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By using the upper-lower solutions method and the fixed-point theorem on cone in a special space,
we study the singular boundary value problem for systems of nonlinear second-order differential
equations involving two parameters on the half-line. Some results for the existence, nonexistence
and multiplicity of positive solutions for the problem are obtained.

1. Introduction

In this paper, we are concerned with the following boundary value problem for systems of
nonlinear singular second-order ordinary differential equations on the half-line:

−(p1(t)u′(t)
)′ = λφ1(t)f1(t, u(t), v(t), a, b), 0 < t < +∞,

−(p2(t)v′(t)
)′ = λφ2(t)f2(t, u(t), v(t), a, b), 0 < t < +∞,

α11u(0) − β11 lim
t→ 0+

p1(t)u′(t) = 0,

α12 lim
t→+∞

u(t) + β12 lim
t→+∞

p1(t)u′(t) = 0,

α21v(0) − β21 lim
t→ 0+

p2(t)v′(t) = 0,

α22 lim
t→+∞

v(t) + β22 lim
t→+∞

p2(t)v′(t) = 0,

(Pa,b)
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where λ > 0 is a parameter, a ≥ 0, b ≥ 0 are constants; f1, f2 : R
5
+ → R+ are continuous, φ1, φ2 :

(0,+∞) → R+ are continuous and may have singularity at t = 0; pi ∈ C(R+) ∩ C1(0,+∞)
with pi(t) > 0 on (0,+∞) and

∫+∞
0 (1/pi(s))ds < +∞ (i = 1, 2); αij , βij ≥ 0 (i, j = 1, 2) with

ρi = αi2βi1 + αi1βi2 + αi1αi2
∫+∞
0 (1/pi(s))ds > 0 (i = 1, 2), in which R+ = [0,+∞) is the set of

nonnegative real numbers.
Boundary value problems (BVP for short) on infinite interval arise in many

applications (see [1, 2] and the references therein). Over the last couple of decades, a great
deal of results have been developed for differential, difference, and integral BVPs on the
infinite interval, including those by Agarwal and O’Regan [1], O’Regan [2], and many
others (see [3–17]). For the study of boundary value problems, Agarwal and O’Regan [1]
adopted mainly the method of the nonlinear alternative theorem together with a wonderful
diagonalization process and the fixed-point theorem in the Frechet space.

Boundary value problems on the half-line arise naturally in the study of radially
symmetric solutions of nonlinear elliptic equations (see, [18–20]). Recently, by using the
Krasnosel’skii fixed-point theorem, Lian and Ge [6] obtained the criteria for the existence
of at least one positive solution, a unique positive solution, and multiple positive solutions of
the following BVP

(
p(t)x′(t)

)′ + λφ(t)f(t, x(t)) = 0, 0 < t < +∞,

α1x(0) − β1 lim
t→ 0+

p(t)x′(t) = 0,

α2 lim
t→+∞

x(t) + β2 lim
t→+∞

p(t)x′(t) = 0,

(1.1)

where λ > 0 is a parameter, f : R+ × R+ → R = (−∞,+∞) and φ(t) : (0,+∞) → (0,+∞)
are continuous. More recently, by employing the method of varying in translation together
with the fixed-point theorem in cone, Zhang et al. [14] established the existence of positive
solution for the following semipositone singular Sturm-Liouville boundary value problem
on the half-line

(
p(t)x′(t)

)′ + f(t, x) + q(t) = 0, 0 < t < +∞,

α1x(0) − β1 lim
t→ 0+

p(t)x′(t) = 0,

α2 lim
t→+∞

x(t) + β2 lim
t→+∞

p(t)x′(t) = 0,

(1.2)

where f : (0,+∞)×R+ → R+ is continuous and allows the nonlinearity to have singularity at
t = 0, q : (0,+∞) → R is a Lebesgue integrable function. As far as we know, there is very few
work concerning the systems of BVPs on the half-line, although the study for the systems of
BVPs (Pa,b) on the half-line is very important.

Using the fixed-point theorem of cone expansion and compression type, the upper-
lower solutions method, and degree arguments, do Ó et al. [21] studied the existence,
nonexistence, and multiplicity of positive solutions for the following class of systems of
second-order ordinary differential equations on the finite interval [0, 1]:

−u′′(t) = f(t, u, v, a, b), 0 < t < 1,

−v′′(t) = g(t, u, v, a, b), 0 < t < 1,

u(0) = u(1) = 0,

v(0) = v(1) = 0,

(1.3)
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where f, g : [0, 1] × R
4
+ → R+ are continuous and nondecreasing with respect to the last four

variables.
Motivated by the above works, in this paper, we extend the results of [6, 14, 21, 22] to

(Pa,b) and also expand the domain from finite intervals to the infinite interval—the half line.
There are two aims in this paper. The first aim is to obtain the existence of positive

solutions for the system (Pa,b). For this purpose, we solve the fixed point of an operator F
instead of the positive solutions for the system (Pa,b). The main difficulty for this is to testify
that the operator F is completely continuous, as the Ascoli-Arzela theorem cannot be used
in infinite interval R+. Some modification of the compactness criterion in infinite interval R+

(Lemma 2.4) has thus been made to resolve this problem. The second aim is to show that
there exists a continuous curve Γ which splits the positive quadrant of the (a, b)-plane into
two disjoint sets Q1 and Q2 such that the system (Pa,b) has at least two positive solutions in
Q1, at least one positive solution on the boundary of Q1, and no positive solutions in Q2.

The rest of the paper is organized as follows. In Section 2, we present some necessary
definitions and lemmas that will be used to prove our main results. In Section 3, first, we give
Lemma 3.1, which is a result of completely continuous operator, then we discuss our main
results.

2. Preliminaries and Lemmas

In this section, we present some notations and lemmas that will be used in the proof of our
main results.

