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This paper is concerned with a delay logistical model under regime switching diffusion in random
environment. By using generalized Itô formula, Gronwall’s inequality, and Young’s inequality,
some sufficient conditions for existence of global positive solutions and stochastically ultimate
boundedness are obtained, respectively. Also, the relationships between the stochastic permanence
and extinction as well as asymptotic estimations of solutions are investigated by virtue of V -
function technique, M-matrix method, and Chebyshev’s inequality. Finally, an example is given
to illustrate the main results.

1. Introduction

The delay differential equation

dx(t)
dt

= x(t)[a − bx(t) + cx(t − τ)] (1.1)

has been used to model the population growth of certain species, known as the delay logistic
equation. There is an extensive literature concerned with the dynamics of this delay model.
We here only mention Gopalsamy [1], Kolmanovskiı̆, and Myshkis [2], Kuang [3] among
many others.

In (1.1), the state x(t) denotes the population size of the species. Naturally, we focus
on the positive solutions and also require the solutions not to explode at a finite time. To
guarantee positive solutions without explosion (i.e., there exists global positive solutions), it
is generally assumed that a > 0, b > 0, and c < b [4] (and the references cited therein).
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On the other hand, the population growth is often subject to environmental noise,
and the system will change significantly, which may change the dynamical behavior of
solutions significantly [5, 6]. It is therefore necessary to reveal how the noise affects on the
dynamics of solutions for the delay population model. First of all, let us consider one type
of environmental noise, namely, white noise. In fact, recently, many authors have discussed
population systems subject towhite noise [7–9]. Recall that the parameter a in (1.1) represents
the intrinsic growth rate of the population. In practice, we usually estimate it by an average
value plus an error term. According to the well-known central limit theorem, the error term
follows a normal distribution. In term of mathematics, we can therefore replace the rate a by

a + σẇ(t), (1.2)

where ẇ(t) is a white noise (i.e., w(t) is a Brownian motion) and σ is a positive number
representing the intensity of noise. As a result, (1.1) becomes a stochastic differential equation
(SDE, in short)

dx(t) = x(t)[(a − bx(t) + cx(t − τ))dt + σdw(t)]. (1.3)

We refer to [4] for more details.
To our knowledge, much attention to environmental noise is paid on white noise ([10–

14] and the references cited therein). But another type of environmental noise, namely, color
noise or say telegraph noise, has been studied by many authors (see, [15–19]). In this context,
telegraph noise can be described as a random switching between two or more environmental
regimes, which are different in terms of factors such as nutrition or as rain falls [20, 21].
Usually, the switching between different environments is memoryless and the waiting time
for the next switch has an exponential distribution. This indicates that we may model the
random environments and other random factors in the system by a continuous-time Markov
chain r(t), t ≥ 0 with a finite state space S = {1, 2, . . . , n}. Therefore, the stochastic delay
logistic (1.3) in random environments can be described by the following stochastic model
with regime switching:

dx(t) = x(t)[(a(r(t)) − b(r(t))x(t) + c(r(t))x(t − τ))dt + σ(r(t))dw(t)]. (1.4)

The mechanism of ecosystem described by (1.4) can be explained as follows. Assume that
initially, the Markov chain r(0) = ι ∈ S, then the ecosystem (1.4) obeys the SDE

dx(t) = x(t)[(a(ι) − b(ι)x(t) + c(ι)x(t − τ))dt + σ(ι)dw(t)], (1.5)

until the Markov chain r(t) jumps to another state, say, ς. Then the ecosystem satisfies the
SDE

dx(t) = x(t)[(a(ς) − b(ς)x(t) + c(ς)x(t − τ))dt + σ(ς)dw(t)], (1.6)

for a random amount of time until r(t) jumps to a new state again.
It should be pointed out that the stochastic logistic systems under regime switching

have received much attention lately. For instance, the study of stochastic permanence and
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extinction of a logistic model under regime switching was considered in [18], a new single-
speciesmodel disturbed by bothwhite noise and colored noise in a polluted environment was
developed and analyzed in [22], a general stochastic logistic system under regime switching
was proposed and was treated in [23].

Since (1.4) describes a stochastic population dynamics, it is critical to find out whether
or not the solutions will remain positive or never become negative, will not explode to infinity
in a finite time, will be ultimately bounded, will be stochastically permanent, will become
extinct, or have good asymptotic properties.

This paper is organized as follows. In the next section, we will show that there exists a
positive global solution with any initial positive value under some conditions. In Sections 3
and 4, we give the sufficient conditions for stochastic permanence or extinction, which show
that both have closed relations with the stationary probability distribution of the Markov
chain. If (1.4) is stochastically permanent, we estimate the limit of the average in time of the
sample path of its solution in Section 5. Finally, an example is given to illustrate our main
results.

2. Global Positive Solution

Throughout this paper, unless otherwise specified, let (Ω,F, {Ft}t≥0, P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right
continuous and F0 contains all P -null sets ). Let w(t), t ≥ 0, be a scalar standard Brownian
motion defined on this probability space. We also denote by R+ the interval (0,∞) and denote
by R+ the interval [0,∞). Moreover, let τ > 0 and denote by C([−τ, 0];R+) the family of
continuous functions from [−τ, 0] to R+.

Let r(t) be a right-continuous Markov chain on the probability space, taking values in
a finite state space S = {1, 2, . . . , n}, with the generator Γ = (γuv) given by

P{r(t + δ) = v | r(t) = u} =

⎧
⎨

⎩

γuvδ + o(δ), if u/=v,

1 + γuvδ + o(δ), if u = v,
(2.1)

where δ > 0, γuv is the transition rate from u to v and γuv ≥ 0 if u/=v, while γuu = −∑v /=u γuv.
We assume that the Markov chain r(·) is independent of the Brownian motion w(·). It is well
known that almost every sample path of r(·) is a right continuous step function with a finite
number of jumps in any finite subinterval of R+. As a standing hypothesis we assume in this
paper that the Markov chain r(t) is irreducible. This is a very reasonable assumption as it
means that the system can switch from any regime to any other regime. Under this condition,
the Markov chain has a unique stationary (probability) distribution π = (π1, π2, . . . , πn) ∈
R1×n which can be determined by solving the following linear equation:

πΓ = 0, (2.2)

subject to
n∑

i=1

πi = 1, πi > 0, ∀ i ∈ S. (2.3)

We refer to [9, 24] for the fundamental theory of stochastic differential equations.
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For convenience and simplicity in the following discussion, define

f̂ = min
i∈S

f(i), f̌ = max
i∈S

f(i), f = max
i∈S

∣
∣f(i)

∣
∣, (2.4)

where {f(i)}i∈S is a constant vector.
As x(t) in model (1.4) denotes population size at time t, it should be nonnegative.

