
Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2012, Article ID 296591, 34 pages
doi:10.1155/2012/296591

Research Article
Radially Symmetric Solutions of Δw + |w|p−1w = 0

William C. Troy1 and Edward P. Krisner2

1 Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA
2 Department of Mathematics, University of Pittsburgh at Greensburg, Greensburg, PA 15601, USA

Correspondence should be addressed to Edward P. Krisner, epk15@pitt.edu

Received 31 May 2012; Accepted 10 August 2012

Academic Editor: Julio Rossi

Copyright q 2012 W. C. Troy and E. P. Krisner. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We investigate solutions of w′′ + ((N − 1)/r)w′ + |w|p−1w = 0, r > 0 and focus on the regime
N > 2 and p > N/(N − 2). Our advance is to develop a technique to efficiently classify the
behavior of solutions on (rmin, rmax), their maximal positive interval of existence. Our approach is
to transform the nonautonomousw equation into an autonomous ODE. This reduces the problem
to analyzing the phase plane of the autonomous equation. We prove the existence of new families
of solutions of the w equation and describe their asymptotic behavior. In the subcritical case
N/(N−2) < p < (N+2)/(N−2) there is a well-known closed-form singular solution,w1, such that
w1(r) → ∞ as r → 0+ andw1(r) → 0 as r → ∞. Our advance is to prove the existence of a family
of solutions of the subcritical case which satisfies w(ri) = w1(ri) for infinitely many values ri > 0.
At the critical value p = (N + 2)/(N − 2) there is a continuum of positive singular solutions, and a
continuum of sign changing singular solutions. In the supercritical regime p > (N + 2)/(N − 2)we
prove the existence of a family of “super singular” sign changing singular solutions.

1. Introduction

In this paper we investigate the behavior of solutions of

Δw + |w|p−1w = 0, (1.1)

where w = w(x1, . . . , xN), N > 1 and p > 1. Solutions of (1.1) are time-independent solutions
of the nonlinear heat equation

∂w

∂t
= Δw + |w|p−1w. (1.2)
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Equation (1.1) has been widely studied as a canonical model for

Δu + f(u) = 0, (1.3)

where f(u) > 0 is superlinear [1–6].
Our focus is on radially symmetric solutions of (1.1) which have the form w = w(r),

where r = (x2
1 + · · · + x2

N)1/2, and satisfy

w′′ +
N − 1

r
w′ + |w|p−1w = 0, r > 0. (1.4)

We distinguish two classes of solutions of (1.4). The first is nonsingular solutions which are
bounded at r = 0 and satisfy (w(0), w′(0)) = (w0, 0), where w0 is finite. The second class
consists of singular solutions that are unbounded at r = 0. Equation (1.4) has the known
positive singular solution

w1(r) =

(
2(N − 2)

(
p − 1

) − 4(
p − 1

)2
)1/(p−1)

r−2/(p−1), N > 2, p >
N

N − 2
. (1.5)

Previous Results

(i) The positive singular solutionw1(r) has played a central role in analyzing (1.2). For exam-
ple, when appropriately chosen, similarity solution methods show how w(x1, . . . , xN, t) →
cw1(r) as t → ∞, where c > 0 is a constant [2, 5, 7]. (ii) Chen and Derrick [8] developed
comparison methods to describe the time evolution of solutions of

∂u

∂t
= Δu + f(u), (1.6)

where f(u) is superlinear [1–6]. Their approach is to let positive, time independent solutions
act as upper and/or lower bounds for initial values of solutions of (1.6). Their comparison
technique allows them to prove either global existence or finite time blowup of solutions. (iii)
For the case p = (N + 2)/(N − 1) Caffarelli et al. [9] describe the asymptotic behavior of
nonnegative solutions of (1.1) that have an isolated singularity at the origin. (iv)Galaktionov
[10] studied sign changing singular solutions of (1.4) on the restricted interval 0 < r ≤ 1.
He set w(r) = r−2/(p−1)φ(− ln(r)) and derived an ODE for φ(s), s = − ln(r). He let φ(0) = 0,
varied φ′(0), and gave a numerical study of sign changing solutions on 0 ≤ s < ∞. (v) Other
studies of nonsingular solutions of (1.4) have used Pohozaev identities, together with integral
estimates which involve the independent variable [1, 2, 4].

Specific Aims

Our goal is to develop techniques to efficiently classify the behavior of solutions of (1.4) on
(rmin, rmax), their maximal positive interval of existence. We study the behavior of solutions
which are positive on (rmin, rmax) and also sign changing solutions. In particular, our specific
aims are the following.
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Specific Aim I

Do positive singular solutions exist, other than w1(r), for which (rmin, rmax) = (0,∞)? What
is their asymptotic behavior as r → 0+, and as r → ∞? In Section 2 we prove the existence
of a second singular solution, w2(r), (see bottom right panel of Figure 1), which exists on
(0,∞). Also, we prove the asymptotic behavior of this solutions as r → 0+ and as r →
∞. This result is new and different from previous analyses. In addition, in the conclusion
we suggest a possible application for the role of this new solution in analyzing the time-
dependent behavior of the full PDE (1.2).

Specific Aim II

Do sign changing solutions exist for which (rmin, rmax) = (0,∞)? What is their asymptotic
behavior as r → 0+, and as r → ∞? In Section 4 we prove the existence of a large amplitude
sign changing solution in the (h, h′) phaseplane (see top left panel of Figure 4). This solution
forms a large amplitude outward spiral as the independent variable τ decreases. Such global
analysis has not previously been achieved.

Our Approach

Standard methods to analyze solutions of (1.4) include Pohozaev integral estimates, or
topological shooting. Obtaining global results with such methods is difficult since (1.4) is
nonautonomous. Thus, to successfully address the issues in Specific Aims I-II, our advance is
to develop a two-step approach which significantly simplifies the analysis. The first step is
to transform the nonautonomous ODE (1.4) into a simpler, autonomous ODE. Letw(r) solve
(1.4), and define [10, 11]

h(τ) =
w
(
exp(τ)

)
w1
(
exp(τ)

) , −∞ < τ < ∞. (1.7)

Then h(τ) solves

h′′ +
N − 2
p − 1

(
p − N + 2

N − 2

)
h′ +

2(N − 2)(
p − 1

)2 (p − N

N − 2

)(
|h|p−1h − h

)
= 0. (1.8)

Because (1.8) is autonomous, we can apply phase plane techniques to analyze the behavior
of solutions. The second step of our approach is to use the “inverse” formula

w(r) = w1(r)h(ln(r)), 0 < r < ∞ (1.9)

to analyze corresponding solutions of the w equation (1.4). For example, in Section 2 we
analyze (1.8) in the subcritical rangeN/(N −2) < p < (N +2)/(N −2) and prove that there is
a nonmonotonic heteroclinic orbit (labeled B1 in Figure 1) leading from (1, 0) to (0, 0) in the
(h, h′) phase plane. We then use (1.9) to show that, corresponding to this heteroclinic orbit,
there is an entire continuum of new positive singular solutions of (1.4). Let w2(r) denote a
member of this continuum (Figure 1, 3rd row). Then w2(r) intertwines with w1(r) infinitely
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Figure 1: Subcritical example: N = 3, p = 4. ((a) and (b)) The unstable manifold (A1 and A2) and
stable manifold (B1 and B2) lead from (0, 0) into the (h, h′) phase plane. ((c)–(f)) (c) and (e) show the
h components of solutions on A1, A2, B1, B2; (d) and (f) show corresponding solutions of (1.4): w0 is
generated by A1, w2(r) is the new positive singular solution generated by B1, and w1(r) = (2/9)1/3r−2/3.
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often as r → 0+. That is, there are infinitely many positive values {ri}, with ri → 0 as i → ∞,
such that

w2(ri) = w1(ri), i ≥ 1. (1.10)

Furthermore, there is a value D > 0 such that

w2(r)
w1(r)

−→ 1 as r −→ 0+,
w2(r)
w1(r)

∼ Dr−((N−2)/(p−1))(p−N/(N−2)) −→ 0 as r −→ ∞. (1.11)

Thus, w2(r) ∼ w1(r) as r → 0+, but w2(r) → 0 faster than w1(r) as r → ∞. To our
knowledge, this family of solutions has not previously been reported.

In the conclusion, Section 5, we state an open problem which gives a conjecture for the
role that w2(r) might play in the analysis of the full time-dependent PDE (1.2).

In Sections 3 and 4 we use similar techniques to prove the existence of new families
of solutions in the critical case p = (N + 2)/(N − 2), and the supercritical regime p > (N +
2)/(N − 2), respectively. In particular, in Section 4 we prove the existence of a continuum
of “super singular” sign changing solutions, each of which exists on an interval of the form
(rmin,∞). For these solutions it remains a challenging, and important, open problem (see
Open Problems I and II in Section 4) to prove whether rmin = 0 or rmin > 0.

2. The Subcritical Case: N/(N − 2) < p < (N + 2)/(N − 2)

In this section we consider the parameter regimeN > 2 andN/(N−2) < p < (N+2)/(N−2).
In this range we first analyze solutions of the h equation (1.8) and then show how these
solutions translate into corresponding solutions of the w equation (1.4). The remainder of
this section consists of the following.

