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Lakzian and Samet (2010) studied some fixed-point results in generalized metric spaces in the
sense of Branciari. In this paper, we study the existence of fixed-point results of mappings
satisfying generalized weak contractive conditions in the framework of a generalized metric space
in sense of Branciari. Our results modify and generalize the results of Laksian and Samet, as well
as, our results generalize several well-known comparable results in the literature.

1. Introduction and Preliminaries

Branciari in [1] initiated the notion of a generalized metric space as a generalization of a
metric space in such a way that the triangle inequality is replaced by the “quadrilateral
inequality,” d(x, y) ≤ d(x, a) + d(a, b) + d(b, y) for all pairwise distinct points x, y, a, and
b of X. Afterwards, many authors initiated and studied many existing fixed-point theorems
in such spaces. For more details about fixed-point theory in generalized metric spaces, we
refer the reader to [1–13].

The following definitions will be needed in the sequel.

Definition 1.1 (see [1]). Let X be a nonempty set and d : X × X → [0,+∞) such that for all
x, y ∈ X and for all distinct points u, v ∈ X each of them different from x and y, one has
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(p1): x = y ⇔ d(x, y) = 0,

(p2): d(x, y) = d(y, x),

(p3): d(x, y) ≤ d(x, u) + d(u, v) + d(v, y).

Then, (X, d) is called a generalized metric space (or shortly g.m.s).
Any metric space is a generalized metric space, but the converse is not true [1].

Definition 1.2 (see [1]). Let (X, d) be a g.m.s, {xn} a sequence in X, and x ∈ X. We say that
{xn} is g.m.s convergent to x if and only if d(xn, x) → 0 as n → +∞. We denote this by
xn → x.

Definition 1.3 (see [1]). Let (X, d) be a g.m.s and {xn} a sequence in X. We say that {xn} is a
g.m.s Cauchy sequence if and only if for each ε > 0 there exists a natural numberN such that
d(xn, xm) < ε for all n > m > N.

Definition 1.4 (see [1]). Let (X, d) be a g.m.s. Then, (X, d) is called a complete g.m.s if every
g.m.s Cauchy sequence is g.m.s convergent in X.

Very recently, Lakzian and Samet [9] proved the following nice result.

Theorem 1.5. Let (X, d) be a Hausdorff and complete generalized metric space. Suppose that T :
X → X is such that for all x, y ∈ X

ψ
(
d
(
Tx, Ty

)) ≤ ψ(d(x, y)) − φ(d(x, y)), (1.1)

where ψ : [0,∞) → [0,∞) is continuous and nondecreasing with ψ(t) = 0 if and only if t = 0, and
φ : [0,∞) → [0,∞) is continuous and φ(t) = 0 if and only if t = 0. Then, there exists a unique point
u ∈ X such that u = Tu.

Note that Theorem 1.5 extends a result of Dutta and Choudhury [14] to the set of
generalized metric spaces. Moreover, its proof is more technical compared with that of [9].

In this paper, we generalize in some cases Theorem 1.5 by replacing in (1.1) the term
d(x, y) by the quantity max{d(x, y), d(x, Tx), d(y, Ty)} and the continuity of φ by lower
semicontinuity. Also, we derive some useful corollaries of this result.

2. Main Results

Let X be a nonempty set and T : X → X a given mapping. For all x, y ∈ X, set

M
(
x, y

)
= max

{
d
(
x, y

)
, d(x, Tx), d

(
y, Ty

)}
. (2.1)

Also, let Ψ = {ψ | ψ : [0,∞) → [0,∞) be continuous, nondecreasing, and ψ(t) =
0 if and only if t = 0}, and Φ = {φ | φ : [0,∞) → [0,∞) is lower semi continuous, φ(t) >
0 for all t > 0 and φ(0) = 0}. Note that, if ψ ∈ Ψ, ψ is called an altering distance function [15].

The notion of a periodic point of a given mapping T : X → X is crucial for proving
our main theorem. So we need the following definition.
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Definition 2.1. Let X be a nonempty set. A given mapping T : X → X admits a periodic point
if there exists u ∈ X such that u = Tpu for some p ≥ 1. If p = 1, u is a fixed point.

Hence, each fixed point is also a periodic point of T .

Now, in the following, let us prove our main result.

