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We investigate the existence and dimension of the solution set for a nonlocal problem of semilinear
fractional differential inclusions. The main tools of our study include some well-known results on
multivalued maps.

1. Introduction

The subject of fractional calculus has recently emerged as an important and popular field
of research due to its numerous applications in science and engineering. Examples can be
found in various disciplines such as mechanics, electricity, signal and image processing,
thermodynamics, biophysics, blood flow phenomena, aerodynamics, economics, and fitting
of experimental data [1–4] whereas the theoretical development of the subject can be
found in [5, 6]. For some recent results on fractional differential equations and inclusions,
see [7–16].

In this paper, we study the following problem for semilinear fractional differential
inclusion with nonlocal condition:

cDqx(t) ∈ A(t)x(t) + F(t, x(t)), t ∈ [0, T] (T > 0),

x(0) + g(x) = x0, x0 ∈ R
n,

(1.1)
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where cDq denote the Caputo fractional derivative of order q ∈ (0, 1] [5], A(t) is a bounded
linear operator on [0, T] (the function t → A(t) is continuous in the uniform operator
topology), g : C([0, T],Rn) → R

n, and F : [0, T] × R
n → P(Rn), where P(Rn) is the family of

all nonempty subsets of R
n.

2. Terminology and Preliminary Results

In this section, we discuss some basic concepts of multivalued analysis and recall some results
involving multivalued maps.

Let C([0, T],Rn) denote the Banach space of continuous functions from [0, T] into R
n

with the norm ‖x‖∞ = supt∈[0,T]‖x(t)‖. Let L1([0, T],Rn) be the Banach space of measureable

functions x : [0, T] → R
n that are Lebesgue integrable and normed by ‖x‖L1 =

∫T
0 ‖x(t)‖dt.

For a nonempty subset C of a complete metric space X, let P(C) = {Y ⊆ C : Y /= ∅},
Pcl(C) = {Y ∈ P(C) : Y is closed}, Pb(C) = {Y ∈ P(C) : Y is bounded}, Pb,cl(C) = {Y ∈ P(C) :
Y is bounded and closed}, and Pcp(C) = {Y ∈ P(C) : Y is compact}. If C is a nonempty
subset of a Banach space X, then we set Pc,cl(C) = {Y ∈ P(C) : Y is closed and convex}, and
Pc,cp(C) = {Y ∈ P(C) : Y is compact and convex}.

A multivalued map F : C → P(X) is closed (resp., compact) valued if F(x) is closed
(resp., compact) for all x ∈ C. The map F is bounded on bounded sets if F(B) = ∪x∈BF(x)
is bounded in X for all B ∈ Pb(C) (i.e., supx∈B

{sup{‖y‖ : y ∈ F(x)}} < ∞). The map F is
called upper semicontinuous (u.s.c.) if {x ∈ C : F(x) ⊂ V } is open in C whenever V ⊂ X is
open. F is called lower semi-continuous (l.s.c.) if the set {y ∈ C : F(y)∩V /= ∅} is open for any
open set V ⊂ X. F is called continuous if it is both l.s.c. and u.s.c. F is said to be completely
continuous if F(B) is relatively compact for every B ∈ Pb(C). A mapping f : C → X is called
a selection of F : C → P(X) if f(x) ∈ F(x) for every x ∈ C. We say that the mapping F
has a fixed point if there is x ∈ X such that x ∈ F(x). The fixed points set of the multivalued
operator F will be denoted by Fix(F). A multivalued map F : [0, T] → Pcl(Rn) is said to be
measurable if, for every y1 ∈ R

n, the function

t �−→ d
(
y1,F(t)

)
= inf

{∥∥y1 − y2
∥∥ : y2 ∈ F(t)} (2.1)

is measurable.

Definition 2.1. Let (X, d) be a metric space. Consider H : P(X) × P(X) → R ∪ {∞} given by

H(A,B) = max

{

sup
a∈A

d(a, B), sup
b∈B

d(b,A)

}

, (2.2)

where d(a, B) = infb∈Bd(a, b). H is the (generalized) Pompeiu-Hausdorff functional. It is
known that (Pb,cl(X),H) is a metric space and (Pcl(X),H) is a generalized metric space (see
[17]).

Definition 2.2. Amultivalued operator F : X → Pcl(X) is called a k-contraction if there exists
0 < k < 1 such that

H
(F(x),F(y)) ≤ kd

(
x, y
)
, for each x, y ∈ X. (2.3)
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It is known that F : X → Pcp(X) is continuous on X if and only if F is continuous on X
with respect to the Hausdorff metric. Also, if F : X → Pcp(X) is a k-contraction, then F is
continuous with respect to Hausdorff metric.

