot — D7
+ 24 (o = B ) Wt = WA + 200 (pn = 1) [ D110, — 01

+ by (tn - 252) 1Byvn — BoX||* + s <sn - 2§1> || Biys - BiX|)*.
(3.37)
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On the other hand, from Lemma 2.4 (ii), we have

[EFeE
= ||en (1 + ¥ F(Suvn) = (I + HA)T) + Bu(xn — Snzn) + (I = €4 (I + pA)) (Suzn - T) ||
< ||(T+ en(I + pA)) (Suzn = %) + Pu(xn — Suzn)||®
+2e, (1 + Y f(Suvn) = (I + HA)X, Xpi1 — X)
S [” (I - EH(I + #A))(Snzn —f)” +ﬁn|lxn - Snzn“]2
+2e, (U +yf(Suvn) — (I + pA)X, Xpi1 — X)
< [(1 - en — enpt¥)l|zn = Xl + Bullxn — Suzall]?
+2€,||u+yf(Suvn) — (I + pA)X||||2xpe1 — x|

< (1= en—enpy)llzn =X + cn,

(3.38)
where
Cn = ﬂi”xn - Snzn”2 + 2(1 —€n— €nl/‘?)ﬂn|lzn _Enllxn - Snzn”
(3.39)
+2ep||u+vf(Suvn) — (I + pA)x||l|xna — x|
It follows from the condition (C4) and (3.35) that
lim ¢, = 0. (3.40)

n—oo

Substituting (3.37) into (3.38), we have

It = %[ < (1= €0 = enpiy)’
x {0 = %I + 21 (7 = B2 ) [Wa2x, = Ws|* + 213, (1 = o) 2%, — Do
+ 24t (pon = B ) Wt = WA + 200 (pn — 1) D110, — D15

+ b (tu =28 ) 1By~ B 50 (s = 21 ) | By = Bax||* | + o,
(3.41)
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which in turn implies that
(1-en- emu?)2{2rn (ﬁz - r,,> W2, — Wox|2 + 270 (Fo — 1) | @2x — Do
+ 24 (Br = o) W1 = 1 + 200 (i = i) | D110~ O

+, <2;{2 - tn> IB2vy — BoX|2 + 8 (251 - sn> |11y, - le||2}

< (1= en = ent) loen =TI = loen =T + (3:42)
- {1 —2e,(1+ py) +2(1+ W)z}nxn — 7|2 = [|xne1 = X% + cn
< Jlw = I = lbner =3I + €5, (1+ )l = I +
< (2t = F + a1 = T xwer = all + €2 (1 + 7)1 = T + €
It follows from the conditions (C4)—(C9), (3.32), and (3.40) that
Jim [[¥iu, - ¥ix|| = lim [|@u, - D[] = 0,
im [[Wox, — Wox|| = lim [[@2x, — Dox]| = 0, (3.43)
nlglgo”&yn -Bix|| = lim [|Byv, — Bix]| = 0.
Next, we show that lim,, _, .»||Sz, — z,|| = 0. Since J;, is firmly nonexpansive, we have
120 = %I = || s, (Y = $uB1yn) = Js, (X = 8,B1%) ||
< ((Yn — snBiyn) — (X = 5,B1X), 24 — X)
= 2 (1= 5uBiyn) - & = 5uBDI + 120 - 7
(| (Y = $uB1yn) = (X = 5B1%) - (z = %)) (3.44)
< 5 (N =1 2 = 51 = 1 = 20 - 50 (Bry ~ B))
= 3 (v =IP + 0 =51 = 1y 20
+252(Yn = Zn, Biyn - BiX) - 53| Biyn - Bix|*),
which in turn implies that
R L R R L BT L

<l = Ellz - ”yn - Zn”2 + an”yn - Zn“ “Blyn - Bl?”-
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Substituting (3.45) into (3.38), we have

241 — E”2 < (1 —€n— enﬂ?)z{ lloxn — EHZ - ”]/n - Zn”z + 2Sn||]/n - Zn” ”Bl]/n - Blyll} + Cu,