(I) Lemmas 2.1 and 2.2 state fundamental properties of solutions of (1.8) that satisfy
|h| < 1 on an interval [τ0,∞) for some τ0 ∈ R. These properties will be applied in the
proof of Lemma 2.3 which asserts that there exists a solution h2 of (1.8) such that
h2 → 0 monotonically as τ → ∞. In Lemma 2.4 we show that

h′
2(τ)

h2(τ)
−→ −N − 2

p − 1

(
p − N

N − 2

)
as τ −→ ∞. (2.1)

This will be used to prove Lemma 2.5 which shows that the asymptotic behavior of
h2 is

h2(τ) ∼ D exp
(
−N − 2
p − 1

(
p − N

N − 2

)
τ

)
as τ −→ ∞, (2.2)

for some constant D > 0.

(II) Solutions along the unstable manifold, A1, described in part (i) of Theorem 2.9,
translate into nonsingular solutions of (1.4). Of particular importance is the
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heteroclinic orbit solution, B1, described in part (ii) of Theorem 2.9. Theorem 2.10
asserts that the trajectory B1 generates an entire continuum of strictly positive
singular solutions of (1.4), each of which intertwines infinitely often with w1(r) as
r → 0+. To our knowledge, this family of solutions is new and has not previously
been reported.

(III) Numerical Experiments. Figure 1 shows solutions of (1.4) and (1.8) when (N,p) =
(3, 4). However, it must be emphasized that it is illegitimate to claim that numerical
results are rigorous proofs. Complete analytical proofs are needed to determine
properties of solutions of (1.4) and (1.8).

The following two technical lemmas are used to help prove that h2 → 0monotonically
as τ → ∞.

Lemma 2.1. Suppose that h is a nonconstant solution of (1.8) such that 0 ≤ h(τ0) < 1 and h′(τ0) ≥ 0
for some τ0 ∈ R. Then there exists a constantΔ > 0 such that h(τ0+Δ) = 1. Likewise, if −1 < h(τ0) ≤
0 and h′(τ0) ≤ 0, then there exists a constant Δ > 0 such that h(τ0 + Δ) = −1.

Proof. The proof of this lemma relies on the property

0 < h(τ) < 1, h′(τ) > 0 implies thath′′(τ) > 0 (2.3)

which is an immediate consequence of the case assumptionN/(N −2) < p < (N +2)/(N −2)
and (1.8). Since h is a nonconstant solution, then uniqueness of solutions [12, Chapter 1]
implies that either h(τ0) > 0 or h′(τ0) > 0. This and (1.8) imply that h′′(τ0) > 0. Hence,
0 < h(τ) < 1 and h′(τ) > 0 on an interval (τ0, τ0 + σ) provided that σ > 0 is sufficiently small.
By (2.3), h′′(τ) > 0 on (τ0, τ0 + σ). The increasing values of h′(τ) > 0 on (τ0, τ0 + σ) imply the
existence of Δ > 0 such that h(τ0 + Δ) = 1.

In a similar manner, −1 < h(τ0) ≤ 0 and h′(τ0) ≤ 0 implies the existence of a valueΔ > 0
such that h(τ0 + Δ) = −1. This completes the proof.

The following lemma is also used to show that h2 → 0 monotonically as τ → ∞.

Lemma 2.2. Suppose that h is a nonconstant solution of (1.8) such that |h| < 1 on [τ0,∞). Then
h(τ)/= 0 on [τ0,∞).

Proof. Suppose that h(τ1) = 0 for some τ1 ≥ τ0. Since h is a nonconstant solution of (1.8), then
h′(τ1)/= 0. By Lemma 2.1, there exists a constant Δ > 0 such that h(τ1 + Δ) = 1 if h′(τ1) > 0
and h(τ1 + Δ) = −1 if h′(τ1) < 0. This contradicts the assumption that |h| < 1 on [τ0,∞) and
concludes the proof of the lemma.

Lemma 2.3. There exists a solution h2 of (1.8) such that

(a) limτ →∞(h2(τ), h′
2(τ)) = (0, 0), and

(b) h2(τ) > 0 and h′
2(τ) < 0 on [0,∞).

Proof. A linearization of (1.8) around the constant solution h ≡ 0 gives

h′′ +
N − 2
p − 1

(
p − N + 2

N − 2

)
h′ − 2(N − 2)(

p − 1
)2 (p − N

N − 2

)
h = 0. (2.4)
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The eigenvalues associated with (2.4) are

λ1 =
2

p − 1
> 0, λ2 = −N − 2

p − 1

(
p − N

N − 2

)
< 0. (2.5)

Since λ2 < 0, the Stable Manifold Theorem [12, Chapter 13] ensures that there exists a one-
dimensional stable manifold containing (0, 0) in the (h, h′) phase plane. Let h2 be a solution
of (1.8) such that (h2(0), h′

2(0)) is a point on the stable manifold. That is,

lim
τ →∞

(
h2(τ), h′

2(τ)
)
= (0, 0). (2.6)

Thus, h2 satisfies part (a).
We now show that h2 can be chosen to satisfy (b). Since solutions of (1.8) are

translation-invariant, there is no loss in generality in assuming that |h2(τ)| < 1 on [0,∞).
Combining this with Lemma 2.2 yields h2(τ)/= 0 on [0,∞). According to the fact that h2 and
−h2 are both solutions of (1.8) that satisfy (2.6), we may also assume that h2(τ) > 0 on [0,∞).
Lemma 2.1 implies that h′

2(τ) < 0 on [0,∞). This proves (b) and concludes the proof of this
lemma.

Description of the Stable Manifold

Throughout the remainder of this section we let h2 denote the solution of (1.8) that satisfies

0 < h2(τ) < 1, h′
2(τ) < 0 on [0,∞). (2.7)

Furthermore, we define

B1 =
{(

h2(τ), h′
2(τ)
) | τ ∈ (τmin,∞)

}
, (2.8)

where (τmin,∞) denotes the maximal interval of existence of the solution h2. In Lemma 2.6
we will show that τmin = −∞. In addition, we define the negative counterpart of B1 by

B2 =
{(−h2(τ),−h′

2(τ)
) | τ ∈ (τmin,∞)

}
. (2.9)

The top row of Figure 1 depicts B1 and B2 for N = 3 and p = 4.

Asymptotic Behavior of h2

To state Lemma 2.4 correctly we need to derive basic properties of the functional H2(τ) =
exp(−λ2τ)h2(τ). It follows that H2 satisfies

H ′′
2 − (N − 2)H ′

2 = −2(N − 2)(
p − 1

)2 (p − N

N − 2

)
|h2|p−1H2. (2.10)
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Also, h2(τ) > 0 for all τ ≥ 0 implies that

H2(τ) > 0 ∀τ ≥ 0. (2.11)

It follows from (2.10) and (2.11) that

H ′
2(τ) > 0 ∀τ ≥ 0. (2.12)

By (2.12), all that remains is to show thatH2(τ) is bounded above. That is the purpose of the
following two lemmas.

Lemma 2.4. The solutionH2 of (2.10) satisfies

lim
τ →∞

H ′
2(τ)

H2(τ)
= 0. (2.13)

Moreover,

lim
τ →∞

h′
2(τ)

h2(τ)
= λ2. (2.14)

Proof. Define ρ = H ′
2/H2. Our computations show that

ρ′ + ρ2 + (λ2 − λ1)ρ = λ1λ2|h2|p−1. (2.15)

Alternatively, (2.15) can be written as

ρ′ = −(ρ − μ−
)(
ρ − μ+

)
, (2.16)

where μ− and μ+ are defined by

μ± =
λ1 − λ2 ±

√
(λ1 − λ2)

2 + 4λ1λ2|h2|p−1
2

. (2.17)

Since h2(τ) → 0 as τ → ∞, it follows from (2.17) that

lim
τ →∞

μ− = 0, lim
τ →∞

μ+ = λ1 − λ2. (2.18)

Thus, it is sufficient to show that 0 < ρ(τ) ≤ μ− for all τ ≥ 0. We accomplish this by process of
elimination.

First, ρ ≤ 0 is impossible due to (2.11) and (2.12). A consequence of (2.16) is that ρ
increases to μ+ whenever μ− < ρ ≤ μ+ and ρ decreases to μ+ whenever ρ > μ+. In either case,
if ρ(0) > μ−, then

lim
τ →∞

ρ = lim
τ →∞

μ+ = λ1 − λ2. (2.19)
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Since ρ = H ′
2/H2 = (h′

2/h2) − λ2, then (2.19) implies that

lim
τ →∞

h′
2

h2
= λ1. (2.20)

The fact that λ1 > 0 contradicts (2.7). Therefore, ρ > μ− is impossible. This leaves 0 < ρ ≤ μ−
as the only possibility. Consequently,

0 ≤ lim
τ →∞

ρ = lim
τ →∞

H ′
2

H2
= lim

τ →∞
μ− = 0. (2.21)

Combining this result with H ′
2/H2 = (h′

2/h2) − λ2 yields limτ →∞(h′
2(τ)/h2(τ)) = λ2. This

completes the proof of the lemma.