Further details of multivalued maps can be found in ([18, 19]).
For the forthcoming analysis, we need the following results on multivalued maps.

Lemma 2.3 (Covitz and Nadler [20]). Let (X, d) be a complete metric space. If Φ : X → Pcl(X)
is a k-contraction, then, Fix(Φ)/= ∅.

Lemma 2.4 (Dzedzej and Gelman [21]). Let F : [0, α] → Pc,cp(Rn) be a measurable map such
that the Lebesgue measure μ of the set {t : dimF(t) < 1} is zero. Then there are arbitrarily many
linearly independent measurable selections x1(·), x2(·), . . . , xm(·) of F.

Lemma 2.5 (Saint-Raymond [22]). Let K be a compact metric space with dimK < n, X a Banach
space, and Ω : K → Pc,cp(X) a lower semicontinuous map such that 0 ∈ Ω(x) and dimΩ(x) ≥ n
for every x ∈ K. Then, there exists a continuous selection f of Ω such that f(x)/= 0 for each x ∈ K.

Lemma 2.6 (Michael’s selection theorem [23]). Let C be a metric space, X a Banach space and
Ω : C → Pc,cl(C) a lower semicontinuous map. Then, there exists a continuous selection f : C → X
of Ω.

Lemma 2.7 (see Dzedzej and Gelman [21] and Petrusel [24]). LetC be a nonempty closed convex
subset of a Banach space X. Suppose that Ω : C → Pc,cp(C) is a k-contraction. If f : C → C is a
continuous selection of Ω, then Fix(f) is nonempty.

3. Main Results

Definition 3.1. A function x ∈ C([0, T],Rn) is a solution of the problem (1.1) if there exists a
function f ∈ L1([0, T],Rn) such that f(t) ∈ F(t, x(t)) a.e. on [0, T] and

x(t) = x0 − g(x) +
∫ t

0

(t − s)q−1

Γ
(
q
) A(s)x(s)ds +

∫ t

0

(t − s)q−1

Γ
(
q
) f(s)ds. (3.1)

Let Sx0([0, α]) denote the set of all solutions of (1.1) on the interval [0, α], where 0 <
α ≤ T .

Lemma 3.2. Assume that

(H1) F : [0, T] × R
n → Pcp(Rn) is such that F(·, x) : [0, T] → Pcp(Rn) is measurable for each

x ∈ R
n,

(H2) H(F(t, x), F(t, x)) ≤ κ1(t)‖x − x‖ for almost all t ∈ [0, T] and x, x ∈ R
n with κ1 ∈

C([0, T],R+) and ‖F(t, x)‖ = sup{‖v‖ : v ∈ F(t, x)} ≤ κ1(t) for almost all t ∈ [0, T] and
x ∈ R

n,

(H3) g : C([0, T],Rn) → R
n is continuous and ‖g(x) − g(y)‖ ≤ κ2‖x − y‖∞ for all x, y ∈

C([0, T],Rn) and some κ2 > 0.
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Then, the Cauchy problem (1.1) has at least one solution on [0, T] if

κ2 +
Tq

Γ
(
q + 1

) (A1 + ‖κ1‖∞) < 1, (3.2)

where A1 = maxt∈[0,T]‖A(t)‖.

Proof. For each y ∈ C([0, T],Rn), define the set of selections of F by

SF,y :=
{
v ∈ L1([0, T],Rn) : v(t) ∈ F

(
t, y(t)

)
for a.e. t ∈ [0, T]

}
. (3.3)

Observe that, by assumptions (H1) and (H2), F(·, x(·)) is measurable and has a measureable
selection v(·) (see [25, Theorem III.6]). Also κ1 ∈ C([0, T],R+) and

‖v(t)‖ ≤ ‖F(t, x(t))‖
≤ κ1(t).