(3.46)
which in turn implies that
(1= ew = entiT) Nlyn = 2zall* < (1~ €n = €wpiT) loew =TI = otner — 7
+2(1 = €n— eut?) sull Y — 2| Bryn ~ BT + ca
<t = T = lotnen =TI + 5, (1 a7) lon = 3
+250(1 = e~ eut) [y = 2al [ Bryn ~ Bix|| + ¢
< (e = X[ + llxne1 = XD 12041 = Xl
+€2(1+ uy)’||x, — x|
+25,(1- e - i) - 2l Brv - B + .
(3.47)
Since €, — 0, ||B1y, — Bix|| — 0 and from (3.32), we obtain that
Tim [lyn - za]| = 0. (3.48)
In a similar way, we can get
”yn - y”2 < ”xn - E”2 - ”Un - yn”2 + Ztn”Un - yn” ”BZvn - BZEH (349)

It follows from (3.38) and (3.49) that

2ns1 = XI* < (1= € — €upt¥)*llzn = X + Ca
< (1= €n = i)’ |yn = X||* + ca

< (1 —€n— €n,u?)2{ llxn — E”2 - ”Un - yn”2 + 2tn”Un - ]/n” | B2vy, — B2EH} + Cny
(3.50)
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which in turn implies that
(1= en— eapi7)’||on =yl < (1 - €n — €ni¥) 120 = ZI* = [l 2001 — xall®
+2(1—tye, - eny?)znvn = Yu||lIB2vy — BoX|| + ¢
< Jln = I = lxner = XU + € (1 + )l = X
+2t, (1 - the, - eny?)znvn = Yu||lIB2vn — BoX|| + ¢
< (lben = 0 + lpens = TN 1wst = xall + €5 (14 1)l = X

+ 2tn(1 — €y — €n/4?)2”0n - yn” |1B2vy, — BoX|| + ¢y
(3.51)

Since ¢, — 0, ||B,v,, — Box|| — 0 and from (3.32), we obtain that

lim [|o, - ya | =0. (352)

In addition, from the firmly nonexpansivity of V,Enel’(pl), we have

2
o = %I = || Ve (i = po (1 + 1)1t = Vi) (3 = o (21 + 1))
< ((un = pn (W1 + D) 1y) = (X = pn (W1 + D1)X), v, — X)
1 — —\ 12 =2
= 5 (11 Gtn = pn (B2 + @1)tn) = (X = pu(¥1 + D)) |+ [0 - |

=|| (i = pa(¥1 + D1 1ty) = (X = p (¥1 + D1)X) — (0 —E)”z)

1 _ _ _
< 5 (It = %P + llon = FIP = || (4 = 0) = pn (¥ + @)1t = (¥1 + D)D)
1 _ _ _
=3 <||un = * + [og = XI* = ttn = Oull® + 240t — Oy, (¥1 + D)1ty — (¥ + D)%)
| (1 + D)y — (%1 + DOF),
(3.53)
which in turn implies that
“vn - EHZ < ”un _§”2 - ||un - Un”z + 2#n<un — On, (1111 + q)l)un - (1111 + ®l)y>

= | (¥1 + @) — (¥1 + D) (3.54)

<% = FIP = ([t = 0all* + 2ttt = || (F1 + D1) 1t — (1 + D).
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It follows from (3.38) and (3.54) that

[ %ns1 = X7
—\2 —2
S (1_€n_€nlft}/) ”Zn_x” +Cn
—\2 —2
< (1-en—enpty) |lvn —X||I” + s

< (1= en = eat)*{I1%n = FI* = [l = 0l + 2ptallitn = Ol (¥1 + D)= (¥ + D)FI| | + o,