We now prove that limτ →∞h2(τ) exp(−λ2τ) = D for some constant D > 0.

Lemma 2.5. The solutionH2 of (2.10) satisfies limτ →∞H2(τ) = D for some finite constant D > 0.

Proof. Because of (2.12) it is sufficient to show that H2(τ) is bounded above on [0,∞). For a
contradiction, assume that

lim
τ →∞

H2(τ) = ∞. (2.22)

By (2.13) there is a value τ0 > 0 such that H ′
2/H2 < −λ2(p − 1)/2p for all τ ≥ τ0. Hence,

H ′
2 + (λ2(p − 1)/2p)H2 < 0 for all τ ≥ τ0 which yields

H2(τ) ≤ K2 exp

(
−λ2
(
p − 1

)
2p

τ

)
∀τ > τ0, (2.23)

where K2 = H2(τ0) exp(λ2(p − 1)τ0/2p).
Integrating (2.10) over [τ0, τ] gives

H ′
2 − (N − 2)H2 = K1 − 2(N − 2)(

p − 1
)2 (p − N

N − 2

)∫ τ

τ0

|h2|p−1H2dη, (2.24)

where K1 = H ′
2(τ0) − (N − 2)H2(τ0). Next, we use (2.23) to show that

∫∞
τ0
|h2|p−1H2dη exists

and is finite. Subsequently, we divide both sides of (2.24) byH2 and let τ → ∞.
Combining (2.23) with the fact that h2(τ) = exp(λ2τ)H2(τ) > 0 for all τ ≥ 0 yields

|h2(τ)|p−1H2(τ) = exp
(
λ2
(
p − 1

)
τ
)
H

p

2 (τ)

≤ exp
(
λ2
(
p − 1

)
τ
)
K

p

2 exp

(
−λ2
(
p − 1

)
2

τ

)

= K
p

2 exp

(
λ2
(
p − 1

)
2

τ

)
.

(2.25)
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This implies that

∫∞

τ0

|h2|p−1H2dη < ∞. (2.26)

Dividing both sides of (2.24) by H2 and letting τ → ∞ we obtain −(N − 2) = 0 as a
consequence of (2.13), (2.22), and (2.26). This is an obvious contradiction. Thus, there exists
a finite constant D > 0 such that

lim
τ →∞

h2(τ) exp(−λ2τ) = lim
τ →∞

H2(τ) = D. (2.27)

This concludes the proof of the lemma.

Conclusion. It follows from (2.27) that the asymptotic behavior of h2 described in (2.2) is now
proved.

The next lemma shows that h2 exists on R and that h2(τ) → 1 as τ → −∞.

Lemma 2.6. The solution h2 of (1.8) is defined on R and satisfies limτ →−∞(h2(τ), h′
2(τ)) = (1, 0).

Furthermore, there is a decreasing sequence {τk}, with limk→∞τk = −∞, such that

h(τk) = 1 ∀k ≥ 1, h′(τk) < 0 if k is odd, h′(τk) > 0 if k is even. (2.28)

Proof. Let (τmin,∞) denote the maximal interval of existence of h2. We claim that τmin = −∞.
To prove this, we make use of the functional

S =
1
2
(
h′)2 + 2(N − 2)(

p − 1
)2 (p − N

N − 2

)( |h|p+1
p + 1

− h2

2

)
, (2.29)

and the region U defined by

U =
{(

h, h′) | h ≥ 0, S ≤ 0
}
. (2.30)

Let U0 denote the interior of U (Figure 1, upper right). Note that the constant solution
(h(τ), h′(τ)) ≡ (1, 0) ∈ U0. Since p < (N + 2)/(N − 2), a differentiation of (2.29) gives

S′ = −N − 2
p − 1

(
p − N + 2

N − 2

)(
h′)2 ≥ 0 ∀τ ∈ (τmin,∞). (2.31)

We conclude from (2.2), (2.6), (2.14), (2.29), and (2.31) that, when h = h2,

S(∞) = 0, S′(τ) ≥ 0, S(τ) < 0 ∀τ ∈ (τmin,∞). (2.32)
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Therefore, (h2(τ), h′
2(τ)) is uniformly bounded on (τmin,∞). From this and standard theory it

follows that τmin = −∞. Thus, for the solution h2, we conclude that S(τ) < 0 for all τ ∈ R and
that

(
h2(τ), h′

2(τ)
) ∈ U0 ∀τ ∈ (−∞,∞). (2.33)

From (2.31) we also conclude that (1.8) has no periodic solutions. In addition, the constant
solution (h, h′) ≡ (1, 0) is the only constant solution in U0. Thus, it follows from (2.33) and
standard phase plane arguments that

h2(τ) > 0 ∀τ ∈ R, lim
τ →−∞

(
h2(τ), h′

2(τ)
)
= (1, 0). (2.34)

Finally, we need to determine precisely how solutions approach (h, h′) = (1, 0) as τ → −∞.
For this a linearization of (1.8) around the constant solution h ≡ 1 gives

h′′ +
N − 2
p − 1

(
p − N + 2

N − 2

)
h′ +

2(N − 2)
p − 1

(
p − N

N − 2

)
h = 0. (2.35)

The eigenvalues associated with (2.35) are complex, with positive real parts. Thus, solutions
with initial values on the curve B1 must spiral into the constant solution (h, h′) = (1, 0) as τ →
−∞. Property (2.28) follows as a consequence. This completes the proof of the lemma.

In Lemma 2.3, the eigenvalue λ2 < 0 defined in (2.5) led to the existence of the solution
h2 of (1.8). The decay rate of h2 as τ → ∞ is described in Lemmas 2.3–2.5. The methods used
to prove Lemmas 2.3–2.5 can be applied to the eigenvalue λ1 > 0 defined in (2.5) to result in
the following lemma.

Lemma 2.7. There exists a solution h1 of (1.8) such that

(a) limτ →−∞(h1(τ), h′
1(τ)) = (0, 0),

(b) h1(τ) > 0 and h′
1(τ) > 0 on (−∞, 0],

(c) limτ →−∞(h′
1(τ)/h1(τ)) = λ1, and

(d) limτ →−∞h1(τ) exp(−λ1τ) = c for some constant c > 0.

Description of the Unstable Manifold

As shown in the proof of Lemma 2.3, the solution h1 is chosen so that (h1(0), h′
1(0)) is a point

on the unstable manifold of the constant solution (h, h′) ≡ (0, 0). As depicted in Figure 1 we
let A1 denote the component of the unstable manifold in the h > 0 and h′ > 0 quadrant. Also,
we denote the component of the unstable manifold in the h < 0 and h′ < 0 component by A2.
Precisely,

A1 =
{(

h1(τ), h′
1(τ)
) | τ ∈ (−∞, τmax)

}
, (2.36)
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where (−∞, τmax) denotes the maximal interval of existence of h1. Noting that −h1 is also a
solution of (1.8) such that limτ →−∞(−h1(τ),−h′

1(τ)) = (0, 0) we can define

A2 =
{(−h1(τ),−h′

1(τ)
) | τ ∈ (−∞, τmax)

}
. (2.37)

In the next lemma, we continue our analysis of the solution h1 as τ → τ−max.

Lemma 2.8. There is an increasing, positive sequence {τk} such that

h′
1(τk) = 0 ∀k ≥ 1, h1(τk) > 1 if k is odd, h1(τk) < −1 if k is even. (2.38)

Proof. The corresponding solution w0(r) of (1.4) satisfies

w0(r) = h1(ln(r))

(
2(N − 2)

(
p − 1

) − 4(
p − 1

)2
)1/(p−1)

r−2/(p−1), r > 0, (2.39)

and it follows from parts (b) and (d) of Lemma 2.7 and (2.39) that w0(r) > 0 for all r > 0, and

w0(r) −→ w0 = c

(
2(N − 2)

(
p − 1

) − 4(
p − 1

)2
)1/(p−1)

> 0 as r −→ 0. (2.40)

It follows from standard theory that solutions that are bounded at r = 0must satisfyw′(0) = 0.
Thus, for solutions of (1.8) such that (h(0), h′(0)) ∈ A1, and satisfying parts (b) and (d) of
Lemma 2.7, the corresponding solution w0(r) of (1.4) is nonsingular and satisfies w0(0) =
w0 > 0, w′

0(0) = 0. Haraux and Weissler [2] showed that w0(r) has at least one positive zero.
Chen et al. [1] proved that w0(r) has infinitely many positive zeros. These results, and the
fact that h1 = w/w1, imply that solutions of (1.8) satisfying (h1(0), h′

1(0)) ∈ A1 have infinitely
many positive zeros. Thus, there is an increasing, positive sequence {τk}, where h1 attains a
positive relative maximum when k ≥ 1 is odd, and a negative relative minimum when k is
even. It follows from (1.8) that

h1(τk) > 1 when k is odd, h1(τk) < −1 when k is even. (2.41)

This concludes the proof of the lemma.

The following theorem summarizes our results obtained thus far. In particular, part
(i) of the following theorem summarizes the results of Lemmas 2.7 and 2.8 regarding the
solution h1. Part (ii) summarizes the results of Lemmas 2.3–2.6 regarding the solution h2.