Theorem 2.2. Let (X, d) be a Hausdorff and complete generalized metric space. Suppose that T :
X → X is such that for all x, y ∈ X

ψ
(
d
(
Tx, Ty

)) ≤ ψ(M(
x, y

)) − φ(M(
x, y

))
, (2.2)

where ψ ∈ Ψ, φ ∈ Φ, andM(x, y) is defined by (2.1). Then, there exists a unique point u ∈ X such
that u = Tu.

Proof. First, it is obvious thatM(x, y) = 0 if and only if x = y is a fixed point of T . Let x0 ∈ X
an arbitrary point. By induction, we easily construct a sequence {xn} such that

xn+1 = Txn = Tn+1x0 ∀n ≥ 0. (2.3)

Step 1. We claim that

lim
n→∞

d(xn, xn+1) = 0. (2.4)

Substituting x = xn and y = xn−1 in (2.2) and using properties of functions ψ and φ, we obtain

ψ(d(xn+1, xn)) = ψ(d(Txn, Txn−1))

≤ ψ(M(xn, xn−1)) − φ(M(xn, xn−1))

≤ ψ(M(xn, xn−1))

(2.5)

which implies that

d(xn+1, xn) ≤M(xn, xn−1) ∀n ≥ 1. (2.6)

Note that

M(xn, xn−1) = max{d(xn, xn−1), d(xn, Txn), d(xn−1, Txn−1)}
= max{d(xn, xn−1), d(xn, xn+1)}.

(2.7)

If for some n ≥ 1, d(xn−1, xn) < d(xn, xn+1), then M(xn, xn−1) = d(xn, xn+1) > 0 and
φ(d(xn+1, xn)) > 0 by a property of φ, so (2.5) becomes

0 < ψ(d(xn+1, xn)) ≤ ψ(d(xn+1, xn)) − φ(d(xn+1, xn+1)) < ψ(d(xn+1, xn)) (2.8)
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a contradiction. Thus, for all n ≥ 1,

d(xn+1, xn) ≤ d(xn−1, xn) =M(xn−1, xn). (2.9)

From (2.9), the sequence {d(xn, xn+1)} is monotone nonincreasing and so bounded below. So
there exists r ≥ 0 such that

lim
n→∞

d(xn, xn+1) = lim
n→∞

M(xn−1, xn) = r. (2.10)

Letting lim supn→∞ in (2.5) and using the above limits with the continuity of ψ and the lower
semicontinuity of φ, we get ψ(r) ≤ ψ(r) − φ(r), which implies that φ(r) = 0, so r = 0 by a
property of φ. Thus, (2.4) is proved.

Step 2. We shall prove that

lim
n→∞

d(xn, xn+2) = 0. (2.11)

By (2.2), we have

ψ(d(xn+2, xn)) = ψ(d(Txn+1, Txn−1))

≤ ψ(M(xn+1, xn−1)) − φ(M(xn+1, xn−1))

≤ ψ(M(xn+1, xn−1))

(2.12)

which implies that

d(xn+2, xn) ≤M(xn+1, xn−1) ∀n ≥ 1, (2.13)

where

M(xn+1, xn−1) = max{d(xn+1, xn−1), d(xn+1, Txn+1), d(xn−1, Txn−1)}
= max{d(xn+1, xn−1), d(xn+1, xn+2), d(xn−1, xn)}
= max{d(xn+1, xn−1), d(xn−1, xn)}.

(2.14)

Set αn = d(xn+2, xn) and βn = d(xn, xn+1). Thus, by (2.12), one can write

ψ(αn) ≤ ψ
(
max

{
αn−1, βn−1

}) − φ(max
{
αn−1, βn−1

}) ∀n ≥ 1 (2.15)

which implies that

αn ≤ max
{
αn−1, βn−1

}
. (2.16)
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On the other hand, having in mind that the sequence {d(xn, xn+1)} = {βn} is monotone
nonincreasing, so

βn ≤ βn−1 ≤ max
{
αn−1, βn−1

}
. (2.17)

From (2.16) and (2.17), we have

max
{
αn, βn

} ≤ max
{
αn−1, βn−1

} ∀n ≥ 1. (2.18)

Therefore, the sequence {max{αn, βn}} is monotone nonincreasing, so it converges to some
t ≥ 0. Assume that t > 0. Now, by (2.4), it is obvious that

lim sup
n→∞

αn = lim sup
n→∞

max
{
αn, βn

}
= lim

n→∞
max

{
αn, βn

}
= t. (2.19)