Throughout this paper, the space X = E × E will be the basic space to study (Pa,b),
where the Banach space E is denoted by E = {u ∈ C(R+) : limt→+∞ u(t) exists} with the
supremum norm ‖u‖∞ = supt∈R+

|u(t)|. Clearly, (X, ‖ · ‖) is a Banach space with the norm
‖(u, v)‖ = ‖u‖∞ + ‖v‖∞ for (u, v) ∈ X. For convenience, let

ai = βi1 + αi1

∫+∞

0

1
pi(s)

ds, bi = βi2 + αi2

∫+∞

0

1
pi(s)

ds, i = 1, 2,

ai(t) = βi1 + αi1

∫ t

0

1
pi(s)

ds, bi(t) = βi2 + αi2

∫+∞

t

1
pi(s)

ds, i = 1, 2.

(2.1)

Then, it is obvious that αi2ai(t) + αi1bi(t) = ρi (i = 1, 2) is a constant for any t ∈ R+ and ai(t) is
increasing on t ∈ R+, bi(t) is decreasing on t ∈ R+ for i = 1, 2.

Lemma 2.1 (see [6]). Under the condition
∫+∞
0 (1/pi(s))ds < +∞ and ρi > 0 for i = 1, 2, the linear

boundary value problem
(
pi(t)x′(t)

)′ + v(t) = 0, 0 < t < +∞,

αi1x(0) − βi1 lim
t→ 0+

pi(t)x′(t) = 0,

αi2 lim
t→+∞

x(t) + βi2 lim
t→+∞

pi(t)x′(t) = 0, i = 1, 2

(2.2)

has a unique solution for any v ∈ L1(0,+∞). Moreover, this unique solution can be expressed in the
form

xi(t) =
∫+∞

0
Gi(t, s)v(s)ds, i = 1, 2, (2.3)
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where the Green function Gi(t, s) is defined by

Gi(t, s) =
1
ρ i

⎧
⎨

⎩

ai(t)bi(s), 0 ≤ t ≤ s < +∞,

ai(s)bi(t), 0 ≤ s ≤ t < +∞, i = 1, 2.
(2.4)

Remark 2.2. From (2.4), we can get the properties of Gi(t, s) as follows.

(1) Gi(t, s) is continuous and nonnegative on R+ × R+.

(2) For each s ∈ R+, Gi(t, s) is continuously differentiable on R+ except for t = s.

(3) ∂Gi(t, s)/∂t|t=s+ − ∂Gi(t, s)/∂t|t=s− = −1/pi(s).
(4) For each s ∈ R+, Gi(t, s) satisfies the corresponding homogeneous BVP (i.e., the

BVP (2.2) with v(t) ≡ 0) on R+ except for t = s. In other words, Gi(t, s) is the Green
function of BVP (2.2) on the half-line.

(5) Gi(t, s) ≤ Gi(s, s) ≤ (1/ρi)aibi < +∞, i = 1, 2.

(6) Gi(s) = limt→+∞Gi(t, s) = (1/ρi)βi2ai(s) ≤ Gi(s, s) < +∞, i = 1, 2.

(7) For any t ∈ [δ, 1/δ] and s ∈ R+, Gi(t, s) ≥ ωiGi(s, s), where

δ ∈ (0, 1), ωi = min

{
bi(1/δ)

bi
,
ai(δ)
ai

}

, i = 1, 2, 0 < ω = min{ω1, ω2} < 1. (2.5)

For any (x1, x2, . . . , xm) ∈ R
m, define |(x1, x2, . . . , xm)| = |x1| + |x2| + · · · |xm|. In what

follows, we list some conditions for convenience.

(H1) The function fi : R
5
+ → R+ is continuous and nondecreasing with respect to the

last four variables. In other words,

fi
(
t, x1, y1, a1, b1

) ≤ fi
(
t, x2, y2, a2, b2

)
, i = 1, 2, (2.6)

for any t ∈ R+, (x1, y1, a1, b1) ≤ (x2, y2, a2, b2), where the order is understood to
apply to every component. And there exists (a0, b0) such that fi(t, x, y, a, b) is
bounded for any (a, b) satisfying (0, 0) ≤ (a, b) ≤ (a0, b0), t ∈ R+, x and y in any
bounded set of R+.

(H2) The function φi(t) : (0,+∞) → R+ is continuous and singular at t = 0, φi(t)/≡ 0 on
R+ satisfying 0 <

∫+∞
0 Gi(s, s)φi(s)ds < +∞, i = 1, 2.

(H3) For the above a0 and b0 in (H1),

f0
i = lim sup

x+y→ 0+
sup
t∈R+

fi
(
t, x, y, a0, b0

)

x + y
< L,

fi∞ = lim inf
x+y→+∞

inf
t∈[δ,1/δ]

fi
(
t, x, y, 0, 0

)

x + y
> l, i = 1, 2,

(2.7)
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where

L =
1
2

(
max

{∫+∞

0
G1(s, s)φ1(s)ds,

∫+∞

0
G2(s, s)φ2(s)ds

})−1
,

l =
1
2

(

min

{

min
t∈[δ,1/δ]

∫1/δ

δ

G1(t, s)φ1(s)ds, min
t∈[δ,1/δ]

∫1/δ

δ

G2(t, s)φ2(s)ds

})−1
.

(2.8)

(H4)

lim
|(a,b)|→+∞

fi
(
t, x, y, a, b

)
= +∞, uniformly for t ∈

[
δ,

1
δ

]
, x ≥ 0, y ≥ 0, i = 1, 2. (2.9)

From the above assumptions (H1) and (H2), it is not difficult to show that the pair
(u, v) ∈ X is a solution of the system (Pa,b) if and only if (u, v) ∈ X is a solution of the
following system of nonlinear integral equations:

u(t) = λ
∫+∞

0
G1(t, s)φ1(s)f1(s, u(s), v(s), a, b)ds,

v(t) = λ
∫+∞

0
G2(t, s)φ2(s)f2(s, u(s), v(s), a, b)ds, t ∈ R+.

(Sa,b)

Define operators Ai : X → E and F : X → X as follows:

Ai(u, v)(t) = λ
∫+∞

0
Gi(t, s)φi(s)fi(s, u(s), v(s), a, b)ds, i = 1, 2, (2.10)

F(u, v) = (A1(u, v), A2(u, v)). (2.11)

Then, the solution of the system (Pa,b) is equivalent to the fixed point of the operator F. Define
a cone K in the Banach space X as follows:

K =
{
(u, v) ∈ X : u(t) ≥ 0, v(t) ≥ 0, t ∈ R+, u(t) ≥ ω‖u‖∞, v(t) ≥ ω‖v‖∞, t ∈

[
δ,

1
δ

]}
,

(2.12)

which induces a partial order “≤”: (u1, v1) ≤ (u2, v2) if and only if u1(t) ≤ u2(t), v1(t) ≤ v2(t)
for any t ∈ R+.
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Consider the following system:

−(p1(t)u′(t)
)′ = λφ1(t)g1(t, u(t), v(t)),

−(p2(t)v′(t)
)′ = λφ2(t)g2(t, u(t), v(t)), 0 < t < +∞,

α11u(0) − β11 lim
t→ 0+

p1(t)u′(t) = 0,

α12 lim
t→+∞

u(t) + β12 lim
t→+∞

p1(t)u′(t) = 0,

α21v(0) − β21 lim
t→ 0+

p2(t)v′(t) = 0,

α22 lim
t→+∞

v(t) + β22 lim
t→+∞

p2(t)v′(t) = 0,

(S)

where gi : R
3
+ → R+ (i = 1, 2) are nonnegative continuous functions and are nondecreasing

with respect to the last two variables.

Definition 2.3. The pair (u, v) is said to be a lower solution for the system (S) if the pair (u, v)
satisfies the following inequality system:

−(p1(t)u′(t)
)′ ≤ λφ1(t)g1(t, u(t), v(t)),

−(p2(t)v′(t)
)′ ≤ λφ2(t)g2(t, u(t), v(t)), 0 < t < +∞,

α11u(0) − β11 lim
t→ 0+

p1(t)u′(t) ≤ 0,

α12 lim
t→+∞

u(t) + β12 lim
t→+∞

p1(t)u′(t) ≤ 0,

α21v(0) − β21 lim
t→ 0+

p2(t)v′(t) ≤ 0,

α22 lim
t→+∞

v(t) + β22 lim
t→+∞

p2(t)v′(t) ≤ 0.

(T)

Similarly, we define the upper solution for the system (S) by replacing the ≤ in (T) by ≥.

Lemma 2.4 (see [1, 23]). Let E be defined as above andM ⊂ E. Then,M is relatively compact in E
if the following conditions hold.

(1) M is uniformly bounded in E.

(2) The functions inM are equicontinuous on any bounded interval of R+.

(3) The functions in M are equiconvergent at +∞, that is, for any given ε > 0, there exists a
T = T(ε) > 0 such that |f(t) − f(+∞)| < ε, for any t > T, f ∈M.

Lemma 2.5 (see [24, 25]). Let P be a positive cone in a real Banach space (E, ‖ · ‖), Pr = {x ∈ P :
‖x‖ < r}, Pr,R = {x ∈ P : r ≤ ‖x‖ ≤ R}(0 < r < R < +∞), and let A : Pr,R → P be a completely
continuous operator. If the following conditions are satisfied,

(1) ‖Ax‖ ≤ ‖x‖, for all x ∈ ∂PR,
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(2) there exists a e ∈ ∂P1 such that x /=Ax +me for any x ∈ ∂Pr andm > 0, then A has fixed
points in Pr,R.

Remark 2.6. If (1) and (2) are satisfied for x ∈ ∂Pr and x ∈ ∂PR, respectively, then Lemma 2.5
still holds.

Lemma 2.7 (see [25]). Let (E, ‖ · ‖) be a Banach space, K a cone in E, and let Ω be a bounded open
set in E with θ ∈ Ω. Suppose that A : K ∩Ω → K is a completely continuous operator. If Ax/=μx
for x ∈ K ∩ ∂Ω and μ ≥ 1, then the fixed-point index

i(A,K ∩Ω, K) = 1. (2.13)

Lemma 2.8 (see [25]). Let (E, ‖ · ‖) be a Banach space, K be a cone in E. For r > 0, define Kr =
{x ∈ K : ‖x‖ < r}. Suppose that A : Kr → K is a completely continuous operator such that Ax/=x
for x ∈ ∂Kr .

(i) If ‖Ax‖ ≥ ‖x‖ for x ∈ ∂Kr , then i(A,Kr,K) = 0.

(ii) If ‖Ax‖ ≤ ‖x‖ for x ∈ ∂Kr , then i(A,Kr,K) = 1.

3. Main Results

3.1. The Complete Continuity of the Operator F

Before presenting the main results, we give a lemma.

Lemma 3.1. Assume that (H1) and (H2) hold. Then, for any (a, b) satisfying (0, 0) ≤ (a, b) ≤
(a0, b0), F : X → X is a completely continuous operator and F(K) ⊆ K.

Proof. We divide the proof into four steps.
(i) Firstly, we show that F : X → X is well defined. For any fixed (u, v) ∈ X, there

exists r1 > 0 such that |u(t)| ≤ r1 and |v(t)| ≤ r1 for any t ∈ R+. It follows from (H1) and the
property (1) of the Green function Gi(t, s) that Ai(u, v) ≥ 0 and

Br1fi = sup
{
fi
(
t, x, y, a, b

)
: t ∈ R+, x ∈ [0, r1], y ∈ [0, r1], a ∈ [0, a0], b ∈ [0, b0]

}
< +∞. (3.1)

Thus, by (H1) and (H2), for any t ∈ R+, a ∈ [0, a0] and b ∈ [0, b0], we obtain

0 ≤ λ
∫+∞

0
Gi(t, s)φi(s)fi(s, u(s), v(s), a, b)ds ≤ λBr1fi

∫+∞

0
Gi(s, s)φi(s)ds < +∞. (3.2)

Hence, the operator F(u, v) = (A1(u, v), A2(u, v)) is well defined for any (u, v) ∈ X.
For any t1, t2, s ∈ R+, by the property (5) of the Green function Gi(t, s), we have

|Gi(t1, s) −Gi(t2, s)|φi(s) ≤ 2Gi(s, s)φi(s), i = 1, 2. (3.3)
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So, by (H2), the Lebesgue dominated convergence theorem and the continuity of Gi(t, s), for
any t1, t2 ∈ R+, a ∈ [0, a0], b ∈ [0, b0], we get

|Ai(u, v)(t1) −Ai(u, v)(t2)|

≤ λ

∫+∞

0
|Gi(t1, s) −Gi(t2, s)|φi(s)fi(s, u(s), v(s), a, b)ds

≤ λBr1fi

∫+∞

0
|Gi(t1, s) −Gi(t2, s)|φi(s)ds

−→ 0, t1 −→ t2.

