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The hybrid algorithms for constructing fixed points of nonlinear mappings have been studied
extensively in recent years. The advantage of this methods is that one can prove strong
convergence theorems while the traditional iteration methods just have weak convergence. In this
paper, we propose two types of hybrid algorithm to find a common fixed point of a finite family of
asymptotically nonexpansive mappings in Hilbert spaces. One is cyclic Mann’s iteration scheme,
and the other is cyclic Halpern’s iteration scheme. We prove the strong convergence theorems for
both iteration schemes.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H, 〈·, ·〉 and ‖ · ‖
denote the inner product and norm in H, respectively. Let T be a self-mapping of C. Then, T
is said to be a Lipschitzian mapping if for each n ≥ 1 there exists an nonnegative real number
kn such that

∥
∥Tnx − Tny

∥
∥ ≤ kn

∥
∥x − y

∥
∥, (1.1)

for all x, y ∈ C. A Lipschitzian mapping is said to be nonexpansive mapping if kn = 1 for all
n ≥ 1 and asymptotically nonexpansive mapping [1] if limn→∞ kn = 1, respectively. We use
F(T) to denote the set of fixed points of T (i.e., F(T) = {x ∈ C : Tx = x}). It is well known that
if T is asymptotically nonexpansive mapping with F(T)/= ∅, then F(T) is closed and convex.
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Iterative methods for finding fixed points of nonexpansive mappings are an important
topic in the theory of nonexpansive mappings and have wide applications in a number of
applied areas, such as the convex feasibility problem [2–4], the split feasibility problem [5–
7] and image recovery and signal processing [8–10]. The Mann’s iteration is defined by the
following:

xn+1 = αnxn + (1 − αn)Txn, n ≥ 0, (1.2)

where x0 ∈ C is chosen arbitrarily and {αn} ⊆ [0, 1]. Reich [11] proved that ifX is a uniformly
convex Banach space with a Fréchet differentiable norm and if {αn} is chosen such that
∑∞

n=0 αn(1 − αn) = ∞, then the sequence {xn} defined by (1.2) converges weakly to a fixed
point of nonexpansive mapping T . However, we highlight that the Mann’s iterations have
only weak convergence even in a Hilbert space (see e.g., [12]).

In order to obtain the strong convergence theorem for the Mann iteration method (1.2)
to nonexpansivemappings, in 2003, Nakajo and Takahashi [13] proved the following theorem
in a Hilbert space by using an idea of the hybrid method in mathematical programming.

Theorem 1.1 (see [13]). Let C be a closed convex subset of a Hilbert space H and let T be a
nonexpansive mapping of C into itself such that F(T) is nonempty. Let P be the metric projection
of H onto F(T). Let x0 ∈ C and

yn = αnxn + (1 − αn)Txn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0,

(1.3)

where {αn} ⊆ [0, 1] satisfies supn≥0 αn < 1 and PCn∩Qnx0 is the metric projection ofH onto Cn ∩Qn.
Then {xn} converges strongly to Px0 ∈ F(T).

The iterative algorithm (1.3) is often referred to as hybrid algorithm or CQ algorithm in
the literature. We call it hybrid algorithm. Since then, the hybrid algorithm has been studied
extensively by many authors (see, e.g., [14–18]). Specifically, Kim and Xu [19] extended
the results of Nakajo and Takahashi [13] from nonexpansive mapping to asymptotically
nonexpansive mapping; they proposed the following hybrid algorithm:

x0 ∈ C is chosen arbitrarily,

yn = αnxn + (1 − αn)Tnxn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 ≤ ‖xn − z‖2 + θn

}

,

Qn = {z ∈ C : 〈xn − z, x0 − z〉 ≥ 0},
xn+1 = PCn∩Qnx0,

(1.4)
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where θn = (1 − αn)(k2
n − 1)(diamC)2. Zhang and Chen in [20], studied the following hybrid

algorithm of Halpern’s type for asymptotically nonexpansive mappings:

x0 ∈ C be chosen arbitrarily,

yn = αnx0 + (1 − αn)Tnxn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 ≤ ‖xn − z‖2 + θn

}

,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0,

(1.5)

where θn = (1 − αn)(k2
n − 1)(diamC)2. Some other related works can be found in [21–25].