(3.4)

Thus, the set SF,x is nonempty for each x ∈ C([0, T],Rn). Now we show that the operator Ω
defined by

Ω(x) =

{

h ∈ C([0, T],Rn) : h(t) = x0 − g(x) +
∫ t

0

(t − s)q−1

Γ
(
q
) A(s)x(s)ds

+
∫ t

0

(t − s)q−1

Γ
(
q
) f(s)ds, f ∈ SF,x

} (3.5)

satisfies the assumptions of Lemma 2.3. To show that Ω(x) ∈ Pcl(C([0, T],Rn)) for each x ∈
C([0, T],Rn), let {un}n≥0 ∈ Ω(x) be such that un → u(n → ∞) in C([0, T],Rn). Then, u ∈
C([0, T],Rn) and there exists vn ∈ SF,x such that, for each t ∈ [0, T],

un(t) = x0 − g(x) +
∫ t

0

(t − s)q−1

Γ
(
q
) A(s)x(s)ds +

∫ t

0

(t − s)q−1

Γ
(
q
) vn(s)ds. (3.6)

As F has compact values, we pass to a subsequence to obtain that vn converges to v in
L1([0, T],Rn). Thus, v ∈ SF,x and, for each t ∈ [0, T],

un(t) −→ u(t) = x0 − g(x) +
∫ t

0

(t − s)q−1

Γ
(
q
) A(s)x(s)ds +

∫ t

0

(t − s)q−1

Γ
(
q
) v(s)ds. (3.7)

Hence, u ∈ Ω(x).
Next we show that there exists k > 0 such that

H(Ω(x),Ω(x)) ≤ k‖x − x‖∞ for each x, x ∈ C([0, T],Rn). (3.8)
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Let x, x ∈ C([0, T],Rn) and h1 ∈ Ω(x). Then, there exists v1(t) ∈ SF,x such that, for each
t ∈ [0, T],

h1(t) = x0 − g(x) +
∫ t

0

(t − s)q−1

Γ
(
q
) A(s)x(s)ds +

∫ t

0

(t − s)q−1

Γ
(
q
) v1(s)ds. (3.9)

By (H2), we have

H(F(t, x), F(t, x)) ≤ κ1(t)‖x(t) − x(t)‖. (3.10)

So, there exists w ∈ F(t, x(t)) such that

‖v1(t) −w‖ ≤ κ1(t)‖x(t) − x(t)‖, t ∈ [0, T]. (3.11)

Define V : [0, T] → P(Rn) by

V (t) = {w ∈ R
n : ‖v1(t) −w‖ ≤ κ1(t)‖x(t) − x(t)‖}. (3.12)

Since the nonempty closed valued operator V (t) ∩ F(t, x(t)) is measurable [25, Proposition
III.4], there exists a function v2(t) that is a measurable selection for V (t)∩F(t, x(t)). So v2(t) ∈
F(t, x(t)) and, for each t ∈ [0, T], we have ‖v1(t) − v2(t)‖ ≤ κ1(t)‖x(t) − x(t)‖.

For each t ∈ [0, T], let us define

h2(t) = x0 − g(x) +
∫ t

0

(t − s)q−1

Γ
(
q
) A(s)x(s)ds +

∫ t

0

(t − s)q−1

Γ
(
q
) v2(s)ds. (3.13)

Thus,

‖h1(t) − h2(t)‖ ≤ ∥∥g(x) − g(x)
∥∥ +
∫ t

0

|t − s|q−1
Γ
(
q
) ‖A(s)(x − x(s))‖ds

+
∫ t

0

|t − s|q−1
Γ
(
q
) ‖v1(s) − v2(s)‖ds.

(3.14)

Hence,

‖h1 − h2‖∞ ≤ κ2‖x − x‖∞ +
Tq

Γ
(
q + 1

) (A1 + ‖κ1‖∞)‖x − x‖∞

=

(

κ2 +
Tq

Γ
(
q + 1

) (A1 + ‖κ1‖∞)
)

‖x − x‖∞.
(3.15)

Analogously, interchanging the roles of x and x, we obtain

H(Ω(x),Ω(x)) ≤ k‖x − x‖∞, for eachx, x ∈ C([0, T],Rn), (3.16)
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where k = (κ2 + (Tq/Γ(q + 1))(A1 + ‖κ1‖∞)) < 1. Since Ω is a contraction, it follows by
Lemma 2.3 that Ω has a fixed point x that is a solution of (1.1). This completes the proof.

Lemma 3.3. Let F : [0, T] × R
n → Pc,cp(Rn) satisfy (H1), (H2), and (H3) and suppose that Ω :

C([0, T],Rn) → P(C([0, T],Rn)) is defined by

Ω(x) =

{

h ∈ C([0, T],Rn) : h(t) = x0 − g(x) +
∫ t

0

(t − s)q−1

Γ
(
q
) A(s)x(s)ds

+
∫ t

0

(t − s)q−1

Γ
(
q
) f(s)ds, f ∈ SF,x

}

.

(3.17)

Then, Ω(x) ∈ Pc,cp(C([0, T],Rn)) for each x ∈ C([0, T],Rn).