Thus, for further study, we must give some condition under which (1.4) has a unique global
positive solution.

Theorem 2.1. Assume that there are positive numbers θ(i) (i = 1, 2, . . . , n) such that

max
i∈S

(

−b(i) + 1
4θ(i)

c2(i) + θ̌

)

≤ 0. (2.5)

Then, for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R+), there is a unique solution x(t)
to (1.4) on t ≥ −τ and the solution will remain in R+ with probability 1, namely, x(t) ∈ R+ for all
t ≥ −τ a.s.

Proof. Since the coefficients of the equation are locally Lipschitz continuous, for any given
initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R+), there is a unique maximal local solution x(t)
on t ∈ [−τ, τe), where τe is the explosion time. To show that this solution is global, we need to
prove τe = ∞ a.s.

Let k0 > 0 be sufficiently large for

1
k0

< min
−τ≤t≤0

x(t) ≤ max
−τ≤t≤0

x(t) < k0. (2.6)

For each integer k ≥ k0, define the stopping time

τk = inf
{

t ∈ [0, τe) : x(t) /∈
(
1
k
, k

)}

, (2.7)

where throughout this paper we set inf ∅ = ∞ (as usual ∅ denotes the empty set). Clearly, τk
is increasing as k → ∞. Set τ∞ = limk→∞τk, where τ∞ ≤ τe a.s. If we can show that τ∞ = ∞
a.s., then τe = ∞ a.s. and x(t) ∈ R+ a.s. for all t ≥ 0. In other words, we need to show τ∞ = ∞
a.s. Define a C2-function V : R+ → R+ by

V (x) = x − 1 − logx, (2.8)

which is not negative on x > 0. Let k ≥ k0 and T > 0 be arbitrary. For 0 ≤ t ≤ τk ∧ T , it is not
difficult to show by the generalized Itô formula that

dV (x(t)) = LV (x(t), x(t − τ), r(t))dt + σ(r(t))(x(t) − 1)dw(t), (2.9)
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where LV : R+ × R+ × S → R is defined by

LV
(
x, y, i

)
= −a(i) + 1

2
σ2(i) + (a(i) + b(i))x − c(i)y − b(i)x2 + c(i)xy. (2.10)

Using condition (2.5), we compute

−b(i)x2 + c(i)xy ≤ −b(i)x2 +
1

4θ(i)
c2(i)x2 + θ(i)y2 ≤ −θ̌x2 + θ̌y2. (2.11)

Moreover, there is clearly a constant K1 > 0 such that

−a(i) + 1
2
σ2(i) + (a(i) + b(i))x − c(i)y ≤ K1

(
1 + x + y

)
. (2.12)

Substituting these into (2.10) yields

LV
(
x, y, i

) ≤ K1
(
1 + x + y

) − θ̌x2 + θ̌y2. (2.13)

Noticing that u ≤ 2(u − 1 − logu) + 2 on u > 0, we obtain that

LV
(
x, y, i

) ≤ K2
(
1 + V (x) + V

(
y
)) − θ̌x2 + θ̌y2, (2.14)

where K2 is a positive constant. Substituting these into (2.9) yields

dV (x(t)) ≤
[
K2(1 + V (x(t)) + V (x(t − τ))) − θ̌x2(t) + θ̌x2(t − τ)

]
dt

+ σ(r(t))(x(t) − 1)dw(t).
(2.15)

Now, for any t ∈ [0, T], we can integrate both sides of (2.15) from 0 to τk ∧ t and then
take the expectations to get

EV (x(τk ∧ t)) ≤ V (x(0)) + E

∫ τk∧t

0

[
K2(1 + V (x(s)) + V (x(s − τ))) − θ̌x2(s) + θ̌x2(s − τ)

]
ds.

(2.16)

Compute

E

∫ τk∧t

0
V (x(s − τ))ds = E

∫ τk∧t−τ

−τ
V (x(s))ds

≤
∫0

−τ
V (x(s))ds + E

∫ τk∧t

0
V (x(s))ds,

(2.17)
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and, similarly

E

∫ τk∧t

0
x2(s − τ)ds ≤

∫0

−τ
x2(s)ds + E

∫ τk∧t

0
x2(s)ds. (2.18)

Substituting these into (2.16) gives

EV (x(τk ∧ t)) ≤ K3 + 2K2E

∫ τk∧t

0
V (x(s))ds

≤ K3 + 2K2E

∫ t

0
V (x(τk ∧ s))ds

= K3 + 2K2

∫ t

0
EV (x(τk ∧ s))ds,

(2.19)

where K3 = V (x(0)) +K2T +K2
∫0
−τ V (x(s))ds + θ̌

∫0
−τ x

2(s)ds.
By the Gronwall inequality, we obtain that

EV (x(τk ∧ T)) ≤ K3e
2TK2 . (2.20)

Note that for every ω ∈ {τk ≤ T}, x(τk, ω) equals either k or 1/k, thus

V (x(τk, ω)) ≥
[
(
k − 1 − log k

) ∧
(
1
k
− 1 + log k

)]

. (2.21)

It then follows from (2.20) that

K3e
2TK2 ≥ E

[
1{τk≤T}(ω)V (x(τk ∧ T,ω))

]

= E
[
1{τk≤T}(ω)V (x(τk, ω))

]

≥ P{τk ≤ T}
[
(
k − 1 − log k

) ∧
(
1
k
− 1 + log k

)]

,

(2.22)

where 1{τk≤T} is the indicator function of {τk ≤ T}. Letting k → ∞ gives limk→∞P{τk ≤ T} = 0
and hence P{τ∞ ≤ T} = 0. Since T > 0 is arbitrary, we must have P{τ∞ < ∞} = 0, so
P{τ∞ = ∞} = 1 as required.