Taking the lim supn→∞ in (2.15) and using (2.19) and the properties of ψ and φ, we obtain

ψ(t) = ψ

(
lim sup
n→∞

αn

)

= lim sup
n→∞

ψ(αn)

≤ lim sup
n→∞

ψ
(
max

{
αn−1, βn−1

}) − lim inf
n→∞

φ
(
max

{
αn−1, βn−1

})

≤ ψ

(
lim
n→∞

max
{
αn−1, βn−1

}
)
− φ

(
lim
n→∞

max
{
αn−1, βn−1

}
)

= ψ(t) − φ(t)
(2.20)

which implies that φ(t) = 0, so t = 0, a contradiction. Thus, from (2.19),

lim sup
n→∞

αn = 0, (2.21)

and hence limn→∞ αn = 0, so (2.11) is proved.
Step 3. We claim that T has a periodic point.
We argue by contradiction. Assume that T has no periodic point. Then, {xn} is a

sequence of distinct points, that is, xn /=xm for all m/=n. We will show that, in this case, {xn}
is g.m.s Cauchy. Suppose to the contrary. Then, there is a ε > 0 such that for an integer k there
exist integersm(k) > n(k) > k such that

d
(
xn(k), xm(k)

)
> ε. (2.22)
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For every integer k, letm(k) be the least positive integer exceeding n(k) satisfying (2.22) and
such that

d
(
xn(k), xm(k)−1

) ≤ ε. (2.23)

Now, using (2.22), (2.23), and the rectangular inequality (because {xn} is a sequence of
distinct points), we find that

ε < d
(
xm(k), xn(k)

) ≤ d
(
xm(k), xm(k)−2

)
+ d

(
xm(k)−2, xm(k)−1

)
+ d

(
xm(k)−1, xn(k)

)

≤ d
(
xm(k), xm(k)−2

)
+ d

(
xm(k)−2, xm(k)−1

)
+ ε.

(2.24)

Then, by (2.4) and (2.11), it follows that

lim
k→+∞

d
(
xn(k), xm(k)

)
= ε. (2.25)

Now, by rectangular inequality, we have

d
(
xm(k), xn(k)

) ≤ d(xm(k), xm(k)−1
)
+ d

(
xm(k)−1, xn(k)−1

)
+ d

(
xn(k)−1, xn(k)

)

d
(
xm(k)−1, xn(k)−1

) ≤ d(xm(k)−1, xm(k)
)
+ d

(
xm(k), xn(k)

)
+ d

(
xn(k), xn(k)−1

)
.

(2.26)

Letting k → ∞ in the above inequalities, using (2.4) and (2.25), we obtain

lim
k→∞

d
(
xm(k)−1, xn(k)−1

)
= ε. (2.27)

Therefore, by (2.4) and (2.27), we get that

M
(
xm(k)−1, xn(k)−1

)
= max

{
d
(
xm(k)−1, xn(k)−1

)
, d

(
xm(k)−1, xm(k)

)
, d

(
xn(k)−1, xn(k)

)} −→ ε

as k −→ ∞.

(2.28)

Applying (2.2) with x = xm(k)−1 and y = xn(k)−1, we have

ψ
(
d
(
xm(k), xn(k)

))
=ψ

(
Txm(k)−1, Txn(k)−1

)≤ψ(M(
xm(k)−1, xn(k)−1

))−φ(M(
xm(k)−1, xn(k)−1

))
.

(2.29)

Letting k → ∞ in the above inequality and using (2.25) and (2.28), we obtain

ψ(ε) ≤ ψ(ε) − φ(ε) (2.30)

which yields that φ(ε) = 0, so ε = 0, which is a contradiction.
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Hence, {xn} is g.m.s Cauchy. Since (X, d) is a complete g.m.s, there exists u ∈ X such
that xn → u. Applying (2.2) with x = xn and y = u, we obtain

ψ(d(xn+1, Tu)) = ψ(d(Txn, Tu)) ≤ ψ(M(xn, u)) − φ(M(xn, u)) ≤ ψ(M(xn, u)) (2.31)

which implies that

d(xn+1, Tu) ≤M(xn, u), (2.32)

where

M(xn, u) = max{d(xn, u), d(xn, xn+1), d(u, Tu)}. (2.33)

Since limn→∞ d(xn, u) = limn→∞ d(xn, xn+1) = 0, so we obtain that

lim
n→∞

M(xn, u) = d(u, Tu). (2.34)

It follows that

lim sup
n→∞

d(xn+1, Tu) ≤ d(u, Tu). (2.35)

Next, we shall find a contradiction of the fact that T has no periodic point in each of the two
following cases.