Theorem 2.9. LetN > 2 and N/(N − 2) < p < (N + 2)/(N − 2).

(i) There is a one-dimensional unstable manifold of solutions of (1.8) leading from (0, 0) in the
(h, h′) phase plane. One component, A1, points into the positive quadrant, and its negative
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counterpart, A2, points into the negative quadrant. If (h(0), h′(0)) ∈ A1, and h(0) > 0 is
sufficiently small, then there is a value c > 0 such that

h(τ) > 0 ∀τ ∈ (−∞, 0], h(τ) ∼ c exp
(

2τ
p − 1

)
as τ −→ −∞. (2.42)

Furthermore, there is an increasing, positive sequence {τk} such that

h′(τk) = 0 ∀k ≥ 1, h(τk) > 1 if k is odd, h(τk) < −1 if k is even. (2.43)

(ii) There is a one-dimensional stable manifold of solutions leading to (0, 0) in the (h, h′) phase
plane. One component, B1, points into the h > 0, h′ < 0 quadrant of the phase plane, and
its negative counterpart, B2, points into the h < 0, h′ > 0 quadrant. If (h(0), h′(0)) ∈ B1,
then

h(τ) > 0 ∀τ ∈ R, lim
τ →−∞

(
h(τ), h′(τ)

)
= (1, 0), lim

τ →∞
(
h(τ), h′(τ)

)
= (0, 0). (2.44)

Also, there is a decreasing sequence {τk}, with limk→∞τk = −∞, such that

h(τk) = 1 ∀k ≥ 1, h′(τk) < 0 if k is odd, h′(τk) > 0 if k is even. (2.45)

Finally, there is a constant D > 0 such that

h(τ) ∼ D exp
(
−N − 2
p − 1

(
p − N

N − 2

)
τ

)
as τ −→ ∞. (2.46)

Solutions of the w Equation

Below, in Theorem 2.10, we show how to combine part (ii) of Theorem 2.9 with the formula

w(r) = h(ln(r))w1(r), (2.47)

to prove the existence and asymptotic behavior of a new family of singular solutions of the
w equation (1.4). Our approach is to let (h(0), h′(0)) be an arbitrarily chosen element of the
continuous curve B1. Since r = eτ , the initial conditions for the corresponding solution of
(1.4) are given at r = e0 = 1 and satisfy

w(1) = h(0)w1(1), w′(1) = h′(0)w(1) + h(0)w′(1). (2.48)

Since (h(0), h′(0)) ∈ B1, and B1 is a continuous curve, then (2.48) generates an entire
continuum of solutions of the w equation. We show how these solutions intertwine with
w1(r) infinitely often as r → 0+. In addition, we show how to prove the limiting behavior of
each solution at both ends of (rmin, rmax), its maximal positive interval of existence.
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Theorem 2.10 (a continuum of new singular solutions of (1.4)). Let N > 2 and N/(N − 2) <
p < (N + 2)/(N − 2). Let w1(r) denote the positive singular solution of (1.4) defined in (1.5), and
let h2(τ) be a solution of (1.8) which satisfies (h2(0), h′

2(0)) ∈ B1 in part (ii) of Theorem 2.9. The
corresponding solution w2(r) = h2(ln(r))w1(r) of (1.4) has initial values

w2(1) = h2(0)w1(1), w′
2(1) = h′

2(0)w1(1) + h2(0)w′
1(1). (2.49)

Furthermore, (0,∞) is the maximal interval of existence of w2(r), and there is a decreasing positive
sequence, {rk}, with limk→∞rk = 0, such that

0 < w2(r) < w1(r) ∀r > r1, w2(rk) = w1(rk) ∀k ≥ 1, (2.50)

lim
r→ 0+

w2(r)
w1(r)

= 1,
w2(r)
w1(r)

∼ Dr−((N−2)/(p−1))(p−N/(N−2)) as r −→ ∞. (2.51)

Numerical Example

In Figure 1 we let (N,p) = (3, 4) so that λ2 = −1/3. The stable manifold B1 (third row, left
panel) is generated by solution h2(τ) of (1.8) with (h2(0), h′

2(0)) = (.93, .07). The right panel
shows the corresponding solution w2(r) of (1.4). For this example the asymptotic properties
(2.51) become

w2(r) ∼ w1(r) =
(
2
9

)1/3

r−2/3 as r −→ 0+, w2(r) ∼ .05
r

as r −→ ∞. (2.52)

Proof of Theorem 2.10. Let h2 denote a solution of (1.8)which satisfies part (ii) of Theorem 2.9.
The solution of (1.4) corresponding to h2 is

w2(r) = h2(ln(r))w1(r). (2.53)

It follows from (2.45) in Theorem 2.9 that the sequence {rk} defined by

rk = exp(τk) ∀k ≥ 1 (2.54)

is positive and decreasing in k, with limk→∞rk = 0, and

w2(rk) = w1(rk) ∀k ≥ 1. (2.55)

Next, it follows from (2.53), and the definition τ = ln(r), that

w2(r)
w1(r)

= h2(ln(r)) = h2(τ). (2.56)
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Since r = eτ → 0 as τ → −∞, and since h2(τ) → 1 as τ → −∞, it follows from (2.56) that

lim
r→ 0+

w2(r)
w1(r)

= 1. (2.57)

This proves the first part of (2.51). It remains to prove the asymptotic behavior of the solutions
as r → ∞. For this we combine property (2.46) in Theorem 2.9 with (2.56) and substitute
τ = ln(r) to obtain

w2(r)
w1(r)

∼ Dr−((N−2)/(p−1))(p−N/(N−2)) as r −→ ∞. (2.58)

This completes the proof of Theorem 2.10.

3. The Critical Case: p = (N + 2)/(N − 2)

In this section we investigate the behavior of solutions of (1.4) and (1.8) when N > 2 and
p = (N + 2)/(N − 2). In this case (1.4) and (1.8) become

w′′ +
N − 1

r
w′ + |w|4/(N−2)w = 0, r > 0, (3.1)

d2h

dτ2
+
(
N − 2

2

)2(
|h|4/(N−2)h − h

)
= 0, (3.2)

and (1.5) reduces to

w1(r) =
(
N − 2

2

)(N−2)/2
r−(N−2)/2, r > 0. (3.3)

The remainder of this section consists of the following.

(I) Theorem 3.1 gives a complete classification of solutions of (3.2).

(II) In Theorem 3.2 we show how to combine the results of Theorem 3.1 with the
formula w(r) = h(ln(r))w1(r) to obtain a continuum of new positive singular
solutions of (3.1), and also a continuum of new sign changing singular solutions.

(III) Figures 2 and 3 illustrate our results when (N,p) = (3, 5).

Theorem 3.1. LetN > 2 and p = (N + 2)/(N − 2). Each solution of (3.2) satisfies

1
2
(
h′)2 +(N − 2

2

)2
(

N − 2
2N

|h|2N/(N−2) − h2

2

)
= E, (3.4)

where E is a constant. Define E∗ = −(N − 2)2/4N.
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(i) If E < E∗, then there are no real solutions of (3.2) which satisfy (3.4).

(ii) If E = E∗, then solutions of (3.2) are constant, and either (h(τ), h′(τ)) = (1, 0) or
(h(τ), h′(τ)) = (−1, 0) for all τ ∈ R.

(iii) If E∗ < E < 0, then solutions of (3.2) are nonconstant, periodic, they have one sign, and the
interior of their trajectories in the (h, h′) phase plane contains one of the constant solutions
(±1, 0).

(iv) If E = 0, then there is a one parameter family of solutions

hκ(τ) = κ

(
2N exp(τ)

N(N − 2) + |κ|4/(N−2) exp(2τ)

)(N−2)/2
, κ /= 0, τ ∈ R. (3.5)

Depending on the sign of κ, these solutions are either strictly positive or negative. Their trajectories
form homoclinic orbits in the (h, h′) phase plane, with one of the constant solutions (±1, 0) in their
interior, and

lim
τ →±∞

(
h(τ), h′(τ)

)
= (0, 0). (3.6)

(v) If E > 0 solutions of (3.2) are nonconstant, periodic, they change sign, and the interior of
their trajectories in the (h, h′) phase plane contains all three constant solutions (±1, 0) and
(0, 0).

Proof. LetQ = (1/2)(h′)2+((N − 2)/2)2(((N−2)/2N)|h|2N/(N−2)−h2/2). ThenQ′ = 0 for all τ ,
hence

1
2
(
h′)2 +(N − 2

2

)2
(

N − 2
2N

|h|2N/(N−2) − h2

2

)
= E ∀τ, (3.7)

where E is a constant, and (3.4) is proved. Properties (i)–(v) follow from (3.7).

Numerical Experiments

Figure 2 illustrates homoclinic orbits solutions, and also periodic solutions, of (3.2) in the
(h, h′) plane when (N,p) = (3, 5). Graphs of the h components of these solutions are shown
in the left column of Figure 3. The corresponding solutions of thew equation (3.1) are shown
in the right column of Figure 3. Proofs of their existence are given below in Theorem 3.2.

