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We introduce an iterative scheme by the viscosity approximation method for finding a common
element of the set of the solutions of the equilibrium problem and the set of fixed points of infinitely

strict pseudocontractive mappings. Strong convergence theorems are established in Hilbert spaces.
Our results improve and extend the corresponding results announced by many others recently.

1. Introduction

Let H be a real Hilbert space and let C be a nonempty convex subset of H.
A mapping S of C is said to be a «-strict pseudocontraction if there exists a constant
x € [0,1) such that

15x = SylI* < [lx = y|I + ]| (1 = S)x = (T = S)y]I", (1.1)

for all x, y € C; see [1]. We denote the set of fixed points S by F(S) (i.e.,, F(S) = {x € C: Sx =
x}).

Note that the class of strict pseudocontraction strictly includes the class of nonexpan-
sive mappings which are mappings S on C such that

Sx = Sy|| < |lx-yl|, (1.2)
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for all x,y € C. That is, S is nonexpansive if and only if S is a O-strict pseudocontraction.
Let @ be a bifunction from C x C to R, where R is the set of real numbers. The equilibrium
problem for @ : C x C — Ris to find x € C such that

®(x,y) 20, VyeC (1.3)

The set of solutions of (1.3) is denoted by EP(®). Given a mapping B: C — H, let ®(x,y) =
(Bx,y — x) for all x,y € C. Then the classical variational inequality problem is to find x € C
such that (Bx,y — x) > 0. We denote the solution of the variational inequality by VI(C, B);
that is

VI(C,B) = {x € C: (Bx,y - x) > 0}. (1.4)

Let A be a strongly positive linear-bounded operator on H if there is a constant y > 0 with
property

(Ax,x) >¥|lx|>, VxeH. (1.5)

A typical problem is to minimize a quadratic function over the set of the fixed points a
nonexpansive mapping on a real Hilbert space H:

1
r){IEl?E(Ax/x> - <xlb>/ (16)

where A is a linear-bounded operator, E is the fixed point set of a nonexpansive mapping
Son H, and b is a given point in H. The problem (1.3) is very general in the sense that it
includes, as special cases, optimization problems, variational inequalities, minimax problems,
the Nash equilibrium problem in noncooperative games, and others; see [1-11]. In particular,
Combettes and Hirstoaga [4] proposed several methods for solving the equilibrium problem.
On the other hand, Mann [6], Shimoji and Takahashi [8] considered iterative schemes for
finding a fixed point of a nonexpansive mapping. Further, Acedo and Xu [12] projected new
iterative methods for finding a fixed point of strict pseudocontractions.
In 2006, Marino and Xu [7] introduced the general iterative method: for x; = x € C,

Xne1 = AnY f(xp) + (I — a0, A)Tx,, n2>1. (1.7)

They proved that the sequence {x,} of parameters satisfies appropriate condition and that the
sequence {x,} generated by (1.7) converges strongly to the unique solution of the variational
inequality ((yf - A)g,p—q) <0, p € F(T). Recently, Liu [5] considered a general iterative
method for equilibrium problems and strict pseudocontractions:

O(un, y) + %(y— U, U —Xn) >0, VyeC,

Yn = Puttn + (1 = P,,) Suy, (1.8)

Xne1 = EnY f(xn) + (I — €4 A)u,, Vn2>1,
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where S is a k-strict pseudocondition mapping and {e,}, ﬂn are sequences in (0,1). They
proved that under certain appropriate conditions over {e,}, {f,}, and {r,}, the sequences
{x,} and {u,} both converge strongly to some q € F(S)(EP(®), Wthh solves some
variational inequality problems. Tian [10] proposed a new general iterative algorithm: for
nonexpansive mapping T : H — H with F(T) # ¢,

X1 = &Y f (%) + (I — payF)Tx,, VYn>1, (1.9)

where F is a k-Lipschitzian and 7-strong monotone operator. He obtained that the sequence
x, generated by (1.9) converges to a point g in F(T), which is the unique solution of the
variational inequality ((yf — A)q,p—q) <0, p € F(T). Very recently, Wang [13] considered a
general composite iterative method for infinite family strict pseudocontractions: for x; = x €
C