(3.55)
which in turn implies that
—\2
(1 —€n— eﬂ/’LY) ”un - Un“2
< (1= en — enpt) 1% = XII* = [ltn1 — %I
+ 2 (1€, — en‘u?)zuun — ol (¥1 + D)y, — (P1 + D)X + cy
< ot = I = 1301 = %I + €2 (1 + ) 1o — %I (3.56)

+2pn(1— €, — e,,‘uf)zﬂun — Ou|l[[(¥1 + D1)u, — (F1 + D7) X|| + ¢y
< (1% = Fl| + %01 = Xl Xne1 = 2all + €2(1 + )12 = %I
+ 2410 (1= € — i) |1t — 0ul]| (W1 + D11ty — (¥ + D)X + Cpe

Since ¢, — 0, ||¥1u, — ¥1x| — O, ||D1u, — D1X|| — 0 and from (3.32), we obtain that

lim [Juy — 0[] = 0. (3.57)

In a similar way, we can get
1t =X < [ =X = (1200 = ttall® + 27120 = e [[|(¥2 + D) = (¥5 + )] (3.58)
It follows from (3.38) and (3.58) that
1 =]
—\2 -2
< (1-en—enpy) llzn = x[" + cn
< (1= en —ep¥) flun = %I* + ¢

< (1= en = enti¥)*{ Iln = TP~ s = teall” + 21100 = || (¥ + D), = (¥ + D)3 | + i,
(3.59)



26 Abstract and Applied Analysis

which in turn implies that

(1~ en = €ntT) 120 — 11
< (1= en— en¥) || = X|” = |01 — 7
+ 270 (1 = €5 — €na¥) || — || (P2 + D)2, — (Wa + D2)%]| +
< lotn = X = NJ2emar = T + €2 (1 + 7)) |20 — X1 (3.60)
+ 27, (1 = en — €npt¥) || — ttn|[|(¥2 + ©2) 2, — (¥ + )| + s
< (1200 = T + [12ns1 = KU Xnst = all + €2 (1 + p7) Il — 12

+2r,(1-e, - eny?)zﬂxn — uu||[| (P2 + @2)x,, — (P2 + D2)X|| + Cpr.
Since ¢, — 0, [|Wox,, — Wox|| — 0, [|P2x,, — ®ox|| — 0 and from (3.32), we obtain that
Jim [, — || = 0. (3.61)
Notice that
1Snzn = Zall < 11Snzn = Xull + %0 = tta| + ||ttn = Oull + ||0n = V|| + ||y — 2 |- (3.62)
It follows from (3.35), (3.48), (3.52), (3.57), and (3.61) that
Jim [|S,2, — 2| = 0. (3.63)

Moreover, we note that

1Sz = zull £ I1Szn = Snznll + 1Snzn — zal|

< sup||Sx — Syx]| + |Suza ~ 2all, G4
xek
where K is any bounded subset of C. From Lemma 2.2 and (3.63), we obtain that
,,ILHC}O”SZ” —z,|| = 0. (3.65)
Next, we show that
limsup(u +yf(x*) = (I + pA)x*, 2, - x*) <0, (3.66)

n— oo
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where x* is a solution of optimization problem (3.4). To show this, we choose a subsequence
{zn; } of {zx} such that

limsup(u +yf(x*) = (I + pA)x*, z, — x*)

n— oo

(3.67)
= lim <u +yf(x") = (I +pA)x*, 2y, — x*>.
jow

Since {z,} is bounded, there exists a subsequence {zy, } of {z,} such that z,, = wasj — oo.
On the other hand, we note that

1 = zall < 120 = tall + [t — vl + ”Un - ]/n” + ”]/n - Zn”- (3.68)
It follows from (3.48), (3.52), (3.57), and (3.61) that

Jim [, —z,]| = 0. (369)

Now, we show that w € Q := N2, F(T;) N GMEP(01, 91, ¥1 + @) N GMEP(O3, (2, ¥5 + @;) N
(B +W1)™(0) N (B2 + W)™ (0).