Corollary 2.2. Assume that there is a positive number θ such that

max
i∈S

(

−b(i) + 1
4θ

c2(i) + θ

)

≤ 0. (2.23)

Then the conclusions of Theorem 2.1 hold.
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The following theorem is easy to verify in applications, which will be used in the
sections below.

Theorem 2.3. Assume that

−b̂ + c ≤ 0. (2.24)

Then for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R+), there is a unique solution x(t)
to (1.4) on t ≥ −τ and the solution will remain in R+ with probability 1, namely, x(t) ∈ R+ for all
t ≥ −τ a.s.

Proof. The proof of this theorem is the same as that of the theorem above. Let

V (x) = x − 1 − logx on x > 0, (2.25)

then we have (2.9) and (2.10). By (2.24), we get

LV
(
x, y, i

) ≤ −a(i) + 1
2
σ2(i) + (a(i) + b(i))x − c(i)y − b(i)x2 + c(i)xy

≤ K
(
1 + x + y

)
+ (−b(i) + c)x2 − 1

2
cx2 +

1
2
cy2

≤ K
(
1 + x + y

) − 1
2
cx2 +

1
2
cy2,

(2.26)

where K is a positive constant. The rest of the proof is similar to that of Theorem 2.1 and
omitted.

Note that condition (2.5) is used to derive (2.13) from (2.10). In fact, there are several
different ways to estimate (2.10), which will lead to different alternative conditions for the
positive global solution. For example, we know

c(i)xy ≤ 1
2θ(i)

c2(i)x2 +
θ(i)
2

y2,

−b(i)x2 + c(i)xy ≤ − b(i)x2 +
1

2θ(i)
c2(i)x2 +

θ(i)
2

y2

=

(

−b(i) + 1
2θ(i)

c2(i) +
θ̌

2

)

x2 − θ̌

2
x2 +

θ̌

2
y2.

(2.27)

Therefore, if we assume that

max
i∈S

(

−b(i) + 1
2θ(i)

c2(i) +
θ̌

2

)

≤ 0, (2.28)
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then

−b(i)x2 + c(i)xy ≤ − θ̌
2
x2 +

θ̌

2
y2, (2.29)

hence

LV
(
x, y, i

) ≤ K1
(
1 + x + y

) − θ̌

2
x2 +

θ̌

2
y2, (2.30)

from which we can show in the same way as in the proof of Theorem 2.1 that the solution
of (1.4) is positive and global. In other words, the arguments above can give an alternative
result which we describe as a theorem as below.

Theorem 2.4. Assume that there are positive numbers θ(i) (i = 1, 2, . . . , n) such that

max
i∈S

(

−b(i) + 1
2θ(i)

c2(i) +
θ̌

2

)

≤ 0. (2.31)

Then for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R+), there is a unique solution x(t)
to (1.4) on t ≥ −τ and the solution will remain in R+ with probability 1, namely, x(t) ∈ R+ for all
t ≥ −τ a.s.

Similarly, we can establish a corollary as follows.

Corollary 2.5. Assume that there is a positive number θ such that

max
i∈S

(

−b(i) + 1
2θ

c2(i) +
θ

2

)

≤ 0. (2.32)

Then the conclusions of Theorem 2.4 hold.

3. Asymptotic Bounded Properties

For convenience and simplicity in the following discussion, we list the following assump-
tions.

(A1) For each i ∈ S, b(i) > 0, and − b̂ + c ≤ 0.

(A1′) For each i ∈ S, b(i) > 0, and − b̂ + c < 0.

(A1′′) For each i ∈ S, b(i) > 0, c(i) ≥ 0 and − b̂ + č < 0.

(A2) For some u ∈ S, γiu > 0 (∀i /=u).

(A3)
∑n

i=1 πi[a(i) − (1/2)σ2(i)] > 0.

(A3′)
∑n

i=1 πi[a(i) − (1/2)σ2(i)] < 0.

(A4) For each i ∈ S, a(i) − (1/2)σ2(i) > 0.

(A4′) For each i ∈ S, a(i) − (1/2)σ2(i) < 0.
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Definition 3.1. Equation (1.4) is said to be stochastically permanent if for any ε ∈ (0, 1), there
exist positive constants H = H(ε), δ = δ(ε) such that

lim inf
t→+∞

P{x(t) ≤ H} ≥ 1 − ε, lim inf
t→+∞

P{x(t) ≥ δ} ≥ 1 − ε, (3.1)

where x(t) is the solution of (1.4) with any positive initial value.

Definition 3.2. The solutions of (1.4) are called stochastically ultimately bounded, if for any
ε ∈ (0, 1), there exists a positive constant H = H(ε), such that the solutions of (1.4) with any
positive initial value have the property that

lim sup
t→+∞

P{x(t) > H} < ε. (3.2)

It is obvious that if a stochastic equation is stochastically permanent, its solutions must
be stochastically ultimately bounded. So we will begin with the following theorem and make
use of it to obtain the stochastically ultimate boundedness of (1.4).

Theorem 3.3. Let (A1′) hold and p is an arbitrary given positive constant. Then for any given initial
data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R+), the solution x(t) of (1.4) has the properties that

lim sup
t→∞

E(xp(t)) ≤ K1
(
p
)
, (3.3)

lim sup
t→∞

1
t

∫ t

0
E
(
xp+1(s)

)
≤ K2

(
p
)
, (3.4)

where both K1(p) and K2(p) are positive constants defined in the proof.