The hybrid algorithm of (1.3)–(1.5) just considered a single nonexpansive and
asymptotically nonexpansive mapping. In order to extend them to a finite family of
mappings. Recall that in 1996, Bauschke [26] investigated the following cyclic Halpern’s type
algorithm for a finite family of nonexpansive mappings {Tj}N−1

j=0 :

C 
 x0 �−→ x1 := α0u + (1 − α0)T0x0 �−→ · · ·
�−→ xN := αN−1u + (1 − αN−1)TN−1xN−1

�−→ xN+1 := αNu + (1 − αN)T0xN �−→ · · · ,
(1.6)

or, more compactly,

u, x0 ∈ C,

xn+1 = αnu + (1 − αn)T[n]xn, n ≥ 0,
(1.7)

where T[n] := Tn mod N , and the modN function takes values in {0, 1, . . . ,N − 1}.
If αn = 0 and each nonexpansive mapping {Tj}N−1

j=0 is a projection onto a closed convex
set, then (1.7) reduces to the famous Algebraic Reconstruction Technique (ART), which has
numerous applications from computer tomograph to image reconstruction.

For the cyclic Mann’s type algorithm, a finite family of asymptotically nonexpansive
mappings was introduced by Qin et al. [17] and Osilike and Shehu [14], independently. Let
{Tj}N−1

j=0 be a finite family of asymptotically nonexpansive self-mappings of C. For a given
x0 ∈ C, and a real sequence {αn}∞n=0 ⊆ (0, 1), the sequence {xn}∞n=0 is generated as follows:

x1 = α0x0 + (1 − α0)T0x0,

x2 = α1x1 + (1 − α1)T1x1,

...

xN = αN−1xN−1 + (1 − αN−1)TN−1xN−1,
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xN+1 = αNxN + (1 − αN)T2
0xN,

xN+2 = αN+1xN+1 + (1 − αN+1)T2
1xN+1,

...

x2N = α2N−1x2N−1 + (1 − α2N−1)T2
N−1x2N−1,

x2N+1 = α2Nx2N + (1 − α2N)T3
0x2N,

x2N+2 = α2N+1x2N+1 + (1 − α2N+1)T3
1x2N+1,

...

(1.8)

The algorithm can be expressed in a compact form as

xn+1 = αnxn + (1 − αn)T
k(n)
i(n) xn, n ≥ 0, (1.9)

where n = (k − 1)N + i, i = i(n) ∈ J = {0, 1, 2, . . . ,N − 1}, k = k(n) ≥ 1 positive integer
and limn→∞ k(n) = ∞. Similarly, we can define the cyclic Halpern’s type algorithm for
asymptotically nonexpansive mappings as follows:

xn+1 = αnx0 + (1 − αn)T
k(n)
i(n) xn, n ≥ 0. (1.10)

The purpose of this paper is to extend the hybrid algorithms (1.4) and (1.5) to
the cyclic Mann’s type (1.9) and the cyclic Halpern’s type (1.10). Our results generalize
the corresponding results of Kim and Xu [19] and Zhang and Chen [20] from a single
asymptotically nonexpansive mapping to a finite family of asymptotically nonexpansive
mappings, respectively.

2. Preliminaries

In this section, we collect some useful results which will be used in the following section.
We use the following notations:

(i) ⇀ for weak convergence and → for strong convergence;

(ii) ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn}.
It is well known that a Hilbert space H satisfies the Opial’s condition [27]; that is, for

each sequence {xn} inH which converges weakly to a point x ∈ H, we have

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥
∥xn − y

∥
∥, (2.1)

for all y ∈ H, y /=x.
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Recall that given a closed convex subset of C of a real Hilbert space H, the nearest
point projection PC form H onto C assigns to each x ∈ C its nearest point denoted PCx in C
from x to C; that is, PCx is the unique point in X with the property

‖x − PCx‖ ≤ ∥
∥x − y

∥
∥, ∀y ∈ C. (2.2)

The following Lemmas 2.1 and 2.2 are well known.