(i) First, we show that w € (% F(Ti). By Lemma 2.2, we have F(S) = N2, F(T)).
Suppose the contrary, w # Sw, from (3.65) and Opial’s condition (see [63]), we have

liﬂior'}f Zn; = w” < hr{rlio?f Zn; = Sw“
<timinf{|z,, - Sz, || + || Sz, - Se0||} (3.70)
< limigf Zp; — w“,

which is a contradiction. So, we obtain w € F(S) = N2, F(T).
(ii) Now, we show that w € GMEP(©y, 1, ¥; + ®@;). From v, = Vﬂ(?l"”l)(un — pn(¥1 +
®1)u, ), we know that

O©1(vn, ¥) + p1(y) — 1(vy) + (W1 + D1)up, y — v,)

. 3.71)
+”—<K’1(vn) - Kj(un),y—va) >0, VyeC.
n

From (H2), we have

P1(y) = 1(vn) + ((F1 + D)1t y — )

1 (3.72)
+#_<K,1(Un) = K{(un),y —vn) 201(y,v2), VyeC.
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Now, replacing n by n; in (3.72), we have

o1(y) =91 (on) + (1 + @,y -~ )
(3.73)

+ #L<Ki <Unj> - Kj <un].>,y —vnj> >0, <y,vn].>, Yy e C.
n

Putv, =ty + (1 -t)w forallt € (0,1] and y € C. Then, from (3.73), we have

<Ut — Unjy (¥ + (Dl)vt>

2 (vt = Oy, (P11 + @1)or) — p1(0r) + 1 (vn]-) - <Ut = Op,, (W1 + D)1y, >

(D)

/’lnj

= (01 =0y, (F1 + D)0y = (¥ + D)0y, ) + (01 = O, (¥ + D1y, = (¥ + D)y, )

o)+ 1 (on)) - <1<;(vnf) Ki(m) > +01(o00).

Py
(3.74)

Since [|vy, —uy; || — 0, wehave [[(¥1+D1) vy, —(¥1+®D1)up, || — 0and from Lipschitz continuity
of K7, we have [|K (vy,) = K} (uy,)|| — 0. Further, from the monotonicity of ¥; + ®;, we have

(01 = Oy, (¥1 + D101 = (¥1 + D)0y, ) 2 0. (3.75)

Since x,, — w, ||xn, — Uy, || — 0and [lv,, —uy, || — 0, we have v,, — w. Then, from (H4), (H5),
the weakly lower semicontinuous of ¢, and (K (vy,) — K'(uy,))/pn; — 0, we obtain that

(vr—w, (W1 +D1)vr) > —1(vr) + p1(w) +O1 (v, w), as j— oo. (3.76)
From (H1), (H4), and (3.76), we also have

0=01(v1,v1) + p1(vr) — 1(v1)
<101 (v, y) + (1 - H)O1(vy, w) +tp1 (y) + (1 = Hpr(w) — 1(o1)
=t[01 (v, y) + ¢1(y) — @1 (vr)] + (1= 1) [O1(vr, ) + 1 (w) = p1(v)] (3.77)
<tO1(v,y) + ¢1(y) —pr(v)] + (1 = (vt — w, (F1 + P1)vr)
=t[O1(vr, ¥) + 1 (y) — pr(v)] + (1 - Ky - w, (¥1 + D1)vy),
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and hence

0<O1(v,y) +p1(y) —p1(vr) + (1 - 1) (y — w, (F1 + D1)vy). (3.78)

Letting t — 0, we have, forally € C,

0<O1(w,y) +1(y) — p1(w) +((¥1 + D)w, y ~ w). (3.79)

This implies that w € GMEP(©y, ¢, ¥ + @1). In a similar way, we can get w €
GMEP(@z, ¥2, IPQ + (Dz)
(iii) Now, we show that w € (B; + W1) ™' (0). In fact, notice that

Yn — SuB1yn € 2y + 5, Wiz, (3.80)

Let p € Win. Since W is monotone, we have

(L2t By pza-n) 20, (3.81)
n

It follows from the condition (C8) and (3.48) that

(-Biw —p,w—1) >0. (3.82)