Yn = ﬁnxn + (1 - ﬁn)wnxn/

(1.10)
Xne1 = Any f (%n) + (I — panF)y,, Yn>1,

where W), is a mapping defined by (2.5), F is a k-Lipschitzian, and #-strongly monotone
operator. With some appropriate condition, the sequence {x,} generated by (1.10) converges
strongly to a common element of the fixed point of an infinite family of \;-strictly
pseudocontractive mapping, which is a unique solution of the variational inequality ((yf —
A)g,p-q) £ 0, p € F(T). Kumam proposed many algorithms for the equilibrium and
the fixed point problems with k-strict pseudoconditions; see [14-16]. In particular, in 2011,
Kumam and Jaiboon [14] considered a system of mixed equilibrium problems, variational
inequality problems, and strict pseudocontractive mappings:

x1€E, u,€E, v,€E,
= Tfll(pxnr

vy = Tx,,

zn = Pg(ty — pnCuy), (1.11)
= Pe(v, — LuCop),

kn = aySkxy + bpyy + Cnzn,

X1 = EnY f(n) + Puxn + (1= Pu)] — €4 A)ky, Yn 21,

where S is a k-strict pseudocondition mapping. They proved that under certain appropriate
conditions over {&,}, {Bu}, {rn}, {an}, {bu}, {ca}, {An}, and {p,}, the sequence {x,} converges
strongly to a point g € © which is the unique solution of the variational inequality ((A —
Yf)gq,x —q) > 0. Inprasit [17] proposed a viscosity approximation methods to solving the
generalized equilibrium and fixed point problems of finite family of nonexpansive mapping
in Hilbert spaces.
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In this paper, motivated by the above facts, we use the viscosity approximation method
to find a common element of the set of solutions of the equilibrium problem VI(C, B) and the
set of fixed points of a infinite family of strict pseudocontractions.

2. Preliminaries

Throughout this paper, we always write — for weak convergence and — for strong
convergence. We need some facts and tools in a real Hilbert space H which are listed as
below.

Lemma 2.1. Let H be a real Hilbert space. There hold the following identities:
@) llc = ylI? = llx|* = Iyl - 2(x - y,y), Vx,y € H,
(i) txc + (1= ylI* = tlx|? + A = Ollyl* -t - Ollx - yl>, V€ [0,1], Vx,y € H.

Lemma 2.2 (see [18]). Assume that {a,} is a sequence of nonnegative real numbers such that
Aps1 < (1 - Pn)an + On, (21)

where {p,} is a sequence in (0,1) and {0} is a sequence such that

(i) X1 pn = oo,

(i) imsup,_, _ (0n/pn) <007 372, 04| < c0.
Then lim,, _, ,a, = 0.

Recall that given a nonempty closed convex subset C of a real Hilbert space H, for any
x € H, there exists a unique nearest point in C, denoted by Pcx, such that

llx = Pex|| < [lx - ||, (2.2)

for all y € C. Such a Pc is called the metric (or the nearest point) projection of H onto C. As
we all know, y = Pcx if and only if there holds the relation:

(x-y,y-z)>0 VzeC. (2.3)

Lemma 2.3 (see [13]). Let A: H — H be an L-Lipschitzian and n-strongly monotone operator on
a Hilbert space H with L >0, 1>0, 0 <pu<2n/L? and0<t<1.Then S= (I -tuA): H - H
is a contraction with contractive coefficient 1 — tt and T = (1/2)u(2n — uL?).

Lemma 2.4 (see [1]). Let S : C — C be a x-strict pseudocontraction. Define T : C — C by
Tx = Ax + (1 — A\)Sx for each x € C. Then, as A € [x,1), T is a nonexpansive mapping such that
F(T) = F(S).
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Lemma 2.5 (see [10]). Let H be a Hilbert space and f : H — H a contraction with coefficient
O<a<1l,and A: H — H an L-Lipschitzian continuous operator and n-strongly monotone with
L>0, n>0.Thenfor0 <y <un/a,

’ x,yeH. (2.4)

(x =y, (HA-yf)x = (WA -7 )y) 2 (un - ya)||x -y

That is, A — y f is strongly monotone with coefficient un — ya.

Let {S,} be a sequence of x,-strict pseudo-concontractions. Define S, = 6,I + (1 -
0,)Sn, 6y € [K,,1). Then, by Lemma 2.4, S}, is nonexpansive. In this paper, we consider the
mapping W, defined by

un,n+1 = I/

un,n = tnsgqun,nﬂ + (1 - tn)I/
un,n—l = tnflsf,l,lun,n + (1 - tnfl)I/

' (2.5)
Uy = ;S Upi + (1 - 1)1,

.,

un,2 = t2SI2un,3 + (1 - t2)I/
Wy =Uy = t15’1un,2 +(1-t)I.