Proof. First we show that Ω(x) is convex for each x ∈ C([0, T],Rn). For that, let h1, h2 ∈ Ω(x).
Then. there exist f1, f2 ∈ SF,x such that, for each t ∈ [0, T], we have

hi(t) = x0 − g(x) +
∫ t

0

(t − s)q−1

Γ
(
q
) A(s)x(s)ds +

∫ t

0

(t − s)q−1

Γ
(
q
) fi(s)ds, i = 1, 2. (3.18)

Let 0 ≤ λ ≤ 1. Then, for each t ∈ [0, T], we have

[λh1 + (1 − λ)h2](t) = x0 − g(x) +
∫ t

0

(t − s)q−1

Γ
(
q
) A(s)x(s)ds

+
∫ t

0

(t − s)q−1

Γ
(
q
)
[
λf1(s) + (1 − λ)f2(s)

]
ds.

(3.19)

Since SF,x is convex (F has convex values), it follows that λh1 + (1 − λ)h2 ∈ Ω(x).
Next, we show that Ω maps bounded sets into bounded sets in C([0, T],Rn). For a

positive number r, let Br = {x ∈ C([0, T],Rn) : ‖x‖∞ ≤ r} be a bounded set in C([0, T],Rn).
Then, for each h ∈ Ω(x), x ∈ Br , there exists f ∈ SF,x such that

h(t) = x0 − g(x) +
∫ t

0

(t − s)q−1

Γ
(
q
) A(s)x(s)ds +

∫ t

0

(t − s)q−1

Γ
(
q
) f(s)ds, (3.20)
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and, in view of (H1), we have

‖h(t)‖ ≤ ‖x0‖ + sup
x∈Br

∥
∥g(x)

∥
∥ +
∫ t

0

|t − s|q−1
Γ
(
q
) ‖A(s)x(s)‖ds

+
∫ t

0

|t − s|q−1
Γ
(
q
)
∥
∥f(s)

∥
∥ds

≤ ‖x0‖ + sup
x∈Br

∥
∥g(x)

∥
∥

+
Tq

Γ
(
q + 1

) (A1r + ‖κ1‖∞).

(3.21)

Thus,

‖h‖∞ ≤ ‖x0‖ + sup
x∈Br

∥∥g(x)
∥∥ +

Tq

Γ
(
q + 1

) (A1r + ‖κ1‖∞). (3.22)

Now we show that Ω maps bounded sets into equicontinuous sets in C([0, T],Rn). Let t′, t′′ ∈
[0, T] with t′ < t′′ and x ∈ Br , where Br is a bounded set in C([0, T],Rn). For each h ∈ Ω(x),
we obtain

∥∥h
(
t′′
) − h

(
t′
)∥∥

=

∥∥∥∥∥

∫ t′′

0

(t′′ − s)q−1

Γ
(
q
)
(
A(s)x(s) + f(s)

)
ds −

∫ t′

0

(t′ − s)q−1

Γ
(
q
)
(
A(s)x(s) + f(s)

)
ds

∥∥∥∥∥

≤

∥∥∥∥∥∥∥

∫ t′

0

[
(t′′ − s)q−1 − (t′ − s)q−1

]

Γ
(
q
)

(
A(s)x(s) + f(s)

)
ds

∥∥∥∥∥∥∥

+

∥∥∥∥∥

∫ t′′

t′

(t′′ − s)q−1

Γ
(
q
)
(
A(s)x(s) + f(s)

)
ds

∥∥∥∥∥
.

(3.23)

Obviously the right-hand side of the above inequality tends to zero independently of x ∈ Br ′

as t′′−t′ → 0. By the Arzela-Ascoli theorem,Ω : C([0, T],Rn) → P(C([0, T],Rn)) is completely
continuous. As in Lemma 3.2, Ω is closed valued. Consequently, Ω(x) ∈ Pc,cp(C([0, T],Rn))
for each x ∈ C([0, T],Rn).

For 0 < α ≤ T , let us consider the operator

Ω(x) =

{

h ∈ C([0, α],Rn) : h(t) = x0 − g(x) +
∫ t

0

(t − s)q−1

Γ
(
q
) A(s)x(s)ds

+
∫ t

0

(t − s)q−1

Γ
(
q
) f(s)ds, f ∈ SF,x

}

.

(3.24)
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It is well known that Fix(Ω) = Sx0([0, α]) and, in view of Lemma 3.2, it is nonempty for each
0 < α ≤ T .