This implies that -Bjw € Wiw, thatis w € (B; + Wl)_l(O). In a similar way, we can get w €
(By + W,) ™ (0). Therefore w € Q := N2, F(T;) N GMEP(©;, ¢, ¥1 + ®;) N GMEP(©;, ¢, ¥, +
@,) N (By + W1) 1 (0) N (By + W2) ' (0). Now, from Lemma 2.11, (3.67), and (3.69), we obtain
that

limsup(u +yf(x*) = (I + pA)x*, x, — x*)

n— oo

=limsup(u +yf(x*) = (I + pA)x*, z, — x*)

n— oo

= Jim (u+yf(x') = (I + gAY, 2 - ") (3.83)
j— o

= (e yf) - (1 + pA)x, 0 - x°)
<0.
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Finally, we show that x, — x* asn — oo. Again, from Lemma 2.4 (ii), we compute

1201 — x|
 len(u+ 1 F(Saon) = (1 + RAYX) + B tn =) + (1= ) = 0 (T + HA)) (Suz0 ~ 7).
< ” ((1 _ﬂ")I - 6"(1 + #A))(Snzn - x%) +ﬂn(xn -x")
+2e, (U + Y f(Snvn) — (I + pA)x*, Xpi1 — x¥)
< [ = Ba)] = eI + HA)) (Snzu = %) || + Bullxn - x°I1]
+ 260y {(f (Snvn) — f(X*), Xpa1 = X*) + 2€n(u+ y f(x*) = (I + pA)X*, X1 — X*)

2

< [(1 - ﬁn - En(l + #)?)”Zn - x*” + ﬂn“xn - X*”]Z + 2enY‘X”Sn'Un - x*””xnﬂ - x*”
+2e,(u+yf(x*) = (I+pA)x*, xpi1 — x*)

< [(1 - ﬁn - €n(1 + #)?)”xn - x*” + ﬁn“xn - x*”]Z + zenY“”xn - x*””xm—l - x*”
+2e,(u+yf(x*) = (I +pA)x*, x50 — x*)

< (1= en(L+ w)7) ln = x> + enya(Jlcn = x> + lcner - x|
+2e,(u+yf(x*) = (I +pA)x*, x50 — x*)

= (1 ~2e,(1+p)y +ea[(1+ ‘u)ﬂz + enyvc> |2, = 2*|1* + enyalxn — x|

+2e,(u+yf(x*) = (I +pA)x*, Xpe1 — x*).

(3.84)
It follows that
X 1-2e,(1+ )y +2[(1+ pF]* + enyar .
1261 = x| < 0+ p) = L0+ 7] % = x|
enya
§2n (u+yf(x*) = (I+pA)x*, xpq — x*)
1- enyax Y U 7 An+l
1-2€,(1+p)y +enya Lo e[+ py)’ .
= §_€§a o = x ||2+[1(T},)a]nxn—x I?
" " (3.85)
() = (T HA)Y 2 =)

2((1+u)y - ., 211 + 1)7]?
S[l_ ((L+ w7 -ya)e ]||xn_x*||z+en[( WAINY
1-enya 1-e,ya
2€,

1= enya (u+yf(x") = (I +pA)X", xXp1 = X7),
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where My = sup,. {|[xn — x*||2}. Put 7, := 2((1 + p)y — ya)en/ (1 — enya) and

o _alaspr’,

n -

1-euya 1-euya
Then, (3.85) reduces to formula
%41 — x*”z < (1 =70)|lxn - X*Hz +06n.

It follows from the condition (C4) and (3.83) that X7, 7, = oo and

limsu ﬁ =limsu 1
i Tane 2((T+ PT - ya)

«[en (1 TV M + 200+ Y °) = (14 A" 50 = )] <0

Hence, by Lemma 2.12, we obtain that x, — x* as n — oo. This completes the proof.