Lemma 2.6 (see [8]). Let C be a nonempty closed convex subset of a strictly convex Banach space E,
let S}, S,,... be nonexpansive mappings of C into itself such that N2, F(S;) #0, and let t1,t,,... be
real numbers such that 0 <t; <b < 1, foreveryi=1,2,.... Then, for any x € C and k € N, the limit
limy, —, Uy, i X exists.

Using Lemma 2.6, one can define the mapping W of C into itself as follows:

Wx = lim W,x = limU,1x, xeC. (2.6)

n—oo

Lemma 2.7 (see [8]). Let C be a nonempty closed convex subset of a strictly convex Banach space E.
Let S}, S, ... be nonexpansive mappings of C into itself such that N2, F(S;) # 0, and let t,,t5, ... be
real numbers such that 0 < t; <b <1, for all i > 1. If K is any bounded subset of C, then

lim sup||Wx - W,x|| = 0. (2.7)
Mm% ek ’

Lemma 2.8 (see [3]). Let C be a nonempty closed convex subset of a Hilbert space H, let {S;:C —
C} be a family of infinite nonexpansive mappings with N2, F(S;) # 0, and let t,, t,, . .. be real numbers
suchthat 0 <t; <b<1,foreveryi=1,2,.... Then F(W) = nZ F(S).
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For solving the equilibrium problem, let us assume that the bifunction ® satisfies the
following conditions:

(A1) @(x,x) =0forall x € C;
(A2) @ is monotone; that is D(x, y) + D(y, x) < 0 for any x,y € C;
(A3) for each x,y,z € C, limsup,_, (®(tz+ (1 -t)x,y) < D(x,y);

(A4) D(x,) is convex and lower semicontinuous for each x € C.

We recall some lemmas which will be needed in the rest of this paper.
Lemma 2.9 (see [2]). Let C be a nonempty closed convex subset of H, let @ be bifunction from C x C
to R satisfying (A1)—(A4), and let r > 0 and x € H. Then there exists z € C such that

D(z,y) +%<y—z,z—x> >0, VyeC (2.8)

Lemma 2.10 (see [4]). Let ¢ be a bifunction from C x C into R satisfying (A1)-(A4). Then, for any
r > 0and x € H, there exists z € C such that

D(z,y) +%<y—z,z—x> >0, VyeC (2.9)

Further, if T,x = {z € C;D(z,y) + (1/7)(y — z,z —x) > 0,Yy € C}, then the following hold:

(1) T, is single-valued;

(2) T, is firmly nonexpansive;

(3) F(T;) = EP(9);

(4) EP(¢) is closed and convex.
Lemma 2.11 (see [9]). Let {x,} and {z,} be bounded sequences in a Banach space, and let {B,} be
a sequence of real numbers such that 0 < liminf, . f, < limsup, ,_p, <1foralln=0,1,2,...
Suppose that x,1 = (1-Pn)zn + Puxpforalln=0,1,2,....and lim sup,,_,  [|Zne1 = Zall = [|Xp41 —

x| < 0. Then limy, — 5|z — x4l = 0.

Lemma 2.12 (see [11]). Let C, H, F, and T,x be as in Lemma 2.9. Then the following holds:
| Tsx — Tyx||* < (Tox — Tyx, Tosx — x), (2.10)

foralls,t >0,and x € H.

Lemma 2.13 (see [13]). Let H be a Hilbert space, and let C be a nonempty closed convex subset
of H and T : C — C a nonexpansive mapping with F(T) #0. If {x,} is a sequence in C weakly
converging to x and if {(I — T)x,} converges strongly to y, then (I - T)x = y.