Theorem 3.4. Suppose that F : [0, α] × R
n → Pc,cp(Rn) satisfies (H1), (H2), and (H3) and that

the Lebesgue measure μ of the set{t : dim F(t, x) < 1 for some x ∈ R
n} is zero. Then, for each α,

0 < α < min{((1 − κ2)Γ(q + 1)/(A1 + ‖κ1‖∞))1/q, T}, the set Sx0([0, α]) of solutions of (1.1) has
an infinite dimension for any x0.

Proof. Let the operator Ω be defined by

Ω(x) =

{

h ∈ C([0, α],Rn) : h(t) = x0 − g(x) +
∫ t

0

(t − s)q−1

Γ
(
q
) A(s)x(s)ds

+
∫ t

0

(t − s)q−1

Γ
(
q
) f(s)ds, f ∈ SF,x

}

.

(3.25)

Lemma 3.3 guarantees that Ω(x) ∈ Pc,cp(C([0, α],Rn)) for each x ∈ C([0, α],Rn) and as in
the proof of Lemma 3.2, it is a contraction if κ2 + (αq/Γ(q + 1))(A1 + ‖κ1‖∞) < 1 or α < {((1 −
κ2)Γ(q+1)/(A1+‖κ1‖∞))1/q, T}. We shall show that dimΩ(x) ≥ m for any x ∈ C([0, α],Rn) and
arbitrary m ∈ N. Consider G(t) = F(t, x(t)). By Lemma 2.4, there exist linearly independent
measurable selections x1(·), x2(·), . . . , xm(·) of G. Set

yi(t) = x0 − g(x) +
∫ t

0

(t − s)q−1

Γ
(
q
) A(s)xi(s)ds +

∫ t

0

(t − s)q−1

Γ
(
q
) xi(s)ds ∈ Ω(x). (3.26)

Assume that
∑m

i=1 aiyi(t) = 0 a.e. in [0, α]. Taking the Caputo derivatives a.e. in [0, α], we
have

∑m
i=1 aixi(t) = 0 a.e. in [0, α] and hence ai = 0 for all i. As a result, yi(·) are linearly

independent. Thus, Ω(x) contains an m-dimensional simplex. So, dim Ω(x) ≥ m. As in
Lemma 3.2, Fix(Ω) is nonempty. It is known that every multivalued k-contraction having
compact values is condensing with respect to the Hausdorff measure of noncompactness χ
[26]. Since Fix(Ω) ⊂ Ω(Fix(Ω)), we have

χ(Fix(Ω)) ≤ χ(Ω(Fix(Ω))). (3.27)

Since Ω is χ-condensing, Fix(Ω) is compact. Consider a map I − Ω : Fix(Ω) → Pc,cp(Rn),
where I is the identity operator. Assume that dim Fix(Ω) < n. Then, Lemma 2.5 guarantees
that there is a continuous selection g of I − Ω such that g(x)/= 0 for each x ∈ Fix(Ω). This
implies that there exists a continuous selection h of F : Fix(F) → Pc,cp(Rn) without fixed
points. Define Λ : R

n → Pc,cp(Rn) by

Λ(x) =

⎧
⎨

⎩

Ω(x), x ∈ R
n \ Fix(Ω),

h(x), x ∈ Fix(Ω).
(3.28)

Since Λ is lower semicontinuous, in view of Michael’s selection result (Lemma 2.6), Λ admits
a continuous selection f : R

n → R
n. Thus f : R

n → R
n is a continuous selection ofΩwith no
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fixed points and f = h on Fix(Ω) contradicting Lemma 2.7. As a result, Fix(Ω) = Sx0([0, α]) is
infinite dimensional.

Definition 3.5. A metric space X is said to be an AR-space if, whenever it is nonempty closed
subset of another metric space Y , there exists a continuous retraction r : Y → X, r(x) = x for
x ∈ X. In particular, it is contractible (and hence connected).

Theorem 3.6 (see [27]). Let C be a nonempty closed convex subset of a Banach space X and F :
C → Pc,cp(C) a contraction. Then Fix(F) is a nonempty AR-space.

The following result is a consequence of Theorems 3.4 and 3.6.

Corollary 3.7. Suppose that F : [0, α] × R
n → Pc,cp(Rn) satisfies (H1), (H2), and (H3) and that

the Lebesgue measure μ of the set {t : dim F(t, x) < 1 for some x ∈ R
n} is zero. Then, for each α,

0 < α < min{((1 − κ2)Γ(q + 1)/(A1 + ‖κ1‖∞))1/q, T}, the set Sx0([0, α]) of solutions of (1.1) is a
compact and infinite dimensional AR-space.
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