Solutions of the w Equation

We now show how to combine the results of Theorem 3.1 with the formula

w(r) = h(ln(r))w1(r), (3.8)
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Figure 2: Critical case: N = 3, p = 5. Periodic and homoclinic orbits of (3.2) proved in Theorem 3.1.

to prove the existence and asymptotic behavior of solutions of (3.1). First, part (ii) of
Theorem 3.1 shows that when E = E∗ = −(N − 2)2/4N, then h ≡ ±1. This and (3.8) imply
that the corresponding solutions of (3.1) are w(r) = ±w1(r). Below, in Theorem 3.2, we show
how parts (iii)–(v) of Theorem 3.1 generate continuous families of strictly positive solutions of
(3.1), and also a family of sign changing singular solutions.

Theorem 3.2. LetN > 2 and p = (N + 2)/(N − 2).
(a) A Continuum of Positive Nonsingular Solutions. For each κ > 0 (3.1) has the nonsingular

solution

w0(r) = κ

(
N(N − 2)

N(N − 2) + |κ|4/(N−2)r2

)(N−2)/2
, r > 0. (3.9)

(b) A Continuum of Positive “Interlacing” Singular Solutions. Let h2(τ) be a member of
the continuum of positive periodic solutions of (3.2) which satisfy part (iii) of Theorem 3.1. The
corresponding solution w2(r) = h2(ln(r))w1(r) of (3.1) has initial values

w2(1) = h2(0)w1(1), w′
2(1) = h′

2(0)w1(1) + h2(0)w′
1(1), (3.10)

and its interval of existence is (0,∞). Furthermore, the solution w2(r) interlaces with w1(r); that is,
there is a positive increasing sequence, {rk}, with limk→−∞rk = 0 and limk→∞rk = ∞ such that

w2(rk) = w1(rk), −∞ < k < ∞, (3.11)

lim
r→ 0+

w2(r) = ∞, lim
r→∞

w2(r) = 0. (3.12)
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Figure 3: Critical case: N = 3, p = 5. ((a), (c), and (e)) Homoclinic and periodic orbit solutions of (3.2)
proved in Theorem 3.1. ((b), (d), and (f)) The corresponding solutions of (3.1) proved in Theorem 3.2:
w1(r) = 1/

√
2r is the known singular solution, w2(r) is a new positive singular solution, and w3(r) is a

new sign changing singular solution.
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Figure 4: Supercritical example: N = 3, p = 7. ((a) and (b)) Trajectories of the unstable manifold (A1 and
A2) and stable manifold (B1 and B2) leading from (0, 0) into the (h, h′) plane. ((c)–(f)) The h components
of solutions along A1, A2, B1, B2 (left) and correspondingw components along A1 and B1 (right): w0(r) is
bounded at r = 0,w1(r) = (2/9)1/6r−1/3 is the known singular solution, andw2(r) is the new sign changing
singular solution corresponding to B1.
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(c) A Continuum of Sign Changing Singular Solutions. Let h3(τ) be a member of the family of positive,
sign changing periodic solutions of (3.2) which satisfy part (v) of Theorem 3.1. The corresponding
solution w3(r) = h3(ln(r))w1(r) of (3.1) has initial values

w3(1) = h3(0)w1(1), w′
3(1) = h′

3(0)w1(1) + h3(0)w′
1(1), (3.13)

and its interval of existence is (0,∞). Furthermore, the solutionw3(r) changes sign infinitely often as
follows: there is an positive increasing sequence, {ri}, with limi→−∞ri = 0 and limi→∞ri = ∞ such
that

w3(ri) = w1(ri) if i is even, w3(ri) = −w1(ri) if i is odd, (3.14)

lim sup
r→ 0+

w3(r) = ∞, lim inf
r→ 0+

w3(r) = −∞, lim
r→∞

w3(r) = 0. (3.15)

Remarks. (i) The solutions given in (3.9) were first derived by Joseph and Lundgren [3]. (ii)
To our knowledge, the singular solutions described in parts (b) and (c) have not previously
been reported.

Proof of Theorem 3.2.

Part (a). For each κ > 0, let hκ(τ) denote the solution given in (3.5) in Theorem 3.1. Setting
τ = ln(r) in (3.5) gives

hκ(ln(r)) = κ

(
2Nr

N(N − 2) + |κ|4/(N−2)r2

)(N−2)/2
, r > 0. (3.16)

Next, substitute (3.3) and (3.16) into (3.8) and obtain

w0(r) = κ

(
N(N − 2)

N(N − 2) + |κ|4/(N−2)r2

)(N−2)/2
, r > 0. (3.17)

Part (b). Let h2(τ) be a member of the continuum of positive periodic solutions of (3.2)which
satisfy part (iii) of Theorem 3.1. The trajectory of (h2, h

′
2) lies in the positive quadrant of

the (h, h′) plane and surrounds the constant solution (h, h′) = (1, 0). Thus, there are values
L2 > L1 > 0 and a positive increasing sequence {τk}, such that

lim
k→−∞

τk = −∞, lim
k→∞

τk = ∞, (3.18)

0 < L1 < h2(τ) < L2 ∀τ ∈ R, h2(τk) = 1 ∀k. (3.19)

The solution of the w equation (3.1) corresponding to h2 is

w2(r) = h2(ln(r))w1(r) r > 0. (3.20)
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Define rk = eτk for all k. It follows from (3.18)-(3.19)-(3.20) that limk→−∞rk = 0 and
limk→∞rk = ∞, and

w2(rk) = h2(τk)w1(rk) = w1(rk) ∀k. (3.21)

This proves property (3.11). It remains to prove property (3.12). For this we combine (3.19)
with (3.20), and the fact that τ = ln(r), to conclude that

0 < L1w1(r) < w2(r) < L2w1(r) ∀r > 0. (3.22)

It follows from (3.3) and (3.22) that

lim
r→ 0+

w2(r) = ∞, lim
r→∞

w2(r) = 0. (3.23)

This completes the proof of property (3.12).
Part (c). Let h3(τ) be a member of the continuum of positive periodic solutions of (3.2)which
satisfy part (v) of Theorem 3.1. The trajectory of (h3, h

′
3) surrounds the constant solutions

(h, h′) = (0, 0) and (h, h′) = (±1, 0) in the (h, h′) plane. Thus, there exists a value L > 0, and a
positive increasing sequence {τi}, such that

−L < h3(τ) < L ∀τ ∈ R, (3.24)

lim
i→−∞

τi = −∞, lim
i→∞

τi = ∞, (3.25)

h3(τi) = −1 if i is odd, h3(τi) = 1 if i is even. (3.26)

The solution of the w equation (3.1) corresponding to h3 is

w3(r) = h3(ln(r))w1(r) r > 0. (3.27)

Define ri = eτi for all i. It follows from (3.24)-(3.25)-(3.27) that limi→−∞ri = 0, limi→∞ri = ∞,
and

w3(ri) = −w1(ri) if i is odd, w3(ri) = w1(ri) if i is even. (3.28)

This proves property (3.14). It remains to prove property (3.15). For this we combine (3.24)
with (3.27), and the fact that τ = ln(r), to conclude that

−Lw1(r) < w3(r) < Lw1(r) ∀r > 0. (3.29)



22 International Journal of Differential Equations

It follows from (3.3), (3.28), and (3.29) that

lim sup
r→ 0+

w3(r) = ∞, lim inf
r→ 0+

w3(r) = −∞, lim
r→∞

w3(r) = 0. (3.30)

This completes the proof of property (3.15) and of Theorem 3.2.

4. The Supercritical Case: p > (N + 2)/(N − 2)

In this section we investigate the behavior of solutions of (1.4) and (1.8) when N > 2 and
p > (N + 2)/(N − 2). The remainder of the section consists of the following.

(I) Theorem 4.1 classifies the behavior of solutions of (1.8). Again, we focus on
solutions whose trajectories in the (h, h′) phase plane form the stable and unstable
manifolds of solutions associated with the constant solution (0, 0). Part (ii) of
Theorem 4.1 gives a detailed proof that solutions on the stable manifold form an
outgoing spiral in the (h, h′) phase plane as τ decreases from τ = ∞. The proof
is sufficiently general as to include Galaktionov’s numerical observation of large
amplitude oscillations [10]. For these spiraling solutions it remains a challenging
open problem to prove their asymptotic behavior at the left endpoint τmin of their
interval of existence (see Open Problem I after the statement of Theorem 4.1).

(II) Theorem 4.5 shows how to combine the results of Theorem 4.1 with the formula
w(r) = h(ln(r))w1(r) to obtain a continuum of positive nonsingular solutions of
(3.1). In addition, we prove the existence of a continuum of new sign changing,
“super singular” solutions which, to our knowledge, have not previously been
reported. For these sign changing solutions it remains a challenging open problem
to prove their asymptotic behavior at the left endpoint rmin of their interval of
existence (see Open Problem II after the statement of Theorem 4.5).

(III) Figure 4 illustrates the behavior of solutions when (N,p) = (3, 7).

Theorem 4.1. LetN > 2 and p > (N + 2)/(N − 2).