Lemma 2.1. Let C be a closed convex subset of a real Hilbert spaceH. Given x ∈ H and z ∈ C, then
z = PCx if and only if there holds the relation

〈

x − z, y − z
〉 ≤ 0, ∀y ∈ C. (2.3)

Lemma 2.2. LetH be a real Hilbert space, then for all x, y ∈ H

∥
∥x − y

∥
∥
2 = ‖x‖2 −

∥
∥
∥y2

∥
∥
∥ − 2〈x − y, y〉. (2.4)

Lemma 2.3 (see [28]). Let X be a uniformly convex Banach space, C a nonempty closed convex
subset of X, and T : C → C an asymptotically nonexpansive mapping. Then (I − T) is demiclosed at
zero, that is, if xn ⇀ x and xn − Txn → 0, then x ∈ F(T).

Lemma 2.4 (see [22]). Let C be a closed convex subset of a real Hilbert space H. Let {xn} be
sequences inH and u ∈ H. Let q = PCu. If {xn} is such that ωw(xn) ⊂ C and satisfies the condition

‖xn − u‖ ≤ ∥
∥u − q

∥
∥, ∀n ≥ 1, (2.5)

then {xn} converges strongly to q.

Lemma 2.5 (see [22]). Let C be a closed convex subset of a real Hilbert spaceH. For any x, y, z ∈ H
and real number a ∈ R, the set

{

v ∈ C :
∥
∥y − v

∥
∥
2 ≤ ‖x − v‖2 + 〈z, v〉 + a

}

(2.6)

is convex and closed.

3. Main Results

In this section, we consider a finite family of asymptotically nonexpansive mappings {Tj}N−1
j=0 ;

that is, there exists {ujn} ⊆ [0,∞), j ∈ J := {0, 1, 2, . . . ,N − 1}with limn→∞ ujn = 0, for all j ∈ J
such that

∥
∥
∥Tn

j x − Tn
j y

∥
∥
∥ ≤ (

1 + ujn

)∥
∥x − y

∥
∥, (3.1)
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for all n ≥ 1 and x, y ∈ C. Let un := maxj∈J{ujn}, then limn→∞ un = 0, and

∥
∥
∥Tn

j x − Tn
j y

∥
∥
∥ ≤ (1 + un)

∥
∥x − y

∥
∥, (3.2)

for all n ≥ 1, and for all x, y ∈ C and j ∈ J .
We prove the following theorems.

Theorem 3.1. Let C be a bounded closed convex subset of a Hilbert space H, and let {Tj}N−1
j=0 : C →

C be a finite family of asymptotically nonexpansive mappings with F :=
⋂N−1

j=0 F(Tj)/= ∅. Assume that
{αn} ⊆ (0, 1) such that limn→∞ αn = 0. Suppose the sequence {xn} generated by

x0 ∈ C is chosen arbitrary,

yn = αnx0 + (1 − αn)T
k(n)
i(n) xn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 ≤ ‖xn − z‖2 + αn

(

‖x0‖2 + 2〈xn − x0, z〉
)

+ θn
}

,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0,

(3.3)

where θn = (2 + un)un(1 − αn)(diamC)2 → 0, as n → ∞. Then {xn} converges strongly to PFx0.

Proof. By Lemma 2.5, we conclude that Cn is closed and convex. It is obvious that Qn and F
are closed and convex. Then, the projection mappings PCn∩Qnx0 and PFx0 are well defined.
We divide the proof into several steps.

Step 1. We show that F ⊆ Cn ∩ Qn, for all n. Let p ∈ F. By the hybrid algorithm (3.3)
and that ‖ · ‖2 is convex, we have

∥
∥yn − p

∥
∥
2 ≤ αn

∥
∥x0 − p

∥
∥
2 + (1 − αn)

∥
∥
∥T

k(n)
i(n) − p

∥
∥
∥

2

≤ αn

∥
∥x0 − p

∥
∥
2 + (1 − αn)(1 + un)2

∥
∥xn − p

∥
∥
2

=
∥
∥xn − p

∥
∥
2 + αn

(∥
∥x0 − p

∥
∥
2 − ∥

∥xn − p
∥
∥
2
)

+ (1 − αn)(2 + un)un

∥
∥xn − p

∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 + αn

(

‖x0‖2 + 2
〈

xn − x0, p
〉)

+ θn,

(3.4)

where θn = (2 + un)un(1 − αn)(diamC)2. Hence, p ∈ Cn, that is, F ⊆ Cn, for all n.
Next, we prove that F ⊆ Qn, for all n ≥ 0. Indeed, for n = 0, Q0 = C, then F ⊆ Q0.