3. Main Results

Now we start and prove our main result of this paper.
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Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let ¢ be
a bifunction from C x C — R satisfying (A1)-(A4). Let S; : C — C be a family x;-strict
pseudocontractions for some 0 < x; < 1. Assume the set Q = VI(C, B)NZ, F(S;) NEP(¢) # (. Let f be
a contraction of H into itself with a € (0,1), and let A be a strongly positive linear bounded operator
on H with coefficient y > 0and 0 <y <y/y. Let B: C — H be an ¢-inverse strongly monotone
mapping. Let W, be the mapping generated by S’ and t; as in (2.5). Let {x,} be a sequence generated
by the following algorithm:

1
P(zn,y) + A—n(y — Zn, Zn — Xn) 20,

Yn = PC(I - ,unB)Zn/ (3.1)
Ky = apx, + (1 - an)Wnyn/
X1 = EnY f (Xn) + Puxn + (1= Pn)I — €4 A) Ky,

where {e,}, {Pn}, {an}, and {A,} are sequences in (0,1). Assume that the control sequences satisfy
the followmg restrlctzons

(i) im, - o€y = 0 and X2° &, = o0;
(i) 0 < liminf, _ f, <limsup, , _p,<1;
(iii) 0 < limy, s (A /Ayi1) = 1;
(iv) Himy — eol@ns1 — an| = 0;
(v) 0 < pn <24
(vi) im, _, a, = a.

Then {x,} converges strongly to q € Q which is the unique solution of the variational inequality
((A-yf)g.x—q)>0, VxeQ, (3.2)

or equivalent q = Po(I — A+ y f)(q), where P is a metric projection mapping form H onto .

Proof. Since e, — 0, as n — oo, we may assume, without loss of generality, that ¢, < (1 -
Bn)||A||I"! for all n € N. By Lemma 2.3, we know that if 0 < p < ||A|| ™}, then ||I - pA| < 1 - pY.
We will assume that ||I — A|| < 1 -7. Since A is a strongly positive bounded linear operator
on H, we have

Al = sup{[{Ax, x)| : x € H, ||x]|| = 1}. (3.3)

Observe that

(((1 =BT -, A)x,x) = (1= B)||x||* - €n( Ax, x)
> (1= o) lIxI* - enll All (3.4)
> 0.
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So this shows that (1 — ,)I — €, A is positive. It follows that

[[ (1= Bu) T = en Al = sup{[{((1 = )] - enA)x, x)| : x C H, ||x[| = 1} 55)
=sup{l-pf, - en(Ax, x)x CH,||x|| =1} <1-f, —en. .

Step 1. We claim that the mapping Po(I — A +yf) where Q = N2, F(S;) (EP(®) has a
unique fixed point. Let f be a contraction of H into itself with « € (0,1). Then, we have

[Pc(T-A+yf)(x)=Pc(I-A+yf)(W <[[T-A+yf)(x) - I-A+yf)W)]
<= Allllx =yl + [l fx) = FW)]
< @=Pllx -yl +yallx -yl
= (1= -ya)llx -yl

(3.6)

forall x,y € H. Since 0 < 1 - (y — ya) < 1, it follows that Po(I — A + yf) is a contraction of
H into itself. Therefore the Banach contraction mapping principle implies that there exists a
unique element g € H such that g = Po(I - A+yf)(q).

Step 2. We shall show that (I — p,,B) is nonexpansive. Let x, y € C. Since B is ¢-inverse
strongly monotone and ,, < 2a for all n € N, we obtain

1T = puB)x = (I = puB)y|” = ||x =y~ pu(Bx = By) |
= [lx = ylI* - 2un(x - y, Bx - By)
+ 42| Bx - By||* (3.7)
< llx =y |I” ~24pa|Bx = By||* + sz || Bx ~ By|”

= lx =y II” + g (e~ 28) | Bx = By|I* < o ~ w”,

Step 3. We claim that {x,} is bounded.
Let p € Q; from Lemma 2.10, we have

where p,, < 2¢, for all n € N. So we have that the mapping (I — 1,A) is nonexpansive.

p = Pc(p - paBp) = Ty, p,

20 =Pl = T2, %0 = T (3.8)

< [lxn = pl-
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Note that

lyn =Pl = [[Pc(I = puB)zn - p||
= ||Pc(I = pnB)zn = Pc(I = puB)p||
< |[(zn = pnBzn) = (p = puBp) ||
= || (I = puB) (z0 = p) |
<|lzn-pll
< |lxn-pll, (39)
1Kn = pll = llanxn + (1= an) Wayn - p||
= [lan(xn =p) + (1 = &) Wayn - p) |
< aullon = p| + (1 = @) [[Wayn —p|
< aullon = pll + (1= aw)[|ya — Pl
< lxn=pll-