(i) There is a one-dimensional unstable manifold of solutions of (1.8) leading from (0, 0)
into the (h, h′) phase plane. One component, A1, points into the positive quadrant, and
its negative counterpart, A2, points into the negative quadrant (Figure 4, upper left). If
(h(0), h′(0)) ∈ A1, then h(τ) > 0 for all τ ∈ R, and there is a constant c > 0 such that

h(τ) ∼ c exp
(

2τ
p − 1

)
as τ −→ −∞, lim

τ →∞
(
h(τ), h′(τ)

)
= (1, 0). (4.1)

(ii) There is a one-dimensional stable manifold of solutions leading to (0, 0) in the (h, h′) phase
plane. One component, B1, points into the h > 0, h′ < 0 quadrant of the phase plane, and
its negative counterpart, B2, points into the h < 0, h′ > 0 quadrant (Figure 4, upper left).
Additionally, if h(0) > 0 is sufficiently small and (h(0), h′(0)) ∈ B1, then there is a D > 0
such that

h(τ) > 0 ∀τ ≥ 0, h(τ) ∼ D exp
(
−N − 2
p − 1

(
p − N

N − 2

)
τ

)
as τ −→ ∞. (4.2)
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Let h = ((p + 1)/2)1/(p−1). There is a negative decreasing sequence {τN} such that

h′(τN) = 0 ∀N ≥ 1, h(τN) > h if N is odd, h(τN) < −h if N is even. (4.3)

Moreover, |h(τN)| increases asN increases.

Remarks. The proof of part (i) of Theorem 4.1 uses straightforward phase plane type
arguments. The proof of (ii) is admittedly more technical. Our numerical experiments
(Figure 4, lower left) indicate that the amplitudes of the oscillations of the solutions described
in part (ii) grow without bound as τ decreases. It remains a challenging open problem to
determine whether these solutions exist on the entire interval (−∞,∞), or if they exist only
on a semi-infinite interval of the form (τmin,∞). These fundamental theoretical questions are
summarized in the following.

Open Problem I (Super Singular Solutions). Let {τN} denote the decreasing sequence described
in part (ii) of Theorem 4.1. Prove whether τmin = −∞, or τmin > −∞. Second,
prove whether lim supN→∞|h(τN)| is finite or infinite. Our numerical study suggests that
lim supN→∞|h(τN)| = ∞.

Proof of Theorem 4.1.

Part (i). First, note that properties of solutions on the component A1 of the unstable manifold
leading from (0, 0) into the positive quadrant of the (h, h′) phase plane are the same as those
seen in Lemma 2.7. From these properties it again follows that if (h(0), h′(0)) ∈ A1, and h(0) >
0 is sufficiently small, then h(τ) > 0 for all τ ≤ 0, and

h(τ) ∼ c exp(λ1τ),
h′(τ)
h(τ)

−→ λ1 as τ −→ −∞ (4.4)

for some c > 0, where λ1 = 2/(p − 1). This proves the first part of (4.1). To complete the proof
of (4.1) recall that the functional S and the region U defined in the proof of Lemma 2.6 are

S =
1
2
(
h′)2 + 2(N − 2)(

p − 1
)2 (p − N

N − 2

)( |h|p+1
p + 1

− h2

2

)
, (4.5)

U =
{(

h, h′) | h ≥ 0, S ≤ 0
}
. (4.6)

Again, let U0 denote the interior of U, and note that U0 contains one constant solution,
(h, h′) = (1, 0). A differentiation of (4.5) gives

S′ = −N − 2
p − 1

(
p − N + 2

N − 2

)(
h′)2 ≤ 0. (4.7)

Thus, if (h(0), h′(0)) ∈ A1, and h(0) > 0 is sufficiently small, we conclude from (4.4)–(4.7)
(Figure 4, upper right) that h(τ) exists for all τ ∈ R, and

S(−∞) = 0, S′(τ) < 0 ∀τ ≤ 0, S(τ) < 0 ∀τ ∈ R. (4.8)
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Therefore,

(
h(τ), h′(τ)

) ∈ U0 ∀τ ∈ R. (4.9)

From (4.7) we conclude that (1.8) has no periodic solutions. Also, a linearization of (1.8)
around the constant solution (h, h′) = (1, 0) shows that (1, 0) is an asymptotically stable
equilibrium point in the (h, h′) phase plane. Thus, if h(τ) is a solution of (1.8) with initial
condition (h(0), h′(0)) ∈ A1, it follows from (4.7)–(4.9), and standard phase plane arguments,
that

h(τ) > 0 ∀τ ∈ R, lim
τ →∞

(
h(τ), h′(τ)

)
= (1, 0). (4.10)

Part (ii). It follows from (2.5) that there is a one-dimensional stable manifold of solutions
leading to (0, 0) in the (h, h′) phase plane. As in Theorem 2.9, one component, B1, points into
the quadrant h > 0, h′ < 0, and along B1 solutions satisfy

lim
τ →∞

(
h(τ), h′(τ)

)
= (0, 0), lim

τ →∞
h′(τ)
h(τ)

= λ2 < 0, (4.11)

where λ2 = −((N−2)/(p−1))(p−N/(N−2)). Thus, if h2(τ) is a solution of (1.8)with h2(0) > 0
sufficiently small and (h2(0), h′

2(0)) ∈ B1, there is a D > 0 such that

h2(τ) > 0, h′
2(τ) < 0 ∀τ ≥ 0, (4.12)

h2(τ) ∼ D exp(λ2τ) as τ −→ ∞. (4.13)

Along this solution S (Figure 4, upper right) satisfies

S(∞) = 0, S′(τ) < 0, S(τ) > 0 ∀τ ≥ 0. (4.14)

To complete the proof of (ii) let h = ((p + 1)/2)1/(p−1) be the unique positive h value where
S = h′ = 0. We need to prove that (h2(τ), h′

2(τ)) rotates counterclockwise around (1, 0) and
that (h2(τ), h′

2(τ)) generates an outwardly growing spiral as τ decreases. For this we show
that there is a decreasing sequence of negative values {τN} such that

h′
2(τN) = 0, |h2(τN+1)| > |h2(τN)| ∀N ≥ 1, (4.15)

and that

h2(τN) > h if N is odd, h2(τN) < −h if N is even. (4.16)

The proof of (4.15)-(4.16) is in two steps. First, we prove three technical results, Lemmas
4.2–4.4. Secondly, we use these lemmas to follow (h2(τ), h′

2(τ)) as τ decreases. The proofs of
Lemmas 4.2 and 4.4 are straightforward. The proof of Lemma 4.3 is admittedly technical.
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Lemma 4.2. Let τ̂ ∈ (−∞, 0). (a) If a solution of (1.8) satisfies

0 ≤ h(τ̂) < h =
(
p + 1
2

)1/(p−1)
, h′(τ̂) < 0, S(τ̂) > 0, (4.17)

then there is a τ̃ < τ̂ such that

h′(τ) < 0 ∀τ ∈ [τ̃ , τ̂], h(τ̃) = h. (4.18)

(b) If a solution of (1.8) satisfies

−h < h(τ̂) ≤ 0, h′(τ̂) > 0, S(τ̂) > 0, (4.19)

then there is a τ̃ < τ̂ such that

h′(τ) > 0 ∀τ ∈ [τ̃ , τ̂], h(τ̃) = −h. (4.20)

Proof. (a) Let δ = 2S(τ̂) > 0. Since (4.7) implies that S′(τ) ≤ 0 for all τ , then S increases
monotonically as τ decreases. It follows from the definition of S in (4.5) that h′ ≤ −

√
δ for

τ ≤ τ̂ as long as 0 ≤ h(τ) < h. An integration of h′ ≤ −
√
δ shows that h(τ̃) = h at some

first τ̃ ∈ [τ̂ + (h(τ̂) − h)/
√
δ, τ̂). This proves (4.18). The proof of part (b) is the same and is

omitted.

Lemma 4.3. Let τ̃ ∈ (−∞, 0). (a) If a solution of (1.8) satisfies

h(τ̃) = h =
(
p + 1
2

)1/(p−1)
, h′(τ̃) < 0, (4.21)

then there is a τ∗ < τ̃ such that

h′(τ) < 0 ∀τ ∈ (τ∗, τ̃], h′(τ∗) = 0, h(τ∗) > h. (4.22)

(b) If a solution of (1.8) satisfies

h(τ̃) = −h, h′(τ̃) > 0, (4.23)

then there is a τ∗ < τ̃ such that

h′(τ) > 0 ∀τ ∈ (τ∗, τ̃], h′(τ∗) = 0, h(τ∗) < −h. (4.24)

Proof. (a) The first step is to assume, for contradiction, that τ∗ does not exist and that

h′(τ) < 0 ∀τ ∈ (T, τ̃), (4.25)
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where (T, τ̃) denotes the maximal left interval of existence of the solution. We claim that
T = −∞. Suppose that T > −∞. Then standard theory implies that h′ must be unbounded on
(T, τ̃). To show that this cannot happen we use the functionH = (h′)2. Then H satisfies

H ′ − 2(λ1 + λ2)H = λ1λ2
(
|h|p−1 − 1

)
hh′ > 0 ∀τ ∈ (T, τ̃), (4.26)

since λ1λ2 < 0, h(τ) > 1 and h′ < 0 for all τ ∈ (T, τ̃). Integrating (4.26) gives