Assuming that F ⊆ Qm, we show that F ⊆ Qm+1. Since xm+1 is the projection of x0 onto
Cm ∩Qm, it follows from Lemma 2.1 that

〈xm+1 − z, x0 − xm+1〉 ≥ 0, ∀z ∈ Cm ∩Qm. (3.5)
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As F ⊆ Cm ∩Qm, in particular, we have

〈

xn+1 − p, x0 − xm+1
〉 ≥ 0, ∀p ∈ F. (3.6)

Thus, F ⊆ Qm+1. Therefore, F ⊆ Cn ∩Qn, for all n ≥ 0.
Step 2. We prove that

∥
∥xn+j − xn

∥
∥ −→ 0 as n −→ ∞, ∀j = 0, 1, 2, . . . ,N − 1. (3.7)

Since the definition of Qn implies that xn = PQnx0, we have

‖xn − x0‖ ≤ ∥
∥x0 − y

∥
∥, ∀y ∈ Qn. (3.8)

By Step 1, F ⊆ Qn, we have

‖xn − x0‖ ≤ ∥
∥x0 − p

∥
∥, ∀p ∈ F. (3.9)

In particular,

‖xn − x0‖ ≤ ∥
∥x0 − q

∥
∥, q = PFx0. (3.10)

Since xn+1 ∈ Qn, we have 〈xn+1 − xn, xn − x0〉 ≥ 0 and ‖xn − x0‖ ≤ ‖xn+1 − x0‖. The second
inequality shows that the sequence {‖xn − x0‖} is nondecreasing. Since C is bounded, we
obtain that the limn→∞‖xn − x0‖ exists.

With the help of Lemma 2.2, we obtain

‖xn+1 − xn‖2 = ‖(xn+1 − x0) − (xn − x0)‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉

≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2 −→ 0 as n −→ ∞.

(3.11)

Consequently,

∥
∥xn+j − xn

∥
∥ −→ 0 as n −→ ∞, ∀j ∈ J. (3.12)

Step 3. We now claim that ‖xn − Tjxn‖ → 0, as n → ∞, for all j ∈ J . Notice that for all
n > N, n = (n−N)(mod N), since n = (k(n)−1)N+i(n), we obtain n−N = (k(n)−1)N+i(n)−
N = (k(n−N)−1)N+i(n−N). So that n−N = [(k(n)−1)−1]N+i(n) = (k(n−N)−1)N+i(n−N).
Hence k(n) − 1 = k(n −N) and i(n) = i(n −N).

By the hybrid algorithm (3.3) and the condition limn→∞αn = 0, we get

∥
∥
∥yn − T

k(n)
i(n) xn

∥
∥
∥ = αn

∥
∥
∥x0 − T

k(n)
i(n) xn

∥
∥
∥ −→ 0 as n −→ ∞. (3.13)
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It follows from the fact xn+1 ∈ Cn that we have

∥
∥yn − xn+1

∥
∥
2 ≤ ‖xn − xn+1‖2 + αn

(

‖x0‖2 + 2〈xn − x0, xn+1〉
)

+ θn

−→ 0 as n −→ ∞,

∥
∥
∥T

k(n)
i(n) xn − xn

∥
∥
∥ ≤

∥
∥
∥T

k(n)
i(n) xn − yn

∥
∥
∥ +

∥
∥yn − xn+1

∥
∥ + ‖xn+1 − xn‖

−→ 0 as n −→ ∞.

(3.14)

Putting L = supn≥0{1 + un}, we deduce that

∥
∥xn+1 − Ti(n)xn

∥
∥ ≤

∥
∥
∥xn+1 − T

k(n)
i(n) xn

∥
∥
∥ +

∥
∥
∥T

k(n)
i(n) xn − Ti(n)xn

∥
∥
∥

≤ ‖xn+1 − xn‖ +
∥
∥
∥xn − T

k(n)
i(n) xn

∥
∥
∥ + L

∥
∥
∥T

k(n)−1
i(n) xn − xn

∥
∥
∥

≤ ‖xn+1 − xn‖ +
∥
∥
∥xn − T

k(n)
i(n) xn

∥
∥
∥

+ L
(∥
∥
∥T

k(n)−1
i(n) xn − T

k(n)−1
i(n−N)xn−N

∥
∥
∥ +

∥
∥
∥T

k(n)−1
i(n−N)xn−N − xn−N−1

∥
∥
∥ + ‖xn−N−1 − xn‖

)

≤ ‖xn+1 − xn‖ +
∥
∥
∥xn − T

k(n)
i(n) xn

∥
∥
∥ + L2‖xn − xn−N‖

+ L
∥
∥
∥T

k(n)−1
i(n−N)xn−N − xn−N−1

∥
∥
∥ + L‖xn−N−1 − xn‖

−→ 0 as n −→ ∞.