It follows that

[[xne1 = pll = lleny f (en) + Puixn + ((1 = Pu)] — en A) Ky = p|
= llea(y f (xn) = Ap) + u(n = p) + (1= fu) I — €2 A) (Ku = p) |
< eullyf(xn) = Ap|| + ullxn = pll + (1= Pu — &a¥) | K |
< eullyf(xn) = Ap|| + Pullxn = pll + (1 = Bu = &a¥) |2u = |
< (U=en))llxn = pl +eny[l fCxn) = fF(P) | + £nlly f (p) - Ap|l (3.10)
< (L-en))|lxn = pll + envallxa = pl| +eallyf (p) - Ap|

- (1= (- an)en) - pl + (- ) LD 20

Y- ay
lyf(p) - Ap| }

7

gmax{”xn—p T ar

By simple induction, we have

A
[|n = p|| Smax{||x1—pll,W}, Vn e N. (3.11)

Hence {x,} is bounded. This implies that {K,}, { f(x,)} are also bounded.
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Step 4. Show that limsup,, _, _ [[Xps1 — x,[| =0

Observing that z, = Ty, x, and z,.1 = T),,,, we get
1zn1 = zall = T, X1 = T, |
= ||T/\n+1x1’l+1 - T)tm Xn + T)er-l TJ\nxn” (3-12)

< ner = Xl + 1T, %0 = Ta, Xl

n+l

By Lemma 2.10, we obtain

O (Ty,xn,y) + %(y =Ty, xn, Ta,utn —x,) 20, VyeC,

. (3.13)
q)(T)Ln+1xn’y) + .)L_1<y - T)Lnﬂxn’ T)Ln+1xn - xn> 2 0’ vy eC.
n+
In particular, we have
1
q)(TA,,xn/ TAn+1xn) + .)L_ (T)L,,Hxn - T)w,xnr T)mxn - xn> >0,
1” (3.14)
D(T,., Xn, Ta, Xn) + A—1<T1nxn = T X, Ty Xn = X)) 2 0.
n+
Summing up (3.14) and using (A;), we obtain
Lo <T)tnxn - T)tn+1x‘rl/ T)‘n+l xn) + <T)Ln+1 T)lnlel T)Lnxn - xn> >0, (3-15)
n
for all y € C. It follows that
T T -
<nnxn S VP e B x”> > 0. (3.16)
/\n+1 /\n
This implies
0< <T)Ln+1 = T3, Xn, Th, Xn = X = (T)»m xn)>
L, (3.17)
<T)ln+1 T)Lnxn’ T)Lnxn T)Lrul <1 - ) (T)Ln+1 xﬂ)>
-)tn+1
It follows that
2 Ay
/ln+1 Anin = -3 -/\n+1 Apin A1 An nitJ- .
IT. - T, x|l < |1 . IIT = T, 2| ([T, Xl + [|20 1) (3.18)
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Hence, we obtain

n

/\n+l

2
1T %0 = To, 0l < |1 N

where L = sup{||x,|| + |T),.,xx|l : n € N}. By (3.12) and (3.19), we obtain

n+1
1zns1 = znll < [une1 — unll + ”T)tnuun - T)»nun”

An
=3

< loenar = xull + L,

n+1

Y1 = Yull = |Pc(I = pnB) zniz = Pe(I = puB) zu|
< ” (I - //lnB) (zns1 — Zn)”

1- A

n+1

< ||Zn+1 - Zn” < ”xn+1 - xn” +

From (2.5), we have

”Wn+1yn - Wnyn” = ”tlsllunﬂ,zyn - tlS,lu"’zy"”
<t ||Un+1,zyn -Unp ”
< t||2S5Uni1,3Yn — t2S5Un3Ya||

< t1t2||Un+1,3yn - un,3y" ”
S e

where M = sup, { [Up+1,n1¥n — Unna1¥all}-
Note that

||Kn+1 - Kn” = ”an+1xn+1 + (1 - an+1)Wn+1yn+1 —anXp — (1 - ‘xn)Wnyn”

= ||“n+1 (Xns1 = Xn) + App1Xn + (1 = aps1) (Wn+1yn+1 - Wnyn)

—apXp t+ (1 - “n+1)wnyn - (1 - “n)Wnyn”

= ||“n+1 (Xns1 = xn) + (Ans1 — ) x, (1 - an+1)(wn+lyn+l - Wnyn)

+(an - an+1)Wnyn ”

L.