(3.4)

Therefore, Ai(u, v) ∈ C(R+), and so F(u, v) ∈ C(R+) × C(R+). By the property (6) of Gi(t, s)
and the Lebesgue dominated convergence theorem, we obtain

lim
t→+∞

Ai(u, v)(t) = λ
∫+∞

0
Gi(s)φi(s)fi(s, u(s), v(s), a, b)ds < +∞. (3.5)

Hence, F : X → X is well defined.
(ii) Next we show that F : X → X is continuous. Let (un, vn), (u, v) ∈ X, n ∈ N, and

‖(un, vn) − (u, v)‖ → 0 (n → +∞), we will prove that ‖F(un, vn) − F(u, v)‖ → 0 (n → +∞).
By (2.10), (H1), and (H2), for any t ∈ R+, a ∈ [0, a0], b ∈ [0, b0] and any natural number n, we
have

|Ai(un, vn)(t) −Ai(u, v)(t)|

≤ λ

∫+∞

0
Gi(s, s)φi(s)

(∣∣fi(s, un(s), vn(s), a, b)
∣∣ +
∣∣fi(s, u(s), v(s), a, b)

∣∣
)
ds

≤ 2λBr2
fi

∫+∞

0
Gi(s, s)φi(s)ds < +∞, i = 1, 2,

(3.6)

where Br2
fi
= sup{fi(t, x, y, a, b) : t ∈ R+, x ∈ [0, r2], y ∈ [0, r2], a ∈ [0, a0], b ∈ [0, b0]} < +∞

by (H1), r2 is a real number such that r2 ≥ maxn∈N{‖(u, v)‖, ‖(un, vn)‖}, in which N is the
natural number set.

For any ε > 0, by (H2), there exists a sufficiently large T0 > 0 such that

2λBr2fi

∫+∞

T0

Gi(s, s)φi(s)ds <
ε

2
, i = 1, 2. (3.7)

On the other hand, by the continuity of fi(t, x, y, a, b) on [0, T0]×[0, r2]×[0, r2]×[0, a0]×[0, b0],
for the above ε > 0, there exists a δ > 0 such that for any s ∈ [0, T0], a ∈ [0, a0], b ∈ [0, b0] and
x, x′, y, y′ ∈ [0, r2], when |x − x′| < δ, |y − y′| < δ, we have

∣∣fi
(
s, x, y, a, b

) − fi
(
s, x′, y′, a, b

)∣∣ <
ε

2

(
λ

∫+∞

0
Gi(s, s)φi(s)ds

)−1
, i = 1, 2. (3.8)
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From ‖(un, vn) − (u, v)‖ → 0 (n → +∞) and the definition of the norm ‖ · ‖ in the space X,
we can easily conclude that ‖un − u‖∞ → 0, ‖vn − v‖∞ → 0 (n → +∞). So, for the above
δ > 0, there exists a sufficiently large natural number N0 such that, when n > N0, for any
s ∈ [0, T0], we have

|un(s) − u(s)| ≤ ‖un − u‖∞ < δ, |vn(s) − v(s)| ≤ ‖vn − v‖∞ < δ. (3.9)

Hence, by (3.8), when n > N0, for any s ∈ [0, T0], a ∈ [0, a0], b ∈ [0, b0], we get

∣
∣fi(s, un(s), vn(s), a, b) − fi(s, u(s), v(s), a, b)

∣
∣ <

ε

2

(
λ

∫+∞

0
Gi(s, s)φi(s)ds

)−1
. (3.10)

Therefore, by (2.10), (3.7), and (3.10), when n > N0, for any t ∈ R+, a ∈ [0, a0] and b ∈ [0, b0],
we obtain

|Ai(un, vn)(t) −Ai(u, v)(t)|

≤ λ

∫+∞

0
Gi(s, s)φi(s)

∣∣fi(s, un(s), vn(s), a, b) − fi(s, u(s), v(s), a, b)
∣∣ds

≤ λ

∫T0

0
Gi(s, s)φi(s)

∣∣fi(s, un(s), vn(s), a, b) − fi(s, u(s), v(s), a, b)
∣∣ds

+ 2λBr2fi

∫+∞

T0

Gi(s, s)φi(s)ds < ε, i = 1, 2.

(3.11)

This implies that the operator Ai : X → E is continuous. Therefore, the operator F : X → X
is continuous.

(iii)We need to prove that the operator F : X → X is compact. LetD be any bounded
subset of X. Then, there exists a constant r3 > 0 such that ‖(u, v)‖ ≤ r3 for any (u, v) ∈ D. So
‖u‖∞ ≤ r3, ‖v‖∞ ≤ r3 for any (u, v) ∈ D. By (2.10), (H1), and (H2), for any (u, v) ∈ D and
t ∈ R+, we have

|F(u, v)(t)| = |A1(u, v)(t)| + |A2(u, v)(t)|

=
∣∣∣∣λ
∫+∞

0
G1(t, s)φ1(s)f1(s, u(s), v(s), a, b)ds

∣∣∣∣

+
∣∣∣∣λ
∫+∞

0
G2(t, s)φ2(s)f2(s, u(s), v(s), a, b)ds

∣∣∣∣

≤ λBr3
f1

∫+∞

0
G1(s, s)φ1(s)ds + λB

r3
f2

∫+∞

0
G2(s, s)φ2(s)ds

< +∞,

(3.12)

where Br3
fi
= sup{fi(t, x, y, a, b) : t ∈ R+, x ∈ [0, r3], y ∈ [0, r3], a ∈ [0, a0], b ∈ [0, b0]} < +∞

by (H1). Hence, F(D) is uniformly bounded. By the similar proof as for (3.4), we can conclude
that Ai(D) is equicontinuous, and so F(D) is also equicontinuous.
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From (H2) and the property (6) of the Green function Gi(t, s), for any t ∈ R+, we have
∫+∞

0

∣
∣
∣Gi(t, s) −Gi(s)