Zen (u+yf(x*) = (I+pA)X", Xpa1 — X°).
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(3.86)

(3.87)

(3.88)

O

Remark 3.2. The control condition limy, , - |pn+1 — x| = 0 and other on (C6)—(C9) are replaced

by the strictly weaker conditions: lim,, _, o fty / pn+1 = 1 as shown in the next example.

Example 3.3. (a) If lim,, _, oo |ptns1 — pn| = 0, then lim,, , oo pty/ i1 = 1.
(b) The converse of (a) is not true.

Proof. (a) Since 0 < p,, < min{fy, 71} and liminf, _ ,,pt, > 0, there exists a constant ji such that

Uy > ji > 0 for all n € N. We observe that

lim fn —1|: lim Hn ~ Hnet
n—=o| Unil n—=w|  HUnil
< lim |‘l/ln+1~— #"l
n— oo l,t
=0.

Hence, we obtain that lim,, o pts, / ptn+1 = 1.
(b) Let p, = ((n+1)/n)", then pp.1 = (n+2)/(n+1))"". We see that

n n+l
lim £ = 1im<1+1) C(A+1/m) :
nmopyy oo\ 1) (142/m)"

(3.89)

(3.90)



32 Abstract and Applied Analysis

but
n+l n
lim |pp1 — pn| = lim % - (1 + l)
n—oo n—oo| (142/n)"" n
~ 1 (3.91)
#0.
Then, converse of (a) is not true. Hence, (b) is proved. 0

Remark 3.4. Theorem 3.1 improves and extends [45, Theorem 3.3] in the following respects.

(1) The problem of finding the common element (2, F(T;) N GMEP(O1, ¢1, ¥ + 1) N
GMEP(©y, o, ¥ + @) N (B + Wl)_1 O)N (B, + Wz)_1 (0) is more general and more
complex than the one of finding the common element F(T) N GMEP(©, ¢, ¥1) N
GMEP(©;, ¢, ¥,) N VI(C, B) in [44, Theorem 3.3].

(2) In [44, Algorithm 3.13], the function K; : C — R is chosen as K;(x) = ||x||*/2 for
i=1,2.

(3) The conditions (C3) and (C4) of Chantarangsi et al. [44, Theorem 3.3] are replaced
by the strictly weaker conditions.

Remark 3.5. Theorem 3.1 improves and extends [45, Theorem 2.1] in the following respects.

(1) Theorem 3.1 extended [64, Theorem 2.1] to finding common element of the set of
solutions of a system of generalized mixed equilibrium problem, and the set of
infinite family of nonexpansive mapping involves strongly positive linear bounded
operator and the optimization problem.

(2) The conditions (C3) and (C4) of Yu and Liang [45, Theorem 2.1] are replaced by the
strictly weaker conditions.

4. Some Applications

Let H be a real Hilbert space and g : H — (-0, +o0] a proper convex lower semicontinuous
function. Then, the subdifferential 0g of g is defined as follows:

og(x)={yeH:g(z) > g(x)+(z-x,y), Vze H}, VxeH. (4.1)

From Rockafellar [65], we know that 0g is maximal monotone. Let C be a closed and convex
subset of H, and let 6¢ be the indicator function of C, that is,

0, x €C,
6c(x) = { (4.2)

+o0, x¢C.

Since 6¢ is a proper lower semicontinuous convex function on H, the subdifferential 06¢ of
6c is a maximal monotone operator.
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Lemma 4.1 (see [57]). Let C be a nonempty closed convex subset of a real Hilbert space H, let Pc be
the metric projection from H onto C, and let 06¢ be the subdifferential of 6¢c, where 6¢ is as defined
in (4.2) and J, = (I + rd6c) " Then,

y=Jixy=Pcx, VxeH, yeC (4.3)

Now, we consider the existence of solution of the variational inequality (1.6).