11

(3.19)

(3.20)

(3.21)
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< s [l 2ns1 = Xl + [@ne1 = anlll x|
+ (1= ap) |Wan1Yner = Wala| + |@n — @ |||Wayal||
< @1 [|Xner = x| + ansn = ul ]2l
+ (1= apst) [|Was1Yns1 = Wasa || + [[Was1¥n = Wayal|]
+letn = @i |[[Wayal|

< “n+1||xn+1 - xn“ + I‘xn+1 - “n“lxn“

A,
1_/\

n+1

L+M1Ht]

+ (1 - an+1) [”erl - xn” + (1 - an+1)
+ |‘xn - an+l|||Wnyn”

1_)L

n+1

L>,

< loenar = xull + 2|an — “nlM, +(1-an) <M1Ht +
i=1

(3.22)

where M, = sup{||xu|l, [Waynll}-
Suppose Xp41 = PuXn + (1 = Pu)ln, then I, = (xpi1 = Puxn) /(1 = Pu) = (€nY f(xn) + ((1 -
ﬁn)I -&,F)K,)/(1 _,Bn)'

Hence, we have

5n+1Yf(xn+1) + ((1 _ﬂn+1)I - 5nA)Kn+1 _ 5an(xn) + ((1 _ﬂn)I - 5nA)Kn

ln+1 - ln = 1— ﬂn+l 1- ﬁn
En+l En En+l
= Xn Xp) + Kpa1 — Ky + —2— AK,, — AK,
1 ﬂ Yf( +1) 1 ﬂ Yf( ) 1~ 1 _ﬁn 1 —ﬁn+1 +1
5"“ T (rf (ount = AKy)) + o (AKy —yf(xn) + Kot - Ko
1-p
(3.23)
Then
En
st = Lall = 21 = Xull € =2 (|ly f Genet) || + | AK gl

1= P

* 1 _" (IAK Nl + [lyf Cea) ) + 1 Knst = Kl = llotna1 = xull
Tl

Py f Gl +14Knal) + 725 (14K + [f o)

< —
<ol
L+M1Ht>

n+1

+2|ap1 — an|Mjy + (1 — api) <‘1
(3.24)
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Combining with (i), (iii), and (iv), we have

limsup([[lns1 = Inll = 1541 = Xal]) < 0.

n— oo
Hence, by Lemma 2.11, we obtain ||/, — x,|| — 0asn — oo. It follows that
Jim 1261 = [ = 1im (1= ) [|Ln = x| = 0.
We also know that

X1 = Xn = EnY f (Xn) + Bnxn + [(1 = )] — e, A] K, — X,
=en(yf (xn) — Axp) + [(1 = Bu) I — €, A (Kyy — ).

So

lim ||K,, — x,|| = 0.
n— oo

Step 5. We claim that ||x, - Wx,|| — 0.
Observe that

”xn - Wnyn” = ”xn = Xpi1 + Xpi1 — Yn + Ky — Wnyn”

< ”xn - xn+1|| + ”xn+1 - yn” + ‘xn”xn - Wnyn”
From (A1), (A3), and (3.28), using step 2, we have

(1- “n)”xn - Wnyn” < lxn = x| + ||5an(xn) + PnXn — PnKy — EnAKn”
S ”xn - xn+1|| + 571"Yf(xn) - AKn” + ﬂn”xn - Kn”

This implies that
|2 = Waym|| — 0 (as n — o).

Next we want to show lim,, _, oo [|x, — Y| = 0.
Letp € N2, F(Si) N EP(®); we have

|2

lzn = plI* = I T0, %0 - T, p
< (T, %n = Tr,p, Xn — )
=(2u =P, Xu—P)

1
= 2 (2= pIP + I =l ~ 2al?).

13

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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Therefore
Iz =PI < ll2cn = pII* = ll2cn = zal™ (3.33)
Note that

1K = pll = |atnxn + (1 = ) Wayu — p||*
= |lan (xn = p) + (1 = ) Wasu = p) ||’
< aty || = p||* + (1= ) ||y - ||
i i (3.34)
< apl|xn = p||I” + (1= an)||za - pl|

<l =PI+ (1= ) [l = I = 0 = 2]

= [l = pII* = (1 = aw)lln = zal®
From (3.34), we have

2n1 = pII = lleny f Ceu) + Buxn + (1= Bu) ] = enA) K = p||°
= Jlen(yf Gea) = AP)II* + Bullxn = pII” + (1= B) T = 0 A) | K = p|”
< enllyfGea) = Apl” + Bullxa = p|I* + (1= pu = &aT) | K =
< eullyf (o) = Apl|* + ullx - p|’ (3.35)
+ (1= = ea?) (%= pI* = 0= )20 = zal?)
= eallyf Gen) = Ap|* + (1 - ea]) [ xn = pI* = (1= fu = &a7) (1 - ),

