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We give some new identities on q-Euler numbers and polynomials by using the fermionic p-adic
integral on Zp.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper Zp, Qp, and Cp will denote the
ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of
the algebraic closure of Qp. The p-adic absolute value | · |p is defined by |p|p = 1/p. In this
paper, we assume that q ∈ Cp with |1−q|p < 1. As is well known, the fermionic p-adic integral
on Zp is defined by Kim as follows:

I−1
(
f
)
=
∫

Zp

f(x)dμ−1(x) = lim
N→∞

pN−1∑

x=0
(−1)xf(x), (1.1)

where f ∈ C(Zp) = the space of continuous functions on Zp (see [1]).
From (1.1), we note that

I−1
(
f1
)
+ I−1

(
f
)
= 2f(0), where f1(x) = f(x + 1). (1.2)
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The q-Euler polynomials are defined by

2
qet + 1

ext = eEq(x)t =
∞∑

n=0

En,q(x)
tn

n!
, (1.3)

with the usual convention about replacing En
q by En,q (see [2, 3]).

Let us take f(y) = qyet(x+y). Then, by (1.2), we get

∫

Zp

e(x+y)tqydμ−1
(
y
)
=

2
qet + 1

ext =
∞∑

n=0

En,q(x)
tn

n!
. (1.4)

By (1.3) and (1.4), we get the Witt’s formula for the q-Euler polynomials as follows:

En,q(x) =
∫

Zp

qy
(
x + y

)n
dμ−1

(
y
)
, n ∈ Z+ = N ∪ {0}. (1.5)

In the special case, x = 0, En,q(0) = En,q are called the n-th q-Euler numbers.
From (1.3), we can derive the following recurrence relation for the q-Euler numbers

En,q:

E0,q =
2

[2]q
, q

(
Eq + 1

)n + En,q = 2δ0,n, (1.6)

with the usual convention about replacing En
q by En,q (see [4]).

By (1.5), we easily see that

En,q(x) =
n∑

�=0

(
n

�

)

xn−�
∫

Zp

qyy�dμ−1
(
y
)
=

n∑

�=0

(
n

�

)

xn−�E�,q, (1.7)

where ( n
� ) = n!/�!(n−�)! = n(n−1) · · · (n−�+1)/�! (see [1, 2, 4–13]). Cohen introduced many

interesting and valuable identities related to Euler and Bernoulli numbers and polynomials
in his book (see [14]). In [13], Ryoo has introduced the q-Euler numbers and polynomials
with weight α, and Simsek et al. have studied q-Euler numbers and polynomials, and
they introduced many interesting identities and properties (see [3, 15, 16]). In this paper,
we consider the q-Euler numbers and polynomials with weight α = 1. By applying the
fermionic p-adic integral on Zp, we derive many not only new but also some interesting
identities on the q-extension of Euler numbers and polynomials. In particular, we consider
that Theorems 2.5, 2.6, 2.7, and 2.9 are important identities because these identities are
closely related to Frobenius-Euler numbers and polynomials. As is well known, Frobenius-
Euler numbers and polynomials are important to study p-adic l-functions in the number
theory and mathematical physics related to fermionic distributions. In [17], Bayad and
Kim have studied some interesting identities and properties on the q-Euler numbers and
polynomials associated with Bernstein polynomials. Recently, several authors have studied
some properties of q-Euler numbers and polynomials (see [1–19]). The purpose of this paper
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is to give some interesting new identities for the q-Euler numbers and polynomials by using
the fermionic p-adic integral on Zp and (1.7).

2. Some Identities on q-Euler Polynomials

From (1.4), we note that

∫

Zp

e (x+y+z)tqzdμ−1(z) = e(x+y)t
2

qet + 1
=

∞∑

n=0

En,q

(
x + y

) tn

n!
. (2.1)

Thus, by (1.4) and (2.1), we get

En,q

(
x + y

)
=
∫

Zp

(
x + y + z

)n
qzdμ−1(z)

=
n∑

�=0

(
n

�

)

yn−�
∫

Zp

(x + z)�qzdμ−1(z)

=
n∑

�=0

(
n

�

)

yn−�E�,q(x), where n ∈ Z+.

(2.2)

By (2.2), we get

En,q

(
x + y

)
=

n∑

j=0

(
n

j

)

yn−jEj,q(x)

=
2

[2]q
yn +

n∑

j=1

n

j

(
n − 1

j − 1

)

yn−jEj,q(x).

(2.3)

From (2.3), we can derive the following equation (2.4):

n−1∑

j=0

(
n − 1

j

)

yn−1−j Ej+1,q(x)
j + 1

=
En,q

(
x + y

) −
(
2/[2]q

)
yn

n
. (2.4)

Therefore, by (2.4), we obtain the following theorem.