Theorem 4.2. Let C be a nonempty closed convex subset of a Hilbert space H. Let ¢1,¢, : C — R
be two lower semicontinuous and convex functionals, and let ©1,0; : C x C — R be two bifunctions
satisfying conditions (H1)-(H5). Let W1, W), @1, D, : C — H be ﬁyinverse-strongly monotone
mapping, Bz—inverse—strongly monotone mapping, yi-inverse-strongly monotone mapping, and y-
inverse-strongly monotone mapping, respectively, and let By, B, : C — H be gl—inverse—strongly
monotone mapping and gz—inverse—strongly monotone mapping, respectively. Let {T;}72, : C — C be
an infinite family of nonexpansive mappings, and let a; = (a]i,aé, aé) €I xIxI, wherel = [0,1],

a]1 +a]2+a£ =1, a{ +a£ <b<1,and a{,aﬁ,aé €(0,1) forall j=1,2,.... Foralln €N, let S, and
S be S-mappings generated by Ty, Ty, ..., Ty and ay, ap—1, ..., 00 and Ty, Tyyq, ... and ay, oy, . . .,

respectively. Assume that

Q= (F(T;) " GMEP(©y, 1, ¥; + ®1)
] (4.4)

N GMEP(@Z, 2, ¥, + (I)z) N VI(C, Bl) N VI(C, Bz) # 0.

Let f : C — H be a contraction mapping with a coefficient a € (0,1), and let A : C — H be a
strongly positive linear bounded operator with a coefficient y € (0,1). Let y > 0 and y > 0 be two
constants such that 0 <y < (1 + u)y/a. Let {x,} be a sequence defined by u, x, € H and

Oy,
Uy = Vr(n ? qJZ)(xn - rn(qu + (I)2)xn)/
_ 1/©L1)
vy =V, (tn — pn(¥1 + D1)uy),

Yn = PC(Un - tnBZUn)/

X1 = €n(U+Y[(Sn0n)) + Puxn + (1= Bu)] — € (I + pA))SuPc(yYn — SuBiyn), Yn>1,
(4.5)

where {s,) C (0,281), (ta) € (0,2&), {ua) C Omin{B1,71)), {ra) € (O,min{f,T2)), and (e}
and {Pn} C (0,1). Assume the following conditions are satisfied:

(C1) foralli =1,2,K; : C — Ris strongly convex with constant o; > 0 and its derivative K;
is Lipschitz continuous with constant v; > 0 such that the function x — (y — x, K}(x)) is
weakly upper semicontinuous for each y € C,

(C2) for all i = 1,2 and for each x € C, there exist a bounded subset Dy C C and z, € C such
that, for any y & Dy,

©i(y, 2x) + pi(zx) — i (y) + %<K§ (v) - Ki(x),zx —y) <0, (4.6)
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(C3) lim, . ,al, =0,

(C4) lim,,_, o6, = 0and 3,7 1€, = 0,

(C5) 0 < liminf, o, <limsup, B, <1,

(C6) 0 < liminf, , opy, <limsup, |  pn < min{ﬁl,ﬁ} and imy, o pin / Pns1 = 1,
(C7) 0 < liminf, 1, < limsup, 7, < min{ﬁz,ffz} and limy, _, o7 /Tne1 = 1,
(C8) 0 <liminf, s, <limsup, s, < 251 and limy, _, .S,/ Sns1 = 1,

(C9) 0 < iminf, oo, < limsup, |ty < 2& and limy, oty /by = 1.

Then, the sequence {x,} defined by (4.5) converges strongly to x* € Q, provided VT(S’(P) is firmly
nonexpansive, where x* solves the following optimization problem:

I 1 2
K il — ul? = h(x). 47
min = (Ax, x) + S [|lx - ul|” - h(x) (4.7)

Proof. Now, we show that VI(C,B;) = (B; + 06¢)™'(0) and VI(C,B,) = (B; + 36¢)71(0),
respectively. Set W1 = W, = 06¢ in Theorem 3.1. Notice that

x* € (B +06¢) 1 (0) & 0 € Byx* + 06¢cx*

& —-B1x* € 06cx*

(4.8)
& (Bix*,y—x*) >0
— x* € VI(C, By).
In a similar way, we can get
x* € (By + 06¢) 7 1(0) & x* € VI(C, By). (4.9)