1% = zall* < enllyf (xn) = Ap||* + || = p||* + (1 = Bu — €x¥) (1 = ) l|xn — zul|
It follows that

(1= B = &) (1 = )% = 2al® < eally £ (xn) = Ap|* + || = |7 = |01 =PI’

= eallyfGen) = Apll* + (|xn = p|| + w1 —pll)  (3:36)

X || = Xpa |-

From conditions (i), (vi) and (3.26), we have

10 = zull — 0. (3.37)
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We also compute

lyn = plI* = | Pc(I = nB) 20 = Pe(I = puB)p|
< ||z = uuB22) = (p — maBp) |I°
= |lza = p|I* = 2#n{2n = p, Bzn - Bp) + i3|| Bz, - Bp||®
< [l = PI* = pn (28 = pn) | Bzo - By,
1Ko =pII* = [lnn + (1 = @) Wiy = pl|”
= [|atn (xn = p) = (1 = ) (W - p) |I°
<anllxn=pl*+ A -an)|lyn-pl° (3.39)

= v = pIP + @ = @) { 6 = I = 10 28 = 1) B2 - Bp|[*}

(3.38)

= [|2tn = PII” = (1 = @) (28 = pia) || Bzo - Bp||”.
So, from (3.39), we get

201 =PI = lleny £ (n) + Bun + (1= Bu) I = £a A) Koy = p||?
= llen(rf Gen) = AP)I* + Bu (xn = p) + (1= Bu) T = 20 A) | K = p||?
< enllyf ) = Ap|l* + Ballxa = pII” + (1= o = &) | K = p|I”
< eallrf o) - ApIE + il Pl + (1 - o - &27)
< { [l = pII* = pn (1 = ) (28 = pn) || Bzo = Bp|*}
<enllyfen) - Ap|* + [lxn - p|?
= (1= Bu = &) pin(1 = @) (28 = i) | Bzo — Bp||”

(3.40)

It follows that

(1= Bu — ) pn(1 = @) (2% - piu) || Bz — Bp||?

) (3.41)
<enllyfCen) = Ap||” + llxn = xpar | (f|l2cn = pI| + |01 = pII)-

So

|| Bz, - Bp|| — o. (3.42)
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On the other hand, we also know that
lyn = pII* = Pc(I = ptuB) 2 = Pe(I = puB)p||*
<((I = pnB)zn = (I = HnB)p, Yn = p)
1 2 2
= {1 - 1aB)z0 = (T = puBYPII* + [lya - Pl

, (3.43)
~ (I = pB) 20 = (I = paB)p = (v - p) I’}

1
<5 Ul =PI+ 1y =pI* = |z = yull* = | Bzo ~ Bp |

+ 2,un<zn ~ Yn,Bzy - BP> }/

and hence
v = pII* < Nl = pII” = 120 = Yull” + 20tul| 20 = yul|*|| Bzo - Bp]|. (3.44)

So
IKn = plI* = lanxs + (1 - @) Woy = p|I°
< ayllxn - p|* + (1 - “n){”xn S A
(3.45)
+ 2tn||zn = yu|||| Bz - Bp||
=l = plI* = (= @) |20 = yull* + 201 = @) ptu | 20 = yul| || Bz — By,
| %ns1 =PI = [l€ny f (xn) + Buxtn + (1= Bu) I — €2 A) Ky — p||°
< eullyf () = Ap||* + Bullxn = plI* + (1= o = &x¥) | K - ||
< eullvf Gea) = Apl* + [lxn = pII* = (1= fu = &) (1 = @) |20 = yul|”
20— e (1~ u a2 8=~ Bpl,

(3.46)

Hence

(1= Bu =€) (1 = ) ||20 = va®
<enllyf(xen) = Ap||* +2(1 = @n)pu (1 = Bu = ) |20 = yul| | Bzn - Bp|
# llzu = pI = oI 647
<enllyf(an) = Apl[* +2(1 = ) tn (1= B = €¥) || 20 = ||| B2 - Bp|

1l = x| ([l =l + [ = pI)-
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From (i), (3.42), and (3.26), we know that

|z = || — O. (3.48)

From (3.37) and (3.42), we can get

|lxn = yu|| — O. (3.49)