∣
∣
∣φi(s)ds ≤ 2

∫+∞

0
Gi(s, s)φi(s)ds < +∞, i = 1, 2. (3.13)

By (2.10), (3.5), and the Lebesgue dominated convergence theorem, for any (u, v) ∈ D, t ∈ R+,
a ∈ [0, a0], and b ∈ [0, b0], we obtain

|Ai(u, v)(t) −Ai(u, v)(+∞)| =
∣
∣
∣
∣λ
∫+∞

0
Gi(t, s)φi(s)fi(s, u(s), v(s), a, b)ds

−λ
∫+∞

0
Gi(s)φi(s)fi(s, u(s), v(s), a, b)ds

∣
∣
∣
∣

≤ λ

∫+∞

0

∣
∣
∣Gi(t, s) −Gi(s)

∣
∣
∣φi(s)fi(s, u(s), v(s), a, b)ds

≤ λBr3
fi

∫+∞

0

∣∣∣Gi(t, s) −Gi(s)
∣∣∣φi(s)ds

−→ 0, t −→ +∞, i = 1, 2.

(3.14)

This implies that Ai(D) is equiconvergent at +∞. Hence, F(D) is equiconvergent at +∞.
Therefore, the above discussion and Lemma 2.4 imply that F : X → X is completely
continuous.

(iv) Finally, we prove F(K) ⊆ K. By the property (1) of Gi(t, s), (H1), and (H2), it is
easy to see that, for any (u, v) ∈ K and t ∈ R+, Ai(u, v)(t) ≥ 0 and

Ai(u, v)(t) = λ

∫+∞

0
Gi(t, s)φi(s)fi(s, u(s), v(s), a, b)ds

≤ λ

∫+∞

0
Gi(s, s)φi(s)fi(s, u(s), v(s), a, b)ds.

(3.15)

So

‖Ai(u, v)‖∞ ≤ λ
∫+∞

0
Gi(s, s)φi(s)fi(s, u(s), v(s), a, b)ds, i = 1, 2. (3.16)

On the other hand, by the property (7) of Gi(t, s), we have

Ai(u, v)(t) ≥ ωλ
∫+∞

0
Gi(s, s)φi(s)fi(s, u(s), v(s), a, b)ds, t ∈

[
δ,

1
δ

]
, i = 1, 2. (3.17)

It follows from (3.16) and (3.17) that

Ai(u, v)(t) ≥ ω‖Ai(u, v)‖∞, t ∈
[
δ,

1
δ

]
, i = 1, 2. (3.18)

Therefore F(K) ⊆ K. The proof of Lemma 3.1 is completed.
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3.2. The Positive Solution for System (Pa0,b0)

Theorem 3.2. Assume that (H1)−(H3) hold, then the system (Pa0,b0) has at least one positive solution
for any

λ ∈
(

l

min
(
f1∞, f2∞

) ,
L

max
(
f0
1 , f

0
2

)

)

. (3.19)

Proof. From (3.19), there exists ε0 > 0 such that

l

min
(
f1∞, f2∞

) − ε0
≤ λ ≤ L

max
(
f0
1 , f

0
2

)
+ ε0

. (3.20)

By the first inequality of (H3), there exists r > 0 such that

fi
(
t, x, y, a0, b0

) ≤
(
f0
i + ε0

)
r, 0 ≤ x + y ≤ r, t ∈ R+, i = 1, 2. (3.21)

Setting Kr1 = {(u, v) ∈ K : ‖(u, v)‖ < r1} (r1 ≤ r), by the definition of ‖ · ‖, we know that

u(t) + v(t) ≤ ‖u‖∞ + ‖v‖∞ = ‖(u, v)‖ = r1 ≤ r, ∀(u, v) ∈ ∂Kr1 , t ∈ R+. (3.22)

Then, for any (u, v) ∈ ∂Kr1 ,

‖Ai(u, v)‖∞ = λ sup
t∈R+

∣∣∣∣

∫+∞

0
Gi(t, s)φi(s)fi(s, u(s), v(s), a0, b0)ds

∣∣∣∣

≤ λ sup
t∈R+

∫+∞

0
Gi(t, s)φi(s)

(
f0
i + ε0

)
r1ds

≤ λ
(
f0
i + ε0

)
r1

∫+∞

0
Gi(s, s)φi(s)ds

≤ r1L

∫+∞

0
Gi(s, s)φi(s)ds

≤ 1
2
r1 =

1
2
‖(u, v)‖, i = 1, 2.

(3.23)

Thus,

‖F(u, v)‖ = ‖A1(u, v)‖∞ + ‖A2(u, v)‖∞ ≤ ‖(u, v)‖, (u, v) ∈ ∂Kr1 . (3.24)

On the other hand, by the second inequality of (H3), there exists r0 > ωr1 > 0 such that

fi
(
t, x, y, a0, b0

) ≥ fi
(
t, x, y, 0, 0

) ≥ (fi∞ − ε0
)(
x + y

)
, x + y ≥ r0, t ∈

[
δ,

1
δ

]
, i = 1, 2.

(3.25)
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Take r2 = r0/ω > r1, and let Kr2 = {(u, v) ∈ K : ‖(u, v)‖ < r2}, (u0, v0) = (1/2, 1/2) ∈ ∂K1.
Then,

(u, v)/=F(u, v) + μ(u0, v0), ∀(u, v) ∈ ∂Kr2 , ∀μ > 0. (3.26)

Suppose that (3.26) is false, then there exist (u2, v2) ∈ ∂Kr2 and μ2 > 0 such that (u2, v2) =
F(u2, v2) + μ2(u0, v0). From (3.25) and the fact that

u2(t) + v2(t) ≥ ω‖u2‖∞ +ω‖v2‖∞ = ω‖(u2, v2)‖ = ωr2 = r0, t ∈
[
δ,

1
δ

]
, (3.27)

we have

fi(t, u2(t), v2(t), a0, b0) ≥
(
fi∞ − ε0

)
(u2(t) + v2(t)), t ∈

[
δ,

1
δ

]
, i = 1, 2. (3.28)

Set

ξ = min
{
u2(t) + v2(t) : t ∈

[
δ,

1
δ

]}
. (3.29)