Proof. By Theorem 2.3, the solution x(t)will remain in R+ for all t ≥ −τ with probability 1. Let

−λ =
(

1 +
c

p + 1

)−1(
−b̂ + c

)
, (3.5)

γ = τ−1 log(1 + λ). (3.6)

Define the function V : R+ × R+ → R+ by

V (x, t) = eγtxp. (3.7)

By the generalized Itô formula, we have

dV (x(t), t) = LV (x(t), x(t − τ), t, r(t))dt + peγtσ(r(t))xp dw(t), (3.8)
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where LV : R+ × R+ × R+ × S → R is defined by

LV
(
x, y, t, i

)
= eγt

(

γ + pa(i) +
1
2
p
(
p − 1

)
σ2(i)

)

xp − peγtb(i)xp+1 + peγtc(i)xpy. (3.9)

By (3.5) and Young’s inequality, we obtain that

LV
(
x, y, t, i

)

≤ eγt
(

γ + pa(i) +
1
2
p
(
p − 1

)
σ2(i)

)

xp − peγtb(i)xp+1 + peγtc

(
p

p + 1
xp+1 +

1
p + 1

yp+1
)

≤ eγt
[(

γ + pǎ +
1
2
p
(
p − 1

)
σ2(i)

)

xp − λpxp+1
]

+ eγt
pc

p + 1

[
−(1 + λ)xp+1 + yp+1

]

≤ H1e
γt + eγt

pc

p + 1

(
−eγτxp+1 + yp+1

)
,

(3.10)

where H1 = maxi∈S{supx∈R+
[(γ + pǎ + (1/2)p(p − 1)σ2(i))xp − λpxp+1]}. Moreover,

∫ t

0
eγsxp+1(s − τ)ds ≤ eγτ

∫0

−τ
xp+1(s)ds + eγτ

∫ t

0
eγsxp+1(s)ds. (3.11)

By (3.10) and (3.11), one has

eγtE(xp(t)) ≤ xp(0) +
H1

γ

(
eγt − 1

)
+

pc

p + 1
eγτ

∫0

−τ
xp+1(s)ds, (3.12)

which yields

lim sup
t→∞

E(xp(t)) ≤ K1
(
p
)
, (3.13)

where

K1
(
p
)
= max

i∈S

{

sup
x∈R+

γ−1
[(

γ + pǎ +
1
2
p
(
p − 1

)
σ2(i)

)

xp − λpxp+1
]}

. (3.14)
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By the generalized Itô formula, Young’s inequality and (3.5) again, it follows

0 ≤ E(xp(t))

≤ x
p

0 + E

∫ t

0
pxp(s)

[
1
2
(
p − 1

)
σ2(r(s)) + a(r(s))

]

− pb(r(s))xp+1(s) + pcxp(s)x(s − τ)ds

≤ x
p

0 + E

∫ t

0

{
1
2
p
(
p − 1

)
σ2(r(s))xp(s) + pa(r(s))xp(s)

+p
[

−
(

1 +
c

p + 1

)

λ

]

xp+1(s) +
pc

p + 1

(
−xp+1(s) + xp+1(s − τ)

)}

ds

≤ H2 + E

∫ t

0

{
1
2
p
(
p − 1

)
σ2(r(s))xp(s) + pa(r(s))xp + p

[

−
(

1 +
c

p + 1

)

λ

]

xp+1(s)
}

ds,

(3.15)

where H2 = xp(0) + (pc/(p + 1))
∫0
−τ x

p+1(s)ds. This implies

pλE

∫ t

0
xp+1(s)ds ≤ H2 + E

∫ t

0

1
2
p
(
p − 1

)
σ2(r(s))xp(s) + pa(r(s))xp(s) − λpc

p + 1
xp+1(s)ds.

(3.16)

The inequality above implies

lim sup
t→∞

1
t
E

∫ t

0
xp+1(s) ≤ H3

pλ
, (3.17)

where H3 = maxi∈S{supx∈R+
[(1/2)p(p − 1)σ2(i)xp + pa(i)xp − (λpc/(p + 1))xp+1]} and the

desired assertion (3.4) follows by setting K2(p) = H3/pλ.

Remark 3.4. From (3.3) of Theorem 3.3, there is a T > 0 such that

E(xp(t)) ≤ 2K1
(
p
) ∀ t ≥ T. (3.18)

Since E(xp(t)) is continuous, there is a K1(p, x0) such that

E(xp(t)) ≤ K1
(
p, x0

)
for t ∈ [0, T]. (3.19)

Taking L(p, x0) = max(2K1(p), K1(p, x0)), we havefor the fundamental theory of

E(xp(t)) ≤ L
(
p, x0

) ∀ t ∈ [0,∞). (3.20)

This means that the pth moment of any positive solution of (1.4) is bounded.
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Remark 3.5. Equation (3.4) of Theorem 3.3 shows that the average in time of the pth (p > 1)
moment of solutions of (1.4) is bounded.

Theorem 3.6. Solutions of (1.4) are stochastically ultimately bounded under (A1′).

Proof. This can be easily verified by Chebyshev’s inequality and Theorem 3.3.

Based on the results above, we will prove the other inequality in the definition of
stochastic permanence. For convenience, define

β(i) = a(i) − 1
2
σ2(i). (3.21)

Under (A3), it has
∑n

i=1 πiβ(i) > 0. Moreover, let G be a vector or matrix. By G � 0 we mean
all elements of G are positive. We also adopt here the traditional notation by letting

Zn×n =
{
A =

(
aij

)

n×n : aij ≤ 0, i /= j
}
. (3.22)

We will also need some useful results.

Lemma 3.7 (see [24]). If A ∈ Zn×n, then the following statements are equivalent.

(1) A is a nonsingular M-matrix (see [24] for definition of M-matrix).

(2) All of the principal minors of A are positive; that is,

∣
∣
∣
∣
∣
∣

a11 · · · a1k

· · · · · · · · ·
ak1 · · · akk

∣
∣
∣
∣
∣
∣
> 0 for every k = 1, 2, . . . , n. (3.23)

(3) A is semipositive, that is, there exists x � 0 in Rn such that Ax � 0.

Lemma 3.8 (see [18]). (i) Assumptions (A2) and (A3) imply that there exists a constant θ > 0 such
that the matrix

A(θ) = diag(ξ1(θ), ξ2(θ), . . . , ξn(θ)) − Γ (3.24)

is a nonsingular M-matrix, where ξi(θ) = θβ(i) − (1/2)θ2σ2(i), ∀i ∈ S.
(ii) Assumption (A4) implies that there exists a constant θ > 0 such that the matrix A(θ) is a

nonsingular M-matrix.