From Lemma 4.1, we can conclude the desired conclusion immediately. This completes the
proof. O

Let T : C — C be k-strict pseudocontraction mapping. Setting B = I — T, we see that,
forallx,y € C,

(T - B)x - (I-B)y||* < || - y||* + k|| Bx - By||". (4.10)
On the other hand, we note that

|(I-B)x - (I-B)y|]* < ||x - y||> - 2(Bx - By, x - y) + || Bx - By||". (4.11)
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For all x,y € C, we obtain that
1-k 5
(Bx-By,x—y) > T”Bx—By” . (4.12)

Then, B is ((1 - k) /2)-inverse-strongly monotone mapping.

Theorem 4.3. Let C be a nonempty closed convex subset of a Hilbert space H. Let 1, ¢, : C — R be
two lower semicontinuous and convex functionals, and let ©1,0, : C x C — R be two bifunctions
satisfying conditions (H1)-(H5). Let W1, W), @1, D, : C — H be [Nil—inverse—strongly monotone
mapping, Bz—inverse—strongly monotone mapping, y1-inverse-strongly monotone mapping, and y-
inverse-strongly monotone mapping, respectively, and let By,B, : C — H be gl—inverse-strongly
monotone mapping and ;’;—inverse—stmngly monotone mapping, respectively. Let {T;}72, : C — C be
an infinite family of nonexpansive mappings, and let a; = (zx{,aé, aé) €I x1IxI, wherel = [0,1],
ai +a£+a£ =1, ai +1x£ <b<1,and a{,«xé,«xé €(0,1) forall j=1,2,.... Foralln e N, let S,, and
S be S—mappingsAgenemted by Ty, Tyho,..., Thand ay,an1,..., 00 and T,,, Ty, ... and ay, oy, . . .,
respectively. Let T; : C — C be a k;-pseudocontraction mapping for all i = 1,2. Assume that

Q = (F(T) N GMEP(©1, g1, %1 + ©1) N GMEP (0, g2, %5 + @) N F(Ty) 0 F(T2) #0.
i=1
(4.13)

Let f : C — H be a contraction mapping with a coefficient a € (0,1), and let A : C — H bea
strongly positive linear bounded operator with a coefficient y € (0,1). Let p > 0 and y > 0 be two
constants such that 0 <y < (1 + u)y/a. Let {x,} be a sequence defined by u, x, € H and

= VO (2 = 10 (W + D) x),
On = Vi (1, = i (W1 + D1y,
Yn = (1= tn)vy + tyTo0, (4.14)

X1 = €n(U+ Y f(Snvn)) + Buxn + (1= Bn)] — €n(I + pA))

xS, [(1 —Su)Yn + snﬁyn], Vn>1,

where {s,) C (0,28), {ta) C (0,28), {pn) € (O,min{f, 1)), {ra) C (O,min{fo,T2)), and
{en} and {Bn} C (0,1). Assume the conditions (C1)— (C9) in Theorem 4.2. Then, the sequence
{xn} defined by (4.14) converges strongly to x* € Q := N2 F(T;) N GMEP(©1,¢1, ¥1 + @1) N
GMEP(©,, o, ¥o + ®,) N F (Tl) NF (Tz), provided Vr(f?’@ is firmly nonexpansive, where x* solves
the following optimization problem:

. H 1 2
= —||x - - . 4.1
min > (Ax, x) + > [lx - ul|” - h(x) (4.15)
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Proof. Taking B; = I — T.: C — H, wesee that B; : C — H is A;-strict pseudocontraction
mapping with \; = (1 - k;)/2 and F(Ti) = VI(C, B;) for i = 1,2. From Theorem 4.2, we can
conclude the desired conclusion easily. This completes the proof. O
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