(3.15)

Hence,

∥
∥xn − Ti(n)xn

∥
∥ ≤ ‖xn − xn+1‖ +

∥
∥xn+1 − Ti(n)xn

∥
∥ −→ 0 as n −→ ∞. (3.16)

Consequently, for all j = 0, 1, . . . ,N − 1, we have

∥
∥xn − Tn+jxn

∥
∥ ≤ ∥

∥xn − xn+j
∥
∥ +

∥
∥xn+j − Tn+jxn+j

∥
∥ + L

∥
∥xn+j − xn

∥
∥

−→ 0 as n −→ ∞.
(3.17)

Thus, ‖xn − Tjxn‖ → 0, as n → ∞, for all j ∈ J .
Step 4. Since {xn} is bounded, then {xn} has a weakly convergent subsequence {xnj}.

Suppose {xnj} converges weakly to p. Since C is weakly closed and {xnj} ⊂ C, we have p ∈ C.
By Lemma 2.3, I −Tj is demiclosed at 0 for all j ∈ J , and we get p−Tjp = 0(j ∈ J), that is p ∈ F.
Suppose {xn} does not converge weakly to p, then there exists another subsequence {xnk}of
{xn} which converges weakly to some p1. Similarly we can prove that p1 ∈ F. It follows from
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the proof of above that we know that limn→∞ ‖xn−p‖ and limn→∞ ‖xn−p1‖ exist. Since every
Hilbert space satisfies Opial’s condition, we have

lim
n→∞

∥
∥xn − p

∥
∥ = lim

j→∞

∥
∥
∥xnj − p

∥
∥
∥ < lim

j→∞

∥
∥
∥xnj − p1

∥
∥
∥

= lim
n→∞

∥
∥xn − p1

∥
∥ = lim

k→∞

∥
∥xnk − p1

∥
∥

< lim
k→∞

∥
∥xnk − p

∥
∥ < lim

n→∞
∥
∥xn − p

∥
∥.

(3.18)

This is a contradiction. Hence, ωw(xn) ⊆ F. Then by virtue of (3.10) and Lemma 2.4, we
conclude that xn → q as n → ∞, where q = PFx0.

Recall that a mapping T is said to be asymptotically strictly pseudocontractive [29], if
there exist λ ∈ [0, 1) and a sequence {un} ⊆ [0,∞) with limn→∞ un = 0 such that

∥
∥Tnx − Tny

∥
∥
2 ≤ (1 + un)2

∥
∥x − y

∥
∥
2 + λ

∥
∥(I − Tn)x − (I − Tn)y

∥
∥
2
, (3.19)

for all n and x, y ∈ C.

Theorem 3.2. Let C be a bounded closed convex subset of a Hilbert space H, and let {Tj}N−1
j=0 : C →

C be a finite family of asymptotically nonexpansive mappings with F :=
⋂N−1

j=0 F(Tj)/= ∅. Assume that
{αn} ⊆ (0, a), for some 0 < a < 1. Suppose the sequence {xn} generated by

x0 ∈ C is chosen arbitrary,

yn = αnxn + (1 − αn)T
k(n)
i(n) xn,

Cn =
{

z ∈ C :
∥
∥yn − z

∥
∥
2 ≤ ‖xn − z‖2 + θn

}

,

Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0,

(3.20)

where θn = (2 + un)un(diamC)2. Then {xn} converges strongly to PFx0.

Proof. Since Tj is asymptotically nonexpansive if and only if Tj is asymptotically strictly
pseudocontractive mapping with λ = 0. Then, the rest of proof follows from Theorem 3.2
of Osilike and Shehu [14] and Theorem 2.2 of Qin et al. [17] directly by letting λ = 0.
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