Lemma 3.9. If there exists a constant θ > 0 such that A(θ) is a nonsingular M-matrix and c(i) ≥
0 (i = 1, 2, . . . , n), then the global positive solution x(t) of (1.4) has the property that

lim sup
t→∞

E
(
|x(t)|−θ

)
≤ H, (3.25)

whereH is a fixed positive constant (defined by (3.35) in the proof).
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Proof. Let U(t) = x−1(t) on t ≥ 0. Applying the generalized Itô formula, we have

dU(t) = U(t)
(
−a(r(t)) + σ2(r(t)) + b(r(t))x(t) − c(r(t))x(t − τ)

)
dt − σU(t)dw(t). (3.26)

By Lemma 3.7, for the given θ, there is a vector �q = (q1, q2, . . . , qn)
T � 0 such that

�λ = (λ1, λ2, . . . , λn)
T = A(θ)�q � 0, (3.27)

namely,

qi

(

θβ(i) − 1
2
θ2σ2(i)

)

−
n∑

j=1

γijqj > 0 ∀ 1 ≤ i ≤ n. (3.28)

Define the function V : R+ ×S → R+ by V (U, i) = qi(1+U)θ. Applying the generalized
Itô formula again, we have

EV (U(t), r(t)) = V (U(0), r(0)) + E

∫ t

0
LV (U(s), x(s − τ), r(s))ds, (3.29)

where LV : R+ × R+ × S → R is defined by

LV
(
U,y, i

)
= (1 +U)θ−2

⎧
⎨

⎩
−U2

⎡

⎣qi

(

θβ(i) − 1
2
θ2σ2(i)

)

−
n∑

j=1

γijqj

⎤

⎦

+U

⎡

⎣qiθ
(
b(i) − a(i) + σ2(i)

)
+ 2

n∑

j=1

γijqj

⎤

⎦

+

⎡

⎣qiθb(i) +
n∑

j=1

γijqj − qiθc(i)(1 +U)Uy

⎤

⎦

⎫
⎬

⎭
.

(3.30)

Now, choose a constant κ > 0 sufficiently small such that

�λ − κ�q � 0, (3.31)

that is,

qi

(

θβ(i) − 1
2
θ2σ2(i)

)

−
n∑

j=1

γijqj − κqi > 0 ∀ 1 ≤ i ≤ n. (3.32)
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Then, by the generalized Itô formula again,

E
[
eκtV (U(t), r(t))

]

= V (U(0), r(0)) + E

∫ t

0

[
κeκtV (U(s), r(s)) + eκtLV (U(s), x(s − τ), r(s))

]
ds.

(3.33)

It is computed that

κeκtV (U, i) + eκtLV
(
U,y, i

)

≤ eκt(1 +U)θ−2

⎧
⎨

⎩
−U2

⎡

⎣qi

(

θβ(i) − 1
2
θ2σ2(i)

)

−
n∑

j=1

γijqj − κqi

⎤

⎦

+U

⎡

⎣qiθ
(
b(i) − a(i) + σ2(i)

)
+ 2

n∑

j=1

γijqj + 2κqi

⎤

⎦

+qiθb(i) +
n∑

j=1

γijqj + κqi

⎫
⎬

⎭

≤ q̂κHeκt,

(3.34)

where

H =
1
q̂κ

max
i∈S

⎧
⎨

⎩
sup
U∈R+

(1 +U)θ−2

⎧
⎨

⎩
−U2

⎡

⎣qi

(

θβ(i) − 1
2
θ2σ2(i)

)

−
n∑

j=1

γijqj − κqi

⎤

⎦

+U

⎡

⎣qiθ
(
b(i) − a(i) + σ2(i)

)
+ 2

n∑

j=1

γijqj + 2κqi

⎤

⎦

+qiθb(i) +
n∑

j=1

γijqj + κqi

⎫
⎬

⎭
, 1

⎫
⎬

⎭
,

(3.35)

which implies

q̂E
[
eκt(1 +U(t))θ

]
≤ q̌
(
1 + x−1(0)

)θ
+ q̂Heκt. (3.36)

Then

lim sup
t→∞

E
(
Uθ(t)

)
≤ lim sup

t→∞
E
[
(1 +U(t))θ

]
≤ H. (3.37)

Recalling the definition of U(t), we obtain the required assertion.
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Theorem 3.10. Under (A1′′), (A2), and (A3), (1.4) is stochastically permanent.

The proof is a simple application of the Chebyshev inequality, Lemmas 3.8 and 3.9,
and Theorem 3.6. Similarly, it is easy to obtain the following result.

Theorem 3.11. Under (A1′′) and (A4), (1.4) is stochastically permanent.

Remark 3.12. It is well-known that if a > 0, b > 0 and 0 ≤ c < b, then the solution x(t) of (1.1)
is persistent, namely,

lim inf
t→∞

x(t) > 0. (3.38)

Furthermore, we consider its associated stochastic delay equation (1.4), that is,

dx(t) = x(t)[(a(r(t)) − b(r(t))x(t) + c(r(t))x(t − τ))dt + σ(r(t))dw(t)], (3.39)

where a(i) > 0, b(i) > 0, c(i) ≥ 0, for i ∈ S, and č < b̂. Thus, applying Theorem 3.10 or
Theorem 3.11, we can see that (1.4) is stochastically permanent, if the noise intensities are
sufficiently small in the sense that

n∑

i=1

πi

[

a(i) − 1
2
σ2(i)

]

> 0 or a(i) − 1
2
σ2(i) > 0, for each i ∈ S. (3.40)

Corollary 3.13. Assume that for some i ∈ S, b(i) > 0, −b(i) + |c(i)| ≤ 0, and a(i)− (1/2)σ2(i) > 0.
Then the subsystem

dx(t) = x(t)[(a(i) − b(i)x(t) + c(i)x(t − τ))dt + σ(i)dw(t)] (3.41)

is stochastically permanent.

4. Extinction

In the previous sections we have shown that under certain conditions, the original (1.1) and
the associated SDE (1.4) behave similarly in the sense that both have positive solutions which
will not explode to infinity in a finite time and, in fact, will be ultimately bounded. In other
words, we show that under certain condition the noise will not spoil these nice properties.
However, we will show in this section that if the noise is sufficiently large, the solution to
(1.4) will become extinct with probability 1.