0 < H(τ) ≤ H(τ̃) exp(−2(λ1 + λ2)(τ̃ − τ)) ∀τ ∈ (T, τ̃). (4.27)

From (4.27) it follows that h′ is bounded on (T, τ̃), contradicting the previous conclusion that
h′ is unbounded on (T, τ̃). We conclude that T = −∞. Therefore, (4.25) becomes

h′(τ) < 0 ∀τ ∈ (−∞, τ̃). (4.28)

Next, to obtain a contradiction of (4.28) we need to prove two technical properties. The first
is that

h′′(τ) ≥ 0, h′(τ) ≤ h′(τ̃) < 0 ∀τ ≤ τ̃ , lim
τ →−∞

h(τ) = ∞. (4.29)

To prove the first part of (4.29), differentiate (1.8) and get

h′′′ +
N − 2
p − 1

(
p − N + 2

N − 2

)
h′′ =

2N − 2p(N − 2)(
p − 1

)2 (
p|h|p−1 − 1

)
h′ > 0 (4.30)

for τ ≤ τ̃ as long as h(τ) > h > 1. If there is an a ≤ τ̃ , where h′′(a) < 0, then an integration of
(4.30) gives

h′′(τ) ≤ h′′(a) exp
(
N − 2
p − 1

(
p − N + 2

N − 2

)
(a − τ)

)
< 0 ∀τ ≤ a. (4.31)

An integration of (4.31) gives h′(τ) > 0 for τ 
 a, contradicting (4.28). We conclude that
h′′(τ) ≥ 0 for all τ ≤ τ̃ , and the first part of (4.29) is proved. In turn, this implies that

h′(τ) ≤ h′(τ̃) < 0 ∀τ ≤ τ̃ , lim
τ →−∞

h(τ) = ∞, (4.32)

and the proof of (4.29) is complete. The second property we need is

ρ(τ) =
h′(τ)
h(τ)

≥ −m = min
(
λ2, ρ(τ̃)

) ∀τ ≤ τ̃ , (4.33)

where ρ(τ) satisfies the ODE

ρ′ +
(
ρ − λ1

)(
ρ − λ2

)
= λ1λ2|h|p−1. (4.34)
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Property (4.33) follows immediately from (4.34), since (4.34) implies that ρ′ < 0 whenever
ρ ≤ λ2.

We now show how to use properties (4.29) and (4.33) to obtain a contradiction of
(4.28). First, an integration of (4.34) gives

((
ρ(τ) − λ2

)
e−
∫ τ̃
τ (ρ−λ1)ds

)′
= λ1λ2|h|p−1e−

∫ τ̃
τ (ρ−λ1)ds, ∀τ ≤ τ̃ . (4.35)

Integrating both sides of (4.35) from τ to τ̃ , we obtain

ρ(τ) = λ2 + I1(τ) + I2(τ), (4.36)

where

I1(τ) =
(
ρ(τ̃) − λ2

)
e
∫ τ̃
τ (ρ−λ1)ds, (4.37)

I2(τ) = −e
∫ τ̃
τ (ρ−λ1)dsλ1λ2

∫ τ̃

τ

|h|p−1e−
∫ τ̃
η (ρ−λ1)dsdη. (4.38)

Our goal is to prove that

lim
τ →−∞

I1 = 0, lim
τ →−∞

I2 = ∞. (4.39)

Oncewe prove these properties, we combine (4.39)with (4.36) and conclude that ρ = h′/h > 0
when τ 
 τ̃ . Since h(τ) > 0, this implies that h′ > 0 when τ 
 τ̃ , which contradicts (4.28).

To prove the first part of (4.39), evaluate the right side of (4.37) and get

I1(τ) =
(
ρ(τ̃) − λ2

)h(τ̃)
h(τ)

e−λ1(τ̃−τ) −→ 0 as τ −→ −∞, (4.40)

since λ1 > 0 and 0 < h(τ̃)/h(τ) ≤ 1 for all τ ≤ τ̃ . To prove the second part of (4.39), recall from
(4.32) that limτ →−∞h(τ) = ∞. Thus, since ρ < 0 and λ1 > 0, we conclude that

∫ τ̃

τ

|h|p−1e−
∫ τ̃
η (ρ−λ1)dsdη ≥

∫ τ̃

τ

|h|p−1dη −→ ∞ as τ −→ −∞. (4.41)

Next, it follows from (4.33) that −λ1 > ρ−λ1 ≥ −m−λ1. This, (4.41), and the facts that λ1λ2 < 0
and e

∫ τ̃
τ (ρ−λ1)ds → 0 as τ → −∞ allow us to apply L’Hospital’s Rule to I2(τ). This gives

lim
τ →−∞

I2(τ) = lim
τ →−∞

(
λ1λ2|h(τ)|p−1
ρ(τ) − λ1

)
= ∞. (4.42)

This proves part (a). The proof of part (b) is the same and is omitted.



28 International Journal of Differential Equations

Lemma 4.4. Let τ∗ ∈ (−∞, 0). (a) If a solution of (1.8) satisfies

h(τ∗) > h =
(
p + 1
2

)1/(p−1)
, h′(τ∗) = 0, (4.43)

then there is a τ∗∗ < τ∗ such that

h′(τ) > 0 ∀τ ∈ [τ∗∗, τ∗), h(τ∗∗) = 0. (4.44)

(b) If a solution of (1.8) satisfies

h(τ∗) < −h, h′(τ∗) = 0, (4.45)

then there is a τ∗∗ < τ∗ such that

h′(τ) < 0 ∀τ ∈ [τ∗∗, τ∗), h(τ∗∗) = 0. (4.46)

Proof. (a) Since h > 1, it follows from (1.8) that h′′(τ∗) < 0. Thus, there is an a < τ∗ such that

h′(τ) > 0 ∀τ ∈ [a, τ∗), h < h(a) < h(τ∗). (4.47)

Since h < h(a), a calculation shows that

|h|p+1
p + 1

− h2

2
≤ |h|p+1(a)

p + 1
− h2(a)

2
whenh ∈ [0, h(a)]. (4.48)

Recall from (4.7) that S′(τ) ≤ 0 for all τ . Thus, S(τ) ≥ S(a) for all τ ≤ a, and (4.48) implies that

(h′(τ))2

2
− (h′(a))2

2
≥ −λ1λ2

(
|h|p+1(a)
p + 1

− h2(a)
2

− |h|p+1(τ)
p + 1

+
h2(τ)
2

)
≥ 0 (4.49)

for τ ≤ a as long as 0 ≤ h(τ) ≤ h(a). Integrating h′(τ) ≥ h′(a) > 0 shows that there is a
τ∗∗ ∈ [a − h′(a)/h(a), a) such that

h′(τ) ≥ h′(a) > 0 ∀τ ∈ [τ∗∗, a), h(τ∗∗) = 0. (4.50)

This proves part (a). The proof of part (b) is the same and is omitted.
We now return to the proof of Theorem 4.1. It remains to prove that (h2(τ), h′

2(τ))
rotates counterclockwise around (0, 0) in the (h, h′) plane as τ decreases from τ = 0.
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To accomplish this we use Lemmas 4.2–4.4 to show that (h2(τ), h′
2(τ)) passes infinitely often

through the sets

R1 =
{(

h, h′) | 0 ≤ h < h, h′ < 0, S > 0
}

R2 =
{(

h, h′) | h = h, h′ < 0
}

R3 =
{(

h, h′) | h > h, h′ = 0
}

R4 =
{(

h, h′) | h = 0, h′ > 0
}

R5 =
{(

h, h′) | h = −h, h′ > 0
}

R6 =
{(

h, h′) | h < −h, h′ = 0
}

R7 =
{(

h, h′) | h = 0, h′ < 0
}
.

(4.51)

Recall that (h2(0), h′
2(0)) ∈ B1 and that (4.12) is satisfied, consequently (h(0), h′(0)) ∈ R1.

Lemma 4.2 implies that there is a first τ̃ < 0 such that (h(τ̃), h′(τ̃)) ∈ R2, that is, h(τ̃) = h and
h′(τ̃) < 0. This and Lemma 4.3 imply that there is a τ1 < τ̃ such that h′

2(τ) < 0 for all τ ∈ (τ1, τ̃],
h′
2(τ1) = 0, and h2(τ1) > h. Thus, (h(τ1), h′(τ1)) ∈ R3. It follows from Lemma 4.4 that there is a

τ∗∗ < τ1 such that h′
2(τ) > 0 for all τ ∈ [τ∗∗, τ1) and h2(τ∗∗) = 0, hence (h2(τ∗∗), h′

2(τ
∗∗)) ∈ R4.