Theorem 2.1. For n ∈ Z+, one has

n∑

j=0

(
n

j

)

yn−j Ej+1,q(x)
j + 1

=
1

n + 1

(

En+1,q
(
x + y

) − 2
[2]q

yn+1

)

. (2.5)
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Let us replace y by −y in Theorem 2.1. Then we get

n∑

j=0

(
n

j

)

(−1)n−jyn−j Ej+1,q(x)
j + 1

=
1

n + 1

(

En+1,q
(
x − y

) − (−1)n+12
[2]q

yn+1

)

. (2.6)

Thus, we have

n∑

j=0

(
n

j

)

(−1)jyn−j Ej+1,q(x)
j + 1

=
1

n + 1

(

(−1)nEn+1,q
(
x − y

)
+

2
[2]q

yn+1

)

. (2.7)

Therefore, by Theorem 2.1 and (2.7), we obtain the following corollary.

Corollary 2.2. For n ∈ Z+, one has

[n/2]∑

j=1

(
n

2j

)

yn−2j E2j+1,q(x)
2j + 1

=
En+1,q

(
x + y

)
+ (−1)nEn+1,q

(
x − y

)

2n + 2
. (2.8)

From (2.2), we have

n∑

j=1

1
j

(
n − 1

j − 1

)

yn−j(−1)jEj,q(x) =
(−1)nEn,q

(
x − y

) − yn
(
2/[2]q

)

n
. (2.9)

Therefore, by (2.3) and (2.9), we obtain the following theorem.

Theorem 2.3. For n ∈ N, one has

[(n+1)/2]∑

j=1

(
n

2j − 1

)

yn+1−2j E2j,q(x)
j

=
En+1,q

(
x + y

)
+ (−1)n+1En+1,q

(
x − y

) −
(
4/[2]q

)
yn+1

4n + 4
.

(2.10)

Letting y = 1 in Theorem 2.1, we see that

q
n∑

j=0

(
n

j

)
Ej+1,q(x)
j + 1

=
qEn+1,q(x + 1) − 2q/[2]q

n + 1
,

qEn+1,q(x + 1) =
n+1∑

�=0

(
n + 1

�

)
(
Eq + 1

)�
xn+1−�

=
(
2 − E0,q

)
xn+1 −

n+1∑

�=1

(
n + 1

�

)

E�,qx
n+1−�
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= 2xn+1 −
n+1∑

�=0

(
n + 1

�

)

E�,qx
n+1−�

= 2xn+1 − En+1,q(x).

(2.11)

Therefore, by (2.11), we obtain the following theorem.

Theorem 2.4. For n ∈ Z+, one has

n∑

j=0

(
n

j

)
qEj+1,q(x)

j + 1
= −En+1,q

n + 1
+
2xn+1

n + 1
− 2
[2]q

1
n + 1

. (2.12)

Replacing y by 1 and n by 2n in Corollary 2.2, we have

n∑

j=0

(
2n

2j

)
E2j+1,q(x)
2j + 1

=
E2n+1,q(x + 1) + E2n+1,q(x − 1)

4n + 2

=

(
1/q

)(
qE2n+1,q(x + 1) + E2n+1,q(x)

)
+
(
qE2n+1,q(x) + E2n+1,q(x − 1)

)

4n + 2

− E2n+1,q(x)
q(4n + 2)

− q
E2n+1,q(x)
4n + 2

=
2x2n+1

q(4n + 2)
+
2(x − 1)2n+1

4n + 2
− E2n+1,q(x)

q(4n + 2)
− q

E2n+1,q(x)
4n + 2

.

(2.13)

Therefore, by (2.13), we obtain the following theorem.

Theorem 2.5. For n ∈ Z+, one has

n∑

j=0

(
2n

2j

)
E2j+1,q(x)
2j + 1

=
x2n+1

q(2n + 1)
+
(x − 1)2n+1

2n + 1
− E2n+1,q(x)

q(4n + 2)
− q

E2n+1,q(x)
4n + 2

. (2.14)

Replacing y by 1 and n by 2n in Theorem 2.3, we have

n∑

j=1

(
2n

2j − 1

)
E2j,q(x)

j

=
E2n+1,q(x + 1) − E2n+1,q(x − 1)

8n + 4
− 1
(2n + 1)[2]q
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=
2x2n+1

q(8n + 4)
− 2(x − 1)2n+1

8n + 4
− 1
(2n + 1)[2]q

− E2n+1,q(x)
q(8n + 4)

+
qE2n+1,q(x)

8n + 4

=
x2n+1

2q(2n + 1)
− (x − 1)2n+1

2(2n + 1)
− 1
(2n + 1)[2]q

− E2n+1,q(x)
q(8n + 4)

+
qE2n+1,q(x)

8n + 4
.