(i) If, for all n ≥ 2, xn /=u and xn /= Tu, then by rectangular inequality

d(u, Tu) ≤ d(u, xn) + d(xn, xn+1) + d(xn+1, Tu), (2.36)

and, using (2.4), we get that

d(u, Tu) ≤ lim sup
n→∞

d(xn+1, Tu). (2.37)

From (2.35) and (2.37),

lim sup
n→∞

d(xn+1, Tu) = d(u, Tu). (2.38)

Taking the lim supn→∞ in (2.31) and using (2.34), (2.38), and the properties of ψ
and φ, we obtain

ψ(d(u, Tu)) ≤ ψ(d(u, Tu)) − φ(d(u, Tu)) (2.39)
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which implies that d(u, Tu) = 0, so u = Tu, that is, u is a fixed point of T , so u is a
periodic point of T . It contradicts the fact that T has no periodic point.

(ii) Let for some q ≥ 2, xq = u or xq = Tu. Since T has no periodic point, then obviously
u/=x0. Indeed, if xq = u = x0, so Tqx0 = x0, that is, x0 is a periodic point of T , while
if xq = Tu and x0 = u, so Tx0 = Tu = xq = Tqx0 = Tq−1(Tx0), that is, Tx0 is a periodic
point of T .

For all n ≥ 0, we have

d(Tnu, u) = d
(
Tnxq, u

)
= d

(
xn+q, u

)
or

d(Tnu, u) = d
(
Tn−1Tu, u

)
= d

(
Tn−1xq, u

)
= d

(
xn+q−1, u

)
.

(2.40)

In the two precedent identities, the integer q ≥ 2 is fixed, and so {xn+q} and {xn+q−1} are
subsequences from {xn}, and since {xn} g.m.s. converges to u in (X, d) which is assumed to
be Hausdorff, so the two subsequences g.m.s. converge to same unique limit u, that is,

lim
n→∞

d
(
xn+q, u

)
= lim

n→∞
d
(
xn+q−1, u

)
= 0. (2.41)

Thus,

lim
n→∞

d(Tnu, u) = 0. (2.42)

Again, since (X, d) is Hausdorff, then by (2.42),

lim
n→∞

d
(
Tn+2u, u

)
= 0. (2.43)

On the other hand, since T has no periodic point, it follows that

Tsu/= Tru for any s, r ∈ N, s /= r. (2.44)

Using (2.44) and the rectangular inequality, we may write

∣∣∣d
(
Tn+1u, Tu

)
− d(u, Tu)

∣∣∣ ≤ d
(
Tn+1u, Tn+2u

)
+ d

(
Tn+2u, u

)
. (2.45)

Letting n → ∞ in the above limit and proceeding as (2.4) (since the point x0 is arbitrary),
using (2.43), we obtain

lim
n→∞

d
(
Tn+1u, Tu

)
= d(u, Tu). (2.46)

Now, by (2.2),

ψ
(
d
(
Tn+1u, Tu

))
≤ ψ(M(Tnu, u)) − φ(M(Tnu, u)), (2.47)
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where

M(Tnu, u) = max
{
d(Tnu, u), d

(
Tnu, Tn+1u

)
, d(u, Tu)

}
−→ d(u, Tu) as n −→ ∞. (2.48)

Letting n → ∞ in (2.47) and using (2.46) and the above limit, we get that

ψ(d(u, Tu)) ≤ ψ(d(u, Tu)) − φ(d(u, Tu)) (2.49)

which holds only if d(u, Tu) = 0, that is, Tu = u, which implies that u is a periodic point of T .
This contradicts the fact that T has no periodic point.

Consequently, T admits a periodic point, that is, there exists u ∈ X such that u = Tpu
for some p ≥ 1.