Then, u2(t) + v2(t) ≥ ξ > 0 for any t ∈ [δ, 1/δ]. Hence, for any t ∈ [δ, 1/δ], by (3.28), we have

u2(t) + v2(t) = A1(u2(t), v2(t)) +A2(u2(t), v2(t)) + μ2(u0 + v0)

= λ

∫+∞

0
G1(t, s)φ1(s)f1(s, u2(s), v2(s), a0, b0)ds

+ λ
∫+∞

0
G2(t, s)φ2(s)f2(s, u2(s), v2(s), a0, b0)ds + μ2(u0 + v0)

≥ λ

∫1/δ

δ

G1(t, s)φ1(s)
(
f1∞ − ε0

)
(u2(s) + v2(s))ds

+ λ
∫1/δ

δ

G2(t, s)φ2(s)
(
f2∞ − ε0

)
(u2(s) + v2(s))ds + μ2

≥ min
s∈[δ,1/δ]

(u2(s) + v2(s))λ
(
f1∞ − ε0

)
min

t∈[δ,1/δ]

∫1/δ

δ

G1(t, s)φ1(s)ds

+ min
s∈[δ,1/δ]

(u2(s) + v2(s))λ
(
f2∞ − ε0

)
min

t∈[δ,1/δ]

∫1/δ

δ

G2(t, s)φ2(s)ds + μ2

≥ ξ + μ2.

(3.30)

Then, we can obtain that

u2(t) + v2(t) > ξ + μ2, t ∈
[
δ,

1
δ

]
. (3.31)

It is clearly that (3.31) contradicts (3.29), which implies that (3.26) holds.
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It follows from (3.24), (3.26), Lemmas 2.5 and 3.1 that the operator F has fixed-point
(u, v) ∈ Kr2 \ Kr1 such that 0 < r1 < ‖(u, v)‖ < r2. It is easy to see that (u, v) is a positive
solution of the system (Pa0,b0). The proof of Theorem 3.2 is completed.

Remark 3.3. Noticing that l/f1∞ < 1, l/f2∞ < 1 and L/f0
1 > 1, L/f0

2 > 1, we conclude that
Theorem 3.2 also holds for λ = 1.

Remark 3.4. From Theorem 3.2, we can see that fi(t, x, y, a0, b0) (i = 1, 2) do not need to be
superlinear or sublinear. In fact, Theorem 3.2 still holds, if (H1)-(H2) are satisfied and one of
the following conditions is satisfied:

(1) f1∞ = f2∞ = +∞, L > f0
1 > 0, L > f0

2 > 0, for each λ ∈ (0, L/max{f0
1 , f

0
2 }),

(2) f1∞ = f2∞ = +∞, f0
1 = f0

2 = 0, for each λ ∈ (0,+∞),

(3) f1∞ > l, f2∞ > l, f0
1 = f0

2 = 0, for each λ ∈ (l/min{f1∞, f2∞},+∞).

3.3. Lower and Upper Solutions

Theorem 3.5. Assume that (H1)-(H2) hold. Let (u, v) and (u, v) be a lower solution and an upper
solution, respectively, of the system (S) such that (0, 0) ≤ (u, v) ≤ (u, v). Then, the system (S) has a
nonnegative solution (u, v) satisfying (u, v) ≤ (u, v) ≤ (u, v).

Proof. Let

Mi(u, v)(t) = λ
∫+∞

0
Gi(t, s)φi(s)gi(s, u(s), v(s))ds, i = 1, 2,

H(u, v) = (M1(u, v),M2(u, v)).

(3.32)

Then, the solutions of the system (S) are equivalent to the fixed points of the operator H in
K.

Now, we introduce the following auxiliary operator H defined by

H(u, v) = (M1(u, v),M2(u, v)), (3.33)

where

Mi(u, v)(t) = λ
∫+∞

0
Gi(t, s)φi(s)gi(s, ζ1(s, u), ζ2(s, v))ds, i = 1, 2, (3.34)

in which

ζ1(t, u) = max
{
u(t),min{u(t), u(t)}}, ζ2(t, v) = max

{
v(t),min{v(t), v(t)}}. (3.35)

It is easy to prove that the operator H has the following properties.

(1) H is a completely continuous operator.
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(2) If the pair (u, v) ∈ K is a fixed point of H, then (u, v) is a fixed point of H with
(u, v) ≤ (u, v) ≤ (u, v).

(3) If (u, v) = μH(u, v) with 0 ≤ μ ≤ 1, then ‖(u, v)‖ ≤ C∗∗, where C∗∗ does not depend
on μ and (u, v) ∈ K.

Therefore, by using the topological degree of Leray-Schauder (see [26, Corollary 8.1, page.
61]), we obtain a fixed point of the operatorH. The proof of Theorem 3.5 is completed.

Theorem 3.6. Assume that (H1)–(H3) and (3.19) hold. Then for (0, 0) ≤ (a, b) ≤ (a0, b0), the
system (Pa,b) has at least one positive solution.

Proof. From Theorem 3.2, we can see that the system (Pa0,b0) has at least one positive solution
(u0, v0). Since the functions fi (i = 1, 2) are increasing functions with respect to the last four
variables, we conclude that (u0, v0) is an upper solution and (0, 0) is a lower solution for the
system (Pa,b) . Hence, by Theorem 3.5, we have that the system (Pa,b) has at least one positive
solution. This completes the proof of Theorem 3.6.

3.4. A Priori Estimate

Theorem 3.7. Assume that (H1)–(H3) and (3.19) hold. Then for any (a, b) satisfying (0, 0) ≤
(a, b) ≤ (a0, b0), there exists a constant C0 > 0 independent of (a, b), such that ‖(u, v)‖ ≤ C0

for all positive solutions (u, v) of the system (Pa,b).