Theorem 4.1. Assume that (A1) holds. Then for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈
C([−τ, 0];R+), the solution x(t) of (1.4) has the property that

lim sup
t→∞

logx(t)
t

≤
n∑

i=1

πi

[

a(i) − 1
2
σ2(i)

]

a.s. (4.1)
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Proof. By Theorem 2.3, the solution x(t) will remain in R+ for all t ≥ −τ with probability 1.
We have by the generalized Itô formula and (A1) that

d logx(t) ≤
(

a(r(t)) − 1
2
σ2(r(t)) − b̂x(t) + b̂x(t − τ)

)

dt + σ(r(t))dw(t), (4.2)

where (A1) is used in the last step. Then,

log(V (x(t))) ≤ log(V (x(0))) + b̂

∫0

−τ
x(s)ds +

∫ t

0

(

a(r(s)) − 1
2
σ2(r(s))

)

ds +M(t), (4.3)

where M(t) =
∫ t
0 σ(r(t))dw(t). The quadratic variation ofM(t) is given by

〈M,M〉t =
∫ t

0
σ2(r(s))ds ≤ σ2t. (4.4)

Therefore, applying the strong law of large numbers for martingales [24], we obtain

lim
t→∞

M(t)
t

= 0 a.s. (4.5)

It finally follows from (4.3) by dividing t on the both sides and then letting t → ∞ that

lim sup
t→∞

logx(t)
t

≤ lim sup
t→∞

1
t

∫ t

0

[

a(r(s)) − 1
2
σ2(r(s))

]

ds =
n∑

i=1

πi

[

a(i) − 1
2
σ2(i)

]

a.s., (4.6)

which is the required assertion (4.1).

Similarly, it is easy to prove the following conclusions.

Theorem 4.2. Assume that (A1) and (A3′) hold. Then for any given initial data {x(t) : −τ ≤ t ≤
0} ∈ C([−τ, 0];R+), the solution x(t) of (1.4) has the property that

lim sup
t→∞

logx(t)
t

< 0 a.s. (4.7)

That is, the population will become extinct exponentially with probability 1.

Theorem 4.3. Assume that (Al) and (A4′) hold. Then for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈
C([−τ, 0];R+), the solution x(t) of (1.4) has the property that

lim sup
t→∞

logx(t)
t

≤ −ϕ
2

a.s., (4.8)

where ϕ = mini∈S(σ2(i) − 2a(i)) > 0. That is, the population will become extinct exponentially with
probability 1.
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Remark 4.4. If the noise intensities are sufficiently large in the sense that

n∑

i=1

πi

[

a(i) − 1
2
σ2(i)

]

< 0 or a(i) − 1
2
σ2(i) < 0, for each i ∈ S, (4.9)

then the population x(t) represented by (1.4) will become extinct exponentially with pro-
bability 1. However, the original delay equation (1.1)may be persistent without environmen-
tal noise.

Remark 4.5. Let A1′′ and A2 hold,
∑n

i=1 πi[a(i) − (1/2)σ2(i)]/= 0. Then, SDE (1.4) is either
stochastically permanent or extinctive. That is, it is stochastically permanent if and only if
∑n

i=1 πi[a(i)− (1/2)σ2(i)] > 0, while it is extinctive if and only if
∑n

i=1 πi[a(i)− (1/2)σ2(i)] < 0.

Corollary 4.6. Assume that for some i ∈ S,

−b(i) + |c(i)| ≤ 0, a(i) − 1
2
σ2(i) < 0. (4.10)

Then for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈ C([−τ, 0];R+), the solution x(t) of subsystem

dx(t) = x(t)[(a(i) − b(i)x(t) + c(i)x(t − τ))dt + σ(i)dw(t)] (4.11)

tend to zero a.s.

5. Asymptotic Properties

Lemma 5.1. Assume that (A1′) holds. Then for any given initial data {x(t) : −τ ≤ t ≤ 0} ∈
C([−τ, 0];R+), the solution x(t) of (1.4) has the property

lim sup
t→∞

log(x(t))
log t

≤ 1 a.s. (5.1)

Proof. By Theorem 2.3, the solution x(t) will remain in R+ for all t ≥ −τ with probability 1. It
is known that

dx(t) ≤ (ǎx(t) + cx(t)x(t − τ))dt + σ(r(t))dw(t),

E

(

sup
t≤u≤t+1

x(u)

)

≤ E(x(t)) + ǎ

∫ t+1

t

E(x(s))ds + c

∫ t+1

t

E(x(s)x(s − τ))ds

+ E

(

sup
t≤u≤t+1

∫u

t

σ(r(s))x(s)dw(s)

)

.

(5.2)
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From (3.3) of Theorem 3.3, it has

lim sup
t→∞

E(x(t)) ≤ K1(1),

lim sup
t→∞

E
(
x2(t)

)
≤ K1(2).

(5.3)

By the well-known BDG’s inequality [24] and the Hölder’s inequality, we obtain

E

(

sup
t≤u≤t+1

∫u

t

σ(r(s))x(s)dB(s)

)

≤ 3E

[∫ t+1

t

(σ(r(s))x(s))2ds

]1/2

≤ E

(

sup
t≤u≤t+1

x(u) · 9σ̌
∫ t+1

t

x(s)ds

)1/2

≤ 1
2
E

(

sup
t≤u≤t+1

x(u)

)

+ 9σ̌2
∫ t+1

t

E(x(s))ds.

(5.4)

Note that

∫ t+1

t

E[x(s)x(s − τ)]ds ≤ 1
2

∫ t+1

t

E
(
x2(s)

)
ds +

1
2

∫ t+1

t

E
(
x2(s − τ)

)
ds. (5.5)

Therefore,

E

(

sup
t≤u≤t+1

x(u)

)

≤ 2E(x(t)) + 2ǎ
∫ t+1

t

E(x(s))ds + c

∫ t+1

t

E
(
x2(s)

)
ds

+ c

∫ t+1

t

E
(
x2(s − τ)

)
ds + 18σ̌2

∫ t+1

t

E(x(s))ds.

(5.6)

This, together with (5.3), yields

lim sup
t→∞

E

(

sup
t≤u≤t+1

x(u)

)

≤ 2
(
1 + ǎ + 18σ̌2

)
K1(1) + 2cK1(2). (5.7)

From (5.7), there exists a positive constant M such that

E

(

sup
k≤t≤k+1

x(t)

)

≤ M, k = 1, 2, . . . . (5.8)
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Let ε > 0 be arbitrary. Then, by Chebyshev’s inequality,

P

(

sup
k≤t≤k+1

x(u) > k1+ε

)

≤ M

k1+ε
, k = 1, 2, . . . . (5.9)

Applying the well-known Borel-Cantelli lemma [24], we obtain that for almost all ω ∈ Ω

sup
k≤t≤k+1

x(u) ≤ k1+ε, (5.10)

for all but finitely many k. Hence, there exists a k0(ω), for almost all ω ∈ Ω, for which (5.10)
holds whenever k ≥ k0. Consequently, for almost all ω ∈ Ω, if k ≥ k0 and k ≤ t ≤ k + 1, then

log(x(t))
log t

≤ (1 + ε) log k
log k

= 1 + ε. (5.11)

Therefore,

lim sup
t→∞

log(x(t))
log t

≤ 1 + ε a.s. (5.12)

Letting ε → 0, we obtain the desired assertion (5.1).