This and part (b) of Lemma 4.2 imply that there is a b < τ∗∗ such that h′
2(τ) > 0 for all τ ∈

[b, τ∗∗] and h2(b) = −h, hence (h(b), h′(b)) ∈ R5. This and part (b) of Lemma 4.3 imply that
there is a τ2 < b such that h′

2(τ) > 0 for all τ ∈ (τ2, b], h′
2(τ2) = 0, and h2(τ2) < −h, hence

(h2(τ2), h′
2(τ2)) ∈ R6. This and part (b) of Lemma 4.4 imply that there is a c < τ2 such that

h′
2(τ) < 0 for all τ ∈ [c, τ2) and h2(c) = 0, hence (h2(c), h′

2(c)) ∈ R7. We have shown how
(h2(τ), h′

2(τ)) passes sequentially through R1, . . . , R7 as τ decreases. Since R7 is contained
in R1 it follows from a repetition of the steps given above, and mathematical induction, that
(h2(τ), h′

2(τ)) passes sequentially throughR1, . . . , R7 infinitely often as τ decreases from τ = 0.
This produces a decreasing sequence {τN}where h′

2(τN) = 0 for allN ≥ 1,

h2(τN) > h when N is odd, h2(τN) < −h when N is even. (4.52)

Finally, since S increases as τ decreases, it follows that |h(τN)| increases as N increases. This
completes the proof of Theorem 4.1.

Solutions of the w Equation

Below, in Theorem 4.5, we show how to combine part (ii) of Theorem 4.1 with the formula

w(r) = h(ln(r))w1(r), (4.53)

to prove the existence and asymptotic behavior of families of nonsingular and singular
solutions of thew equation (1.4). In particular, in part (b) of Theorem 4.5 we show how a new
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family of “super singular” solutions is generated. Open Problem II stated after Theorem 4.5
describes important, and as yet unproven, properties of this continuum of singular solutions.

Theorem 4.5. LetN > 2 and p > (N + 2)/(N − 2).
(a) A Continuum of Positive Nonsingular Solutions. Let h0(τ) denote a solution of (1.8)

which satisfies (h0(0), h′
0(0)) ∈ A1 in part (i) of Theorem 4.1. The corresponding solution w0(r) =

h0(ln(r))w1(r) of (1.4) is strictly positive and satisfies

w0(1) = h0(0)w1(1), w′
0(1) = h′

0(0)w1(1) + h0(0)w′
1(1). (4.54)

Furthermore, its interval of existence is (0,∞),

0 < w0(0) < ∞, w′
0(0) = 0, lim

r→∞
w0(r)
w1(r)

= 1. (4.55)

(b) A Continuum of Sign Changing Singular Solutions. Let h2(τ) be a member of the family
of “spiraling” solutions of (3.2) which satisfy (h2(0), h′

2(0)) ∈ B1 in part (ii) of Theorem 4.1, and
let {τN} denote the decreasing sequence of τ values which satisfy property (4.3). The corresponding
solution w2(r) = h2(ln(r))w1(r) of (3.1) satisfies

w2(1) = h2(0)w1(1), w′
2(1) = h′

2(0)w1(1) + h2(0)w′
1(1). (4.56)

Its interval of existence is of the form (rmin,∞). As r → ∞, w2(r) → 0 faster than w1(r). That is,
there exists D > 0 such that.

w2(r)
w1(r)

∼ r−((N−2)/(p−1))(p−(N/(N−2))) −→ 0 as r −→ ∞. (4.57)

As r decreases from ∞, w2(r) changes sign infinitely often. That is, along the decreasing sequence
{rN = exp(τN)}, one has limN→−∞rN = rmin,

w2(rN) > w1(rN) if N is odd, w2(rN) < −w1(rN) if N is even. (4.58)

Open Problem II (Super Singular Solutions). Let {rN} denote the decreasing sequence in part
(b), which satisfies limN→∞rN = rmin. Prove whether rmin = 0 or rmin > 0. Secondly, prove
whether lim supN→∞|w2(rN)| is finite or infinite. Our numerical experiments suggest that
lim supN→∞|w2(rN)| = ∞. As in Open Problem I, our analytical methods have not allowed
us to resolve these fundamental theoretical issues.

Proof of Theorem 4.5.

Part (a). Let h0(τ) be a solution of (1.8) satisfying (h0(0), h′
0(0)) ∈ A1 in part (i) of Theorem 4.1.

The corresponding solution of (1.4) is

w0(r) = h0(ln(r))w1(r), (4.59)
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where we recall that

w1(r) =

(
2(N − 2)

(
p − 1

) − 4(
p − 1

)2
)1/(p−1)

r−2/(p−1), r > 0. (4.60)

Because r = exp(τ), the initial point τ = 0 for h0(τ) translates to r = 1 for w0(r). This, (4.59)
and (4.60) give (4.54). Next, it follows from property (4.1) and the fact that τ = ln(r) that
there exists c > 0 such that

h0(ln(r)) ∼ cr2/(p−1) as r −→ 0+, lim
r→∞

h0(ln(r)) = 1. (4.61)

We conclude from (4.59), (4.60), and the first part of (4.61) that

w0(r) −→ c

(
2(N − 2)

(
p − 1

) − 4(
p − 1

)2
)1/(p−1)

> 0 as r −→ 0+. (4.62)

It then follows from standard theory that w′
0(0) = 0. This agrees with a result of Haraux and

Weissler (see Theorem 4 in [2]). Finally, we conclude from (4.59), (4.60), and the second part
of (4.61) that

lim
r→∞

w0(r)
w1(r)

= lim
r→∞

h0(ln(r)) = 1. (4.63)

This completes the proof of part (a).

Part (b). Let h2(τ) be a solution of (1.8) satisfying (h2(0), h′
2(0)) ∈ B1 in part (ii) of Theorem 4.1.

The corresponding solution of (1.4) is

w2(r) = h2(ln(r))w1(r). (4.64)

It follows from (4.2) that there exists D > 0 such that

h2(ln(r)) ∼ Dr−((N−2)/(p−1))(p−N/(N−2)) as r −→ ∞. (4.65)

Combining (4.60), (4.64), and (4.65) gives

w2(r)
w1(r)

∼ Dr−((N−2)/(p−1))(p−N/(N−2)) as r −→ ∞. (4.66)

This proves the first part of property (4.57). Next, let {τN} denote a sequence of τ
values satisfying property (4.3) in Theorem 4.1. Then {τN} decreases as N increases, with
limN→∞τN = τmin, and

h2(τN) > h if N is odd, h2(τN) < −h if N is even. (4.67)



32 International Journal of Differential Equations

Define rN = exp(τN) for allN ≥ 1. Setting τN = ln(rN) in (4.67) gives

h2(ln(rN)) > h if N is odd, h2(ln(rN)) < −h if N is even. (4.68)

Finally, we combine with (4.64) and (4.68) and obtain

w2(rN) > hw1(rN) if N is odd, w2(rN) < −hw1(rN) if N is even. (4.69)

Since h > 1, this completes the proof of (4.58) and of Theorem 4.5.

5. Conclusions

In this paper we have developed an analytical method to classify the behavior of radially
symmetric, time-independent solutions of the nonlinear heat equation (1.2). These solutions
satisfy the ODE (1.4). We have studied solutions which remain strictly positive on their
entire intervals of existence, and also solutions which change sign. There have been few
analyses in the literature of sign changing solutions. Our analytical method follows a three-
step approach:

Step 1. Transform the nonautonomous w equation (1.4) into the autonomous h
equation (1.8).

Step 2. Analyze (1.8) using phase plane methods.
Step 3. Use the inverse transformation

w(r) = h(ln(r))w1(r), (5.1)

to translate results for (1.8) into new results for the w equation (1.4).

Our Advance

This approach has allowed us to prove the existence and asymptotic behavior of several new
families of solutions of (1.4). In particular, we mention two important classes of solutions
which, to our knowledge, have not previously been reported.

(I) When N > 2 and N/(N − 2) < p < (N + 2)/(N − 2), we proved (see part (ii) of
Theorem 2.10) the existence and asymptotic behavior of a continuum of positive,
singular solutions which “interlace” with the known singular solutions w1(r).

(II) When N > 2 and N/(N − 2) < p < (N + 2)/(N − 2), we proved (see part (ii) of
Theorem 4.1) the existence of sign changing solutions of the h equation which form
outward spirals in the (h, h′) phase plane. These solutions transform, by means of
(5.1), into “super singular” sign changing solutions of the w equation (1.4). Open
Problems I and II (see Section 4) summarize important issues for these solutions
which have not yet been resolved.

Below, we describe challenging problems for further research.
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Open Problem III. When N/(N − 2) < p < (N + 2)/(N − 2), do the new positive singular
solutions, which interlace withw1(r), play an important role similar to that ofw1(r) (e.g., see
[5]) in proving the large time behavior of solutions of the time-dependent problem (1.2)?

Open Problem IV. Equation (1.1) is a canonical model for the general equation

Δu + f(u) = 0, (5.2)

where f(u) > 0 is positive and superlinear [1–5]. A natural extension of our investigation is
to use our new singular solutions of (1.4) as a guide in analyzing (5.2) for the existence of
new classes of solutions.

Open Problem V. Gazzola and Grunau [13] investigate the behavior of solutions of the
biharmonic equation

−Δ2u + |u|p−1u = 0. (5.3)

This equation has the singular solution w1 = Ar−4/(p−1), r > 0. It is hoped that our approach
can be used to look for new classes of solutions of (5.3).

Open Problem VI. Develop a comparison technique which allows one to use the new singular
solution w2(r) to establish blowup of solutions of the full time-dependent PDE.
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