Step 4. Existence of a fixed point of T .
If p = 1, then u = Tu, that is, u is a fixed point of T . Suppose now that p > 1. We will

prove that a = Tp−1u is a fixed point of T . Suppose that it is not the case, that is, Tp−1u/= Tpu.
Then, d(Tp−1u, Tpu) > 0 and φ(d(Tp−1u, Tpu)) > 0, which implies that φ(M(Tp−1u, Tpu)) > 0.
Now, using inequality (2.2), we obtain

ψ(d(u, Tu)) = ψ
(
d
(
Tpu, Tp+1u

))

= ψ
(
d
(
T
(
Tp−1u

)
, T(Tpu)

))

≤ ψ
(
M

(
Tp−1u, Tpu

))
− φ

(
M

(
Tp−1u, Tpu

))

< ψ
(
M

(
Tp−1u, Tpu

))

(2.50)

which by the monotone nondecreasing property of ψ implies

d(u, Tu) < M
(
Tp−1u, Tpu

)
, (2.51)

where

M
(
Tp−1u, Tpu

)
= max

{
d
(
Tp−1u, Tpu

)
, d

(
Tp−1u, Tpu

)
, d

(
Tpu, Tp+1u

)}

= max
{
d
(
Tp−1u, Tpu

)
, d(u, Tu)

}
= d

(
Tp−1u, Tpu

) (2.52)

because otherwise we get a contradiction with (2.51). Thus, (2.51) becomes

d(u, Tu) < d
(
Tp−1u, Tpu

)
. (2.53)
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Again, using (2.2), we have

ψ
(
d
(
Tp−1u, Tpu

))
= ψ

(
d
(
T
(
Tp−2u

)
, T

(
Tp−1u

)))

≤ ψ
(
M

(
Tp−2u, Tp−1u

))
− φ

(
M

(
Tp−2u, Tp−1u

))

< ψ
(
M

(
Tp−2u, Tp−1u

))
.

(2.54)

Again, this implies that

d
(
Tp−1u, Tpu

)
< M

(
Tp−2u, Tp−1u

)
, (2.55)

Where

M
(
Tp−2u, Tp−1u

)
= max

{
d
(
Tp−2u, Tp−1u

)
, d

(
Tp−2u, Tp−1u

)
, d

(
Tp−1u, Tpu

)}

= max
{
d
(
Tp−2u, Tp−1u

)
, d

(
Tp−1u, Tpu

)}
= d

(
Tp−2u, Tp−1u

) (2.56)

because of (2.55). Thus, from (2.55),

d
(
Tp−1u, Tpu

)
< d

(
Tp−2u, Tp−1u

)
. (2.57)

Continuing this process as (2.53) and (2.57), we find that

d(u, Tu) < d
(
Tp−1u, Tpu

)
< d

(
Tp−2u, Tp−1u

)
< · · · < d(u, Tu) (2.58)

which is a contradiction. We deduce that a = Tp−1u is a fixed point of T .
Step 5. Uniqueness of the fixed point of T .
Suppose that there are two distinct points b, c ∈ X such that Tb = b and Tc = c. Then,

M(b, c) = max{d(b, c), d(b, Tb), d(c, Tc)} = d(b, c) and φ(d(b, c)) > 0. By (2.2), we obtain

ψ(d(b, c)) = ψ(d(Tb, Tc)) ≤ ψ(M(b, c)) − φ(M(b, c))

= ψ(d(b, c)) − φ(d(b, c)) < ψ(d(b, c))
(2.59)

a contradiction. Thus, T has a unique fixed point. This completes the proof of Theorem 2.2.

Now, we state some corollaries of Theorem 2.2, which are given in the following.

Corollary 2.3. Let (X, d) be a Hausdorff and complete generalized metric space. Suppose that T :
X → X is such that, for all x, y ∈ X, there exists k ∈ [0, 1) and

d
(
Tx, Ty

) ≤ kmax
{
d
(
x, y

)
, d(x, Tx), d

(
y, Ty

)}
, (2.60)

then T has a unique fixed point.
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Proof. It suffices to take ψ(t) = t and φ(t) = (1 − k)t in Theorem 2.2.

Corollary 2.4. Let (X, d) be a Hausdorff and complete generalized metric space. Suppose that T :
X → X is such that, for all x, y ∈ X, there exists α ∈ [0, 1/2) and

(
d
(
Tx, Ty

)) ≤ α[d(x, Tx) + d(y, Ty)], (2.61)

then T has a unique fixed point.