Lemma 5.2. If there exists a constant θ > 0 such that A(θ) is a nonsingular M-matrix and c(i) ≥
0 (i = 1, 2, . . . , n), then the global positive solution x(t) of SDE (1.4) has the property that

lim inf
t→∞

log(x(t))
log t

≥ − 1
θ

a.s. (5.13)

Proof. Applying the generalized Itô formula, for the fixed constant θ > 0, we derive from
(3.26) that

d
[
(1 +U(t))θ

]
≤ θ(1 +U(t))θ−2

[

−U2(t)
(

β̂ − 1
2
σ̌2
)

+U(t)
(
b̌ + σ̌2

)
+ b̌

]

dt

− θσ(r(t))(1 +U(t))θ−1U(t)dw(t),

(5.14)

where U(t) = 1/x(t) on t > 0. By (3.37), there exists a positive constant M such that

E
[
(1 +U(t))θ

]
≤ M on t ≥ 0. (5.15)

Let δ > 0 be sufficiently small for

θ

{[

β̂ + 2b̌ +
1
2
(θ + 2)σ̌2

]

δ + 3ǎδ1/2
}

<
1
2
. (5.16)



20 Abstract and Applied Analysis

Then (5.14) implies that

E

[

sup
(k−1)δ≤t≤kδ

(1 +U(t))θ
]

≤ E
[
(1 +U((k − 1)δ))θ

]

+ E

{

sup
(k−1)δ≤t≤kδ

∣
∣
∣
∣
∣

∫ t

(k−1)δ
θ(1 +U(s))θ−2

[

−U2(s)
(

β̂ − 1
2
θσ̆2

)

+U(s)
(
b̆ + σ̆2

)
+ b̆

]

ds

∣
∣
∣
∣
∣

}

+ E

{

sup
(k−1)δ≤t≤kδ

∣
∣
∣
∣
∣

∫ t

(k−1)δ
θσ(r(s))(1 +U(s))θ−1U(s)dw(s)

∣
∣
∣
∣
∣

}

.

(5.17)

By directly computing, we have

E

{

sup
(k−1)δ≤t≤kδ

∣
∣
∣
∣
∣

∫ t

(k−1)δ
θ(1 +U(s))θ−2

[

−U2(s)
(

β̂ − 1
2
θσ̌2

)

+U(s)
(
b̌ + σ̌2

)
+ b̌

]

ds

∣
∣
∣
∣
∣

}

≤ θE

{∫ t

(k−1)δ

[

β̂ + 2b̌ +
1
2
(θ + 2)σ̌2

]

(1 +U(s))θds

}

≤ θ

[

β̂ + 2b̌ +
1
2
(θ + 2)σ̌2

]

δE

[

sup
(k−1)δ≤t≤kδ

(1 +U(t))θ
]

.

(5.18)

By the BDG’s inequality, it follows

E

{

sup
(k−1)δ≤t≤kδ

∣
∣
∣
∣
∣

∫kδ

(k−1)δ
θσ(r(s))(1 +U(s))θ−1U(s)dw(s)

∣
∣
∣
∣
∣

}

≤3θσ̌δ1/2E

{

sup
(k−1)δ≤t≤kδ

(1 +U(s))θ
}

.

(5.19)

Substituting this and (5.18) into (5.17) gives

E

[

sup
(k−1)δ≤t≤kδ

(1 +U(t))θ
]

≤ E
[
(1 +U((k − 1)δ))θ

]
+ θ

{[

β̂ + 2b̌ +
1
2
(θ + 2)σ̌2

]

δ + 3σ̌δ1/2
}

E

{

sup
(k−1)δ≤t≤kδ

(1 +U(s))θ
}

.

(5.20)
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Making use of (5.15) and (5.16), we obtain

E

[

sup
(k−1)δ≤t≤kδ

(1 +U(t))θ
]

≤ 2M on t ≥ 0. (5.21)

Let ε > 0 be arbitrary. Then, we have by Chebyshev’s inequality that

P

{

ω : sup
(k−1)δ≤t≤kδ

(1 +U(t))θ > (kδ)1+ε
}

≤ 2M

(kδ)1+ε
, k = 1, 2, . . . . (5.22)

Applying the Borel-Cantelli lemma, we obtain that for almost all ω ∈ Ω,

sup
(k−1)δ≤t≤kδ

(1 +U(t))θ ≤ (kδ)1+ε (5.23)

holds for all but finitely many k. Hence, there exists an integer k0(ω) > 1/δ + 2, for almost all
ω ∈ Ω, for which (5.23) holds whenever k ≥ k0. Consequently, for almost all ω ∈ Ω, if k ≥ k0
and (k − 1)δ ≤ t ≤ kδ,

log (1 +U(t))θ

log t
≤ (1 + ε) log(kδ)

log((k − 1)δ)
≤ 1 + ε. (5.24)

Therefore,

lim sup
t→∞

log (1 +U(t))θ

log t
≤ 1 + ε a.s. (5.25)

Let ε → 0, we obtain

lim sup
t→∞

log (1 +U(t))θ

log t
≤ 1 a.s. (5.26)

Recalling the definition of U(t), this yields

lim sup
t→∞

log
(
1/xθ(t)

)

log t
≤ 1 a.s., (5.27)

which further implies

lim inf
t→∞

log(x(t))
log t

≥ − 1
θ

a.s. (5.28)

This is our required assertion (5.13).
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Theorem 5.3. Assume that (A1′′), (A2), and (A3) hold. Then for any given initial data {x(t) : −τ ≤
t ≤ 0} ∈ C([−τ, 0];R+), the solution x(t) of (1.4) obeys

lim sup
t→∞

1
t

∫ t

0
x(s)ds ≤ 1

b̂ − c

n∑

i=1

πi

(

a(i) − 1
2
σ2(i)

)

a.s., (5.29)

lim inf
t→∞

1
t

∫ t

0
x(s)ds ≥ 1

b̌

n∑

i=1

πi

(

a(i) − 1
2
σ2(i)

)

a.s. (5.30)

Proof. By Theorem 2.3, the solution x(t) will remain in R+ for all t ≥ −τ with probability 1.
From Lemmas 3.8, 5.1, and 5.2, it follows

lim
t→∞

log(x(t))
t

= 0 a.s. (5.31)

By generalized Itô formula, one has

logx(t) = logx0 +
∫ t

0

(

a(r(s)) − 1
2
σ2(r(s))

)

ds −
∫ t

0
b(r(s))x(s)ds

+
∫ t

0
c(r(s))x(s − τ)ds +

∫ t

0
σ(r(s))dw(s).