On the other hand, we have

156 = Won|l < ||xn = Watpn|| + |Wayn — Wa|

(3.50)
< [[n = Waya|| + sup|[Wayn - W ||
By (3.30), (3.49), and using Lemma 2.7, we have
|y = Wax,|| — 0. (3.51)

Step 6. We claim that limsup, ,_((A-yf)q,q—x,) <0, whereq=Po(I-A+yf)(q)
is the unique solution of ((A -yf)q,x—q) >0, for all x € Q.
Indeed, take a subsequence {x,, } of {x,} such that

limsup((A-yf)q,q—xu) = limsup<(A ~vf)4.9 - xu, > (3.52)

n—oo n—oo

Since {x,, } is bounded, there exists a subsequence { Xy, } of {xn; }, which converges weakly to
p; without loss of generality, we can assume x,, — p and Wx,, — p, we arrive at

liirlsip<(A -Yf)a,9- xn,-> =((A-vf)a.q-p) <0. (3.53)

Step 7. We show that x,, — g.
Since

((A=yf)q,q~xn1) = ((A=yf)q %0 = Xni1) + ((A=Yf)q, 9~ xn)
< A=yH)all - llxn = xuall + ((A=yf),q - xu),

(3.54)

SO

limsup((A-yf)g,q— xn1) <0. (3.55)

n—oo
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Note that

st =l = leay f (xa) + Puta + (1= Pu) ] = e A) Ko = g

= llen(yf Gen) = Aq) + u(ea = q) + (1= u)I — eaA) (Ko = ) ||”

2

<|a-p) B - ) + e
F2en{(A= 1) s a)
< (1-p) | SEEE IR () |l =gl + 26

x (f(xn) = £(@), Xnr1 = @) + 2ea(yf(q) = Aq, Xps1 - q)

2 (3.56)
(1= )] - A
1_)—‘3"(19—‘1) + Bul|xn = q||* + 2enyar

x[l2cn = qll - e = qll +2ex(y f () = Ag, xn1 = q)

1-B)I -, Al
Mgty
~— Fn

% ([l = qll” + llxns1 = 4lI*) +26n(rf (4) = AG, X1 =)

(=) - Ten)’
< (T ) =l ool

<(1=Fn)

=ql* + Pullxa — ql|” + enya

+ 26,y f (xn) — Aq, Xni1 - q),

which implies that
v =l < (1- 20520 ) e i
(3.57)
1 —i:yen { 17?2; |0 = qlI* +2€n(y f (xn) ~ Aq, Xne1 — q) }-
Let
% e, { fi’n len = gl + 26n(y f (o) = Ad, X0~ ) }
(3.58)

25— an)en
" 1-aye,
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then we have

lim sup% <0. (3.59)

n—ow Pn

Applying Lemma 2.2, we can conclude that {x,} converges strongly to g in norm. This
completes the proof. O

As direct consequences of Theorem 3.1, we obtain the following corollary.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be
a bifunction from C x C — R satisfying (A1)—(A4). Let S; : C — C be a family «;-strict
pseudocontractions for some 0 < x; < 1. Assume the set Q = NP, F(S;) N EP(F) #0. Let f be a
contraction of H into itself with a € (0,1) and let A be an a-inverse strongly monotone mapping. Let
F be a strongly positive linear-bounded operator on H with coefficient y > 0 and 0 < y <y /a and
T < 1. Let W, be the mapping generated by S’ and t;, where S; : C — C is a nonexpansive mapping
with a fixed point. Let {x,} and {u, } be sequences generated by the following algorithm:

F(zy,y) + %(y— Zn, Zn — Xn) 2 0,

K,=ayx,+ (1 -a,)W,z,, (3.60)

Xne1 = EnY f (%n) + Puxn + (1= Bu)] — €,A) Ky,
where {e,}, {Pn}, {an}, and {A,} are sequences in (0,1). Assume that the control sequences satisfy
the following restrictions:

(i) imy, o€y = 0 and X° 1 &, = o0;
(ii) 0 < liminf, ., B, < limsup, B, <1;

(iii) 0 < liminf, _, A, <limsup, A, <1;

)
)
)
(iv) limy, o ool dna1 = M| = limyy oo |t — | = 0;
(v)0<t,<b<1;

)

(vi) A, < 2a.

Then {x,} converges strongly to w € Q where w = Po(I - A+yf)w.
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