Proof. Let k = 2α, so k ∈ [0, 1). Also, if (2.61) holds, so

(
d
(
Tx, Ty

)) ≤ α[d(x, Tx) + d(y, Ty)] = kd(x, Tx) + d
(
y, Ty

)

2

≤ kmax
{
d
(
x, y

)
, d(x, Tx), d

(
y, Ty

)}
.

(2.62)

Then, it suffices to apply Corollary 2.3.

Another easy consequence of Corollary 2.3 (a Reich contraction type) is the following.

Corollary 2.5. Let (X, d) be a Hausdorff and complete generalized metric space. Suppose that T :
X → X is such that, for all x, y ∈ X, there exists k ∈ [0, 1/3) and

(
d
(
Tx, Ty

)) ≤ k[d(x, y) + d(x, Tx) + d(y, Ty)], (2.63)

then T has a unique fixed point.

Corollary 2.6. Let T satisfy the conditions of Theorem 2.2, except that condition (2.2) is replaced by
the following: there exist positive Lebesgue integrable functions u and v on R+ such that

∫ε
0 u(t)dt > 0

and
∫ε
0 v(t)dt > 0 for each ε > 0 and that

∫ψ(d(Tx,Ty))

0
u(t)dt ≤

∫ψ(M(x,y))

0
u(t)dt −

∫φ(M(x,y))

0
v(t)dt. (2.64)

Then, T has a unique fixed point.

Proof. Consider the functions

ϕ0(x) =
∫x

0
u(t)dt, ϕ1(x) =

∫x

0
v(t)dt. (2.65)

Then, (2.64) becomes

(
ϕ0 ◦ ψ

)(
d
(
Tx, Ty

)) ≤ (
ϕ0 ◦ ψ

)(
M

(
x, y

)) − (
ϕ1 ◦ φ

)(
M

(
x, y

))
, (2.66)

And, putting ψ0 = ϕ0 ◦ ψ and φ0 = ϕ1 ◦ φ and applying Theorem 2.2, we obtain the proof of
Corollary 2.6 (it is easy to verify that ψ0 ∈ Ψ and φ0 ∈ Φ).
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Corollary 2.7. Let (X, d) be a Hausdorff and complete generalized metric space. Let T : X → X.
Assume there exist positive Lebesgue integrable functions u and v on R+ such that

∫ε
0 u(t)dt > 0 and∫ε

0 v(t)dt > 0 for each ε > 0 and for all x, y ∈ X, and

∫d(Tx,Ty)

0
u(t)dt ≤

∫M(x,y)

0
u(t)dt −

∫M(x,y)

0
v(t)dt, (2.67)

then T has a unique fixed point.

Proof. It follows by taking ψ(t) = φ(t) = t in Corollary 2.6.

Corollary 2.8. Let (X, d) be a Hausdorff and complete generalized metric space. Let T : X → X.
Assume there exist k ∈ [0, 1) and a positive Lebesgue integrable function u onR+ such that

∫ε
0 u(t)dt >

0 for each ε > 0 and for all x, y ∈ X, and

∫d(Tx,Ty)

0
u(t)dt ≤ k

∫max{d(x,y),d(x,Tx),d(y,Ty)}

0
u(t)dt, (2.68)

then T has a unique fixed point.

Proof. It suffices to take v(t) = (1 − k)u(t) in Corollary 2.7.

Finally, let us finish this paper by noticing the following remark.

Remark 2.9. (i) Theorem 2.2 extends Theorem 3.1 of Lakzian and Samet [9].
(ii) Corollary 2.3 extends the results of Branciari [1], Azam and Arshad [2], and Sarma

et al. [13].
(iii) Corollary 2.8 extends Theorem 2 of Samet [11].
(iv) Several publications attempting to generalize fixed-point theorems in metric

spaces to g.m.s are plagued by the use of some false properties given in [1] (see, e.g., [2–
5]). This was observed by Das and Dey [7] who proved a fixed-point theorem without
using the false properties. Subsequently, but independently, this was also observed by Samet
[12] and Sarma et al. [13] who proved fixed-point theorems assuming that the generalized
metric space is Hausdorff. Here, we give a rigorous proof of Theorem 2.2 by taking the same
assumption.
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