(5.32)

Dividing by t on both sides, then we have

logx(t)
t

≤ logx0

t
+
1
t

∫ t

0

(

a(r(s)) − 1
2
σ2(r(s))

)

ds +
(
−b̂ + c

)1
t

∫ t

0
x(s)ds

+
c

t

∫0

−τ
x(s)ds +

1
t

∫ t

0
σ(r(s))dw(s).

(5.33)

Let t → ∞, by the strong law of large numbers for martingales and (5.31), we therefore
have

lim sup
t→∞

1
t

∫ t

0
x(s)ds ≤ 1

b̂ − c

n∑

i=1

πi

(

a(i) − 1
2
σ2(i)

)

a.s., (5.34)

which is the required assertions (5.29). And we also have

logx(t)
t

≥ 1
t
logx0 +

1
t

∫ t

0

(

a(r(s)) − 1
2
σ2(r(s))

)

ds − b̌

t

∫ t

0
x(s)ds +

1
t

∫ t

0
σ(r(s))dw(s).

(5.35)
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Let t → ∞, by the strong law of large numbers for martingales and (5.21), we therefore have

lim inf
t→∞

1
t

∫ t

0
x(s)ds ≥ 1

b̌

n∑

i=1

πi

(

a(i) − 1
2
σ2(i)

)

a.s., (5.36)

which is the required assertions (5.30).

Similarly, by using Lemmas 3.8, 5.1, and 5.2, it is easy to show the following conclusion.

Theorem 5.4. Assume that (A1′′) and (A4) hold. Then for any given initial data {x(t) : −τ ≤ t ≤
0} ∈ C([−τ, 0];R+), the solution x(t) of (1.4) obeys

lim sup
t→∞

1
t

∫ t

0
x(s)ds ≤ 1

b̂ − c

n∑

i=1

πi

(

a(i) − 1
2
σ2(i)

)

a.s.,

lim inf
t→∞

1
t

∫ t

0
x(s)ds ≥ 1

b̌

n∑

i=1

πi

(

a(i) − 1
2
σ2(i)

)

a.s.

(5.37)

Corollary 5.5. If that for some i ∈ S,

b(i) > 0, b(i) > |c(i)|, a(i) − 1
2
σ2(i) > 0, (5.38)

then the solution with positive initial value to subsystem

dx(t) = x(t)[(a(i) − b(i)x(t) + c(i)x(t − τ))dt + σ(i)dw(t)] (5.39)

has the property that

a(i) − (1/2)σ2(i)
b(i)

≤ lim inf
t→∞

1
t

∫ t

0
x(s)ds ≤ lim sup

t→∞

1
t

∫ t

0
x(s)ds ≤ a(i) − (1/2)σ2(i)

b(i) − |c(i)| a.s.

(5.40)

Remark 5.6. If c = 0, (1.4)will be written by

dx(t) = x(t)[(a(r(t)) − b(r(t))x(t))dt + σ(r(t))dw(t)], (5.41)

which is investigated in [18]. It should be pointed out that (1.4) is more difficult to handle
than (5.41). Fortunately, it overcomes the difficulties caused by delay term with the help of
Young’s inequality. Meanwhile, we get the similar results for τ ≥ 0.
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6. Examples

Example 6.1. Consider a 2-dimensional stochastic differential equation with Markovian
switching of the form

dx(t) = x(t)[(a(r(t)) − b(r(t))x(t) + c(r(t))x(t − τ))dt + σ(r(t))dw(t)] on t ≤ 0, (6.1)

where r(t) is a right-continuous Markov chain taking values in S = {1, 2}, and r(t) and w(t)
are independent. Here

a(1) = 2, b(1) = 3, c(1) = 1, σ(1) = 1,

a(2) = 1, b(2) = 2, c(2) =
3
2
, σ(2) = 2.

(6.2)

It can be computed that

b̂ = 2; č =
3
2
; a(1) − 1

2
σ2(1) =

3
2
; a(2) − 1

2
σ2(2) = −1. (6.3)

By Theorem 2.3, the solution x(t) of (6.1) will remain in R+ for all t ≥ −τ with pro-
bability 1.

Case 1. Let the generator of the Markov chain r(t) be

Γ =
(−1 1

2 −2
)

. (6.4)

By solving the linear equation πΓ = 0, we obtain the unique stationary (probability) dis-
tribution

π = (π1, π2) =
(
2
3
,
1
3

)

. (6.5)

Therefore,

2∑

i=1

πi

(

a(i) − 1
2
σ2(i)

)

=
2
3
> 0. (6.6)

By Theorems 3.10 and 5.3, (6.1) is stochastically permanent and its solution x(t) with any
positive initial value has the following properties:

1
3
≤ lim inf

t→∞
1
t

∫ t

0
x(s)ds ≤ lim sup

t→∞

1
t

∫ t

0
x(s)ds ≤ 4

3
a.s. (6.7)
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Case 2. Let the generator of the Markov chain r(t) be

Γ =
(−2 2

1 −1
)

. (6.8)

By solving the linear equation πΓ = 0, we obtain the unique stationary (probability) dis-
tribution

π = (π1, π2) =
(
1
3
,
2
3

)

. (6.9)

So,

2∑

i=1

πi

(

a(i) − 1
2
σ2(i)

)

= −1
6
< 0. (6.10)

Applying Theorems 4.2, (6.1) is extinctive.
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