Proof. Assume by contradiction that there exists a sequence of positive solution (un, vn) ∈ X
of system (Pa,b) such that ‖(un, vn)‖ → ∞. From (3.19), there exists ε0 > 0 such that λ >
l/(min(f1∞, f2∞) − ε0) . From assumption (H3), there exists H > 0 such that, for (0, 0) ≤
(a, b) ≤ (a0, b0),

fi
(
t, x, y, a, b

) ≥ fi
(
t, x, y, 0, 0

) ≥ (fi∞ − ε0
)(
x + y

)
, x + y ≥ H, t ∈

[
δ,

1
δ

]
, i = 1, 2. (3.36)

Since un(t)+vn(t) ≥ ω‖un‖∞+ω‖vn‖∞ = ω‖(un, vn)‖, t ∈ [δ, 1/δ], there exists natural number
N0 such that, for n > N0, we have un(t)+vn(t) ≥ H for t ∈ [δ, 1/δ]. It follows from (3.36) that
when n > N0, fi(t, un(t), vn(t), a, b) ≥ (fi∞ − ε0)(un(t) + vn(t)), t ∈ [δ, 1/δ], i = 1, 2. Thus,

un(t) + vn(t) = λ

∫+∞

0
G1(t, s)φ1(s)f1(s, un(s), vn(s), a, b)ds

+ λ
∫+∞

0
G2(t, s)φ2(s)f2(s, un(s), vn(s), a, b)ds

≥ λ

∫1/δ

δ

G1(t, s)φ1(s)
(
f1∞ − ε0

)
(un(s) + vn(s))ds

+ λ
∫1/δ

δ

G2(t, s)φ2(s)
(
f2∞ − ε0

)
(un(s) + vn(s))ds
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≥ min
s∈[δ,1/δ]

(un(s) + vn(s))λ
(
f1∞ − ε0

)
min

t∈[δ,1/δ]

∫1/δ

δ

G1(t, s)φ1(s)ds

+ min
s∈[δ,1/δ]

(un(s) + vn(s))λ
(
f2∞ − ε0

)
min

t∈[δ,1/δ]

∫1/δ

δ

G2(t, s)φ2(s)ds

> min
s∈[δ,1/δ]

(un(s) + vn(s)), t ∈
[
δ,

1
δ

]

(3.37)

which yields

min
t∈[δ,1/δ]

un(t) + vn(t) > min
t∈[δ,1/δ]

(un(t) + vn(t)), (3.38)

which is a contradiction. This completes the proof of Theorem 3.7.

Remark 3.8. By the discussions in Sections 3.1, 3.2, 3.3 and 3.4, we can conclude that, for any
(a, b) satisfying |(0, 0)| ≤ |(a, b)| ≤ |(a0, b0)|, the system (Pa,b) has at least one positive solution
(u, v) with ‖(u, v)‖ ≤ C0. In the following section, we will establish the nonexistence result
for the system (Pa,b).

3.5. Non-Existence

Theorem 3.9. Assume that (H1)–(H4) and (3.19) hold. Then, there exist a > 0, b > 0 such that, for
all (a, b) with |(a, b)| > |(a, b)|, the system (Pa,b) has no solution.

Proof. Suppose by contradiction that there exists a sequence (an, bn) with |(an, bn)| →
+∞ (n → +∞) such that, for each nature number n, the system (Pan,bn) has a positive solution
(un, vn) in K. From assumption (H4), for anyM > 0, there exists a constant C > 0 such that,
for any |(a, b)| > C,

fi
(
t, x, y, a, b

) ≥M, x, y ≥ 0, t ∈
[
δ,

1
δ

]
, i = 1, 2. (3.39)

By |(an, bn)| → +∞ (n → +∞), for the above C > 0, there exists a natural number n0 such
that, for n > n0, |(an, bn)| > C, then, for n > n0 and t ∈ [δ, 1/δ],

un(t) = λ

∫+∞

0
G1(t, s)φ1(s)f1(s, un(s), vn(s), an, bn)ds

> λ

∫1/δ

δ

G1(t, s)φ1(s)f1(s, un(s), vn(s), an, bn)ds

≥ Mλω

∫1/δ

δ

G1(s, s)φ1(s)ds.

(3.40)

By the same way, we can obtain

vn(t) ≥Mλω

∫1/δ

δ

G2(s, s)φ2(s)ds. (3.41)
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Since we can choose M arbitrarily large, we conclude that un and vn are unbounded
sequences in K, then limt→+∞un(t) and limt→+∞vn(t) do not exist, which contradicts the fact
that un, vn ∈ K. So Theorem 3.9 holds.

We next define the set

A =
{
a > 0 : the system (Pa,b) has a positive solution for some b > 0

}
. (3.42)

From Theorems 3.2 and 3.9, we conclude that A is nonempty and bounded. Thus, 0 < ã =
supA < +∞. Using the upper-lower solutions method, we see that, for all a ∈ (0, ã), there
exists b > 0 such that the system (Pa,b) has a positive solution. We now define the function
Γ : [0, ã] → R+ by

Γ(a) = sup
{
b > 0 : system (Pa,b) has a positive solution

}
. (3.43)

By Theorem 3.6, the function Γ is continuous and nonincreasing. We thus claim that Γ(a) is
attained. In fact, it suffices to use Theorem 3.7 and the compactness of the operator F. Finally,
it follows from the definition of the function Γ that the system (Pa,b) has at least one positive
solution for 0 ≤ b ≤ Γ(a) and has no positive solutions for b > Γ(a).

3.6. Existence of Two Positive Solutions

In this section,we will assume that the nonlinearities f1 and f2 are strict-increasing with
respect to the fifth variable. Fix a ∈ [0, ã], and let (φ, ψ) be the solution of the problem (Pa,Γ(a))
which is obtained using Theorem 3.6. Our next result allows us to establish another solution
of the system (Pa,b) for 0 < b < Γ(a).

Lemma 3.10. For each 0 < b < Γ(a), there exists ε0 > 0 so that, for all 0 < ε ≤ ε0 and all t ∈ R+, one
has

φε(t) > λ
∫+∞

0
G1(t, s)φ1(s)f1

(
s, φε(s), ψε(s), a, b

)
ds,

ψε(t) > λ
∫+∞

0
G2(t, s)φ2(s)f2

(
s, φε(s), ψε(s), a, b

)
ds,

(3.44)

where φε(t) = φ(t) + ε, ψε(t) = ψ(t) + ε.