(2.15)

Therefore, by (2.15), we obtain the following theorem.

Theorem 2.6. For n ∈ Z+, one has

n∑

�=1

(
2n

2j − 1

)
E2j,q(x)

j
=

x2n+1

2q(2n + 1)
− 2(x − 1)2n+1

2(2n + 1)
− 1
(2n + 1)[2]q

− E2n+1,q(x)
q(8n + 4)

+ q
E2n+1,q(x)
8n + 4

.

(2.16)

Replacing y by 1/2 and n by 2n in Theorem 2.3, we get

n∑

j=1

(
2n

2j − 1

)(
1
2

)2n+1−2j E2j(x)
j

=
E2n+1,q(x + 1/2) − E2n+1(x − 1/2) −

(
4/[2]q

)
(1/2)2n+1

8n + 4
.

(2.17)

Thus, by (2.17), we get

n∑

j=1

(
2n

2j − 1

)

22j
E2j(x)

j
=

22n
(
E2n+1,q(x + 1/2) − E2n+1(x − 1/2)

)

4n + 2
− 1
(2n + 1)[2]q

. (2.18)

Note that

qE2n+1,q

(
x +

1
2

)
= qE2n+1,q

(
x − 1

2
+ 1

)

= q
2n+1∑

�=0

(
2n + 1

�

)(
x − 1

2

)2n+1−�(
Eq + 1

)�

=
(
x − 1

2

)2n+1(
2 − E0,q

) −
2n+1∑

�=1

(
2n + 1

�

)(
x − 1

2

)2n+1−�
E�,q

= 2
(
x − 1

2

)2n+1

− E2n+1,q

(
x − 1

2

)
.

(2.19)

Therefore, by (2.18) and (2.19), we obtain the following theorem.
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Theorem 2.7. For n ∈ N, one has

n∑

j=1

(
2n

2j − 1

)

22j
E2j(x)

j
=

22n(x − 1/2)2n+1

2n + 1
−
[2]q2

n

4n + 2
E2n+1,q

(
x − 1

2

)
− 1
(2n + 1)[2]q

. (2.20)

Replacing y by 1 and n by 2n + 1 in Corollary 2.2, we see that

n∑

j=0

(
2n + 1

2j

)
E2j+1,q(x)
2j + 1

=
E2n+2,q(x + 1) − E2n+2,q(x − 1)

4n + 4

=

((
1/q

)(
qE2n+2,q(x + 1) + E2n+2,q(x)

)

4n + 4

)

−
(
qE2n+2,q(x) + E2n+2,q(x − 1)

4n + 4

)

−
(
E2n+2,q(x)
q(4n + 4)

− q
E2n+2,q(x)
4n + 4

)

=
2x2n+2

q(4n + 4)
− 2(x − 1)2n+2

4n + 4
−
(
E2n+2,q(x)
q(4n + 4)

− q
E2n+2,q(x)
4n + 4

)
.

(2.21)

Therefore, by (2.21), we obtain the following theorem.

Theorem 2.8. For n ∈ Z+, one has

n∑

j=0

(
2n + 1

2j

)
E2j+1,q(x)
2j + 1

=
x2n+2

q(2n + 2)
− (x − 1)2n+2

2n + 2
− (

1 − q
)[2]qE2n+2,q(x)

q(4n + 4)
. (2.22)

Replacing n by 2n + 1 and y by 1 in Theorem 2.3, we get

n+1∑

j=1

(
2n + 1

2j − 1

)
E2j,q(x)

j

=
E2n+2,q(x + 1) + E2n+2,q(x − 1)

8n + 8
− 1
(2n + 2)[2]q

=
qE2n+2,q(x + 1) + E2n+2,q(x)

q(8n + 8)
+
qE2n+2,q(x) + E2n+2,q(x)

8n + 8

− E2n+2,q(x)
q(8n + 8)

− qE2n+2,q(x)
8n + 8

− 1
(2n + 2)[2]q

=
2x2n+2

q(8n + 8)
+
q2(x − 1)2n+2

8n + 8
− E2n+2,q(x)

q(8n + 8)
− q

E2n+2,q(x)
8n + 8

− 1
(2n + 2)[2]q

.

(2.23)

Therefore, by (2.23), we obtain the following theorem.
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Theorem 2.9. For n ∈ Z+, one has

n+1∑

j=1

(
2n + 1

2j − 1

)
E2j,q(x)

j
=

x2n+2

q(4n + 4)
+ q

(x − 1)2n+2

4n + 4
−
(
1 + q2

)E2n+2,q(x)
8n + 8

− 1
(2n + 2)[2]q

.

(2.24)
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