Proof. Fix δ ∈ (0, 1). Since f1 is strict-increasing with respect to the fifth variable, we have
that for each 0 < b < Γ(a)we may find a positive constant I = I(b) so that, for all s ∈ [δ, 1/δ],
we have

f1
(
s, φ(s), ψ(s), a,Γ(a)

)
− f1
(
s, φ(s), ψ(s), a, b

)
≥ I > 0. (3.45)
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By the uniform continuity of f1, there exists ε0 > 0 so that, for all s ∈ [δ, 1/δ] and all 0 < ε ≤ ε0,
we have

∣
∣
∣f1
(
s, φ(s) + ε, ψ(s) + ε, a, b

)
− f1
(
s, φ(s), ψ(s), a, b

)∣∣
∣ ≤ I

2
. (3.46)

Next, we define

Φε(t, s) = G1(t, s)φ1(s)
[
f1
(
s, φε(s), ψε(s), a, b

)
− f1
(
s, φ(s), ψ(s), a, b

)]
,

Ψ(t, s) = G1(t, s)φ1(s)
[
f1
(
s, φ(s), ψ(s), a,Γ(a)

)
− f1
(
s, φ(s), ψ(s), a, b

)]
.

(3.47)

Assume 0 < ε ≤ ε0. Then,

φε(t) > φ(t) = λ

∫+∞

0
G1(t, s)φ1(s)f1

(
s, φ(s), ψ(s), a,Γ(a)

)
ds

= λ

∫+∞

0
G1(t, s)φ1(s)f1

(
s, φε(s), ψε(s), a, b

)
ds

− λ
∫+∞

0
Φε(t, s)ds + λ

∫+∞

0
Ψ(t, s)ds.

(3.48)

Since Ψ(t, s) is positive and Ψ(t, s) −Φε(t, s) > (I/2)G1(t, s)φ1(s) for t ∈ [δ, 1/δ], we have

φε(t) > λ

∫+∞

0
G1(t, s)φ1(s)f1

(
s, φε(s), ψε(s), a, b

)
ds

− λ
∫δ

0
Φε(t, s)ds − λ

∫+∞

1/δ
Φε(t, s)ds +

I

2
λ

∫1/δ

δ

G1(t, s)φ1(s)ds.

(3.49)

It is not difficult to show that the Lebesgue dominated convergence theorem implies
that λ

∫δ
0 Φε(t, s)ds+λ

∫+∞
1/δ Φε(t, s)ds converges to zero, uniformly in t, as ε tends to zero. Thus,

for ε sufficiently small, we have

φε(t) > λ
∫+∞

0
G1(t, s)φ1(s)f1

(
s, φε(s), ψε(s), a, b

)
ds (3.50)

uniformly in t ∈ R+.
A similar computation holds for ψε.

We are now in a position to show existence of two positive solutions of the system
(Pa,b) for 0 < b < Γ(a), where a ∈ [0, ã] is fixed.

Theorem 3.11. Assume that (H1)–(H4) and (3.19) hold. Then, for all a ∈ [0, ã], the system (Pa,b)
has at least two positive solutions for 0 < b < Γ(a).
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Proof. Consider the set

Ω =
{(
φ, ψ
) ∈ X : −ε < φ(t) < φε(t), −ε < ψ(t) < ψε(t), for t ∈ R+

}
, (3.51)

where φε and ψε are the functions of Lemma 3.10. It is not hard to see that Ω is bounded and
open in X and that (0, 0) ∈ Ω. Note that one of the solutions of the system (Pa,b) belongs to
K ∩Ω, we also know that F : K ∩Ω → K is a completely continuous operator.

Let (φ, ψ) ∈ K∩∂Ω. It follows that there exists t0 ∈ (0,+∞) so that one of the following
two cases holds: φ(t0) = φε(t0) or ψ(t0) = ψε(t0). In the case φ(t0) = φε(t0), it follows from
Lemma 3.10 that, for all μ ≥ 1, we have

A1
(
φ, ψ
)
(t0) = λ

∫+∞

0
G1(t0, s)φ1(s)f1

(
s, φ(s), ψ(s), a, b

)
ds

≤ λ

∫+∞

0
G1(t0, s)φ1(s)f1

(
s, φε(s), ψε(s), a, b

)
ds

< φε(t0) = φ(t0) ≤ μφ(t0).

(3.52)

Similarly, A2(φ, ψ)(t0) < μψ(t0) in the case ψ(t0) = ψε(t0). Hence, F(φ, ψ)/=μ(φ, ψ), for all
(φ, ψ) ∈ K ∩ ∂Ω and all μ ≥ 1. Now, according to Lemma 2.7, we have

i(F,K ∩Ω, K) = 1. (3.53)

On the other hand, a slight change in the proof of Theorem 3.7 shows the existence of
an r3 > 0 sufficiently large, say r3 > r2, where r2 is as in Theorem 3.2, so that

∥∥F
(
φ, ψ
)∥∥ >

∥∥(φ, ψ
)∥∥ (3.54)

for every ‖(φ, ψ)‖ = r3 and every (φ, ψ) ∈ K.
Let r4 = max{C0 + 1, r3, ‖(φε, ψε)‖}, where C0 is as that in Theorem 3.7. Set

Kr4 =
{(
φ, ψ
) ∈ K :

∥∥(φ, ψ
)∥∥ < r4

}
. (3.55)

Then Theorem 3.7 implies that F(φ, ψ)/= (φ, ψ), for (φ, ψ) ∈ ∂Kr4 . Consequently, Lemma 2.8
implies i(F,Kr4 ,K) = 0.

Now, by the additivity property of the fixed-point index, we obtain

i
(
F,Kr4 \K ∩Ω, K

)
= −1. (3.56)

Therefore, F has another fixed point in Kr4 \K ∩Ω.

Then, from the above discussion, it is easy to obtain the following conclusion.
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4. Conclusion

Assume that (H1)–(H4) and (3.19) hold. Then, there exist a constant ã > 0 and a non-
increasing continuous function Γ : [0, ã] → R+ so that, for all a ∈ [0, ã], the system (Pa,b)
has at least one positive solution for 0 ≤ b ≤ Γ(a), has no positive solutions for b > Γ(a), and
has at least two positive solutions for 0 < b < Γ(a) when f1 and f2 are strict-increasing with
respect to the fifth variable.
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