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We propose a numerical method for solving nonlinear initial-value problems of Lane-Emden
type. The method is based upon nonclassical Gauss-Radau collocation points, and weighted
interpolation. Nonclassical orthogonal polynomials, nonclassical Radau points and weighted
interpolation are introduced on arbitrary intervals. Then they are utilized to reduce the
computation of nonlinear initial-value problems to a system of nonlinear algebraic equations. We
also present the comparison of this work with some well-known results and show that the present
solution is very accurate.

1. Introduction

Many problems in the literature of mathematical physics can be formulated as equations of
the Lane-Emden type defined in the form

y′′ +
2
x
y′ + g

(
y(x)

)
= 0, 0 < x < ∞, (1.1)

subject to

y(0) = A, y′(0) = 0, (1.2)
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where prime denotes differentiation with respect to x. The solution of the Lane-Emden
equation, as well as those of a variety of nonlinear problems in quantum mechanics and
astrophysics such as the scattering length calculations in the variable phase approach, is
numerically challenging because of the singular point at the origin. Equations (1.1) and
(1.2) with specializing g(y(x)) and A occur in several models of mathematical physics and
astrophysics such as the theory of stellar structure, the thermal behavior of a spherical cloud
of gas, and theories of thermionic currents. It has been studied widely in the literature; see,
for example, [1–12]. This equation was first studied by the astrophysicists Jonathan Homer
Lane and Robert Emden, which considered the thermal behavior of a spherical cloud of
gas acting under the mutual attraction of its molecules and subject to the classical laws of
thermodynamics [13]. For g(y) = yα, and A = 1 in (1.1) and (1.2), we obtain the standard
Lane-Emden equation of index α which has been the object of much study [1–3]. It was
physically shown that interesting values of α lie in the interval [0, 5], and this equation has
analytical solutions for α = 0, 1 and 5. Various alternative techniques have been developed for
the solution of the Lane-Emden equation in the literature. Among others, this equation has
been solved by means of perturbation methods and a (1 − 1) Padé approximation (Bender
et al. [2]), Adomian’s decomposition method [3], the quasilinearization method of [4], the
homotopy analysis method [5, 6], a variational approach which uses a semi-inverse method
to obtain a variational principle [7], a power series solution [8], a linearization technique
[9, 10], the variational iteration method [11, 12], hybrid functions collocation method
[14], Lagrangian method [15], Hermite functions collocation method [16], Sinc-Collocation
method [17], rational Legendre pseudospectral approach [18], a modified Legendre-spectral
method [19], and a numerical technique based on converting the Lane-Emden equations into
integral equations [20].

In the present paper, we first consider the nonlinear ordinary differential equations of
the form

f
(
x, y(x), y′(x), y′′(x)

)
= 0, 0 � x < ∞ (1.3)

with initial conditions

y(0) = c1, y′(0) = c2. (1.4)

We assume that (1.3) and (1.4) have a unique solution y(x) to be determined. We
then solve a variety of Lane-Emden equations which fall into this category. Here, we
introduce a new direct computational method for solving (1.3) and (1.4). This method
consists of reducing the solution of (1.3) and (1.4) to a set of algebraic equations by first
interpolating y(x) using weighted Lagrange interpolation based on Freud-type weights and
sets of nonclassical Gauss-Radau (NGR) nodes. These nodes, which arise from nonclassical
orthogonal polynomials based on Freud-type weights over interval [a, T], are presented.
Equation (1.3) is then collocated at these NGR collocation points to evaluate the unknown
coefficients, which are the values of the function y(x) at these collocation points.

This paper is organized as follows. In Section 2, we describe the generation of NGR
collocation points, function approximation, and selection of weights. In Section 3, we explain
our method, and in Section 4, the present method is applied to a nonlinear Lane-Emden
equation as well as the standard Lane-Emden equation of index α. The numerical solutions
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are compared in Section 5 with available exact or approximate solutions in order to assess the
accuracy of the proposed method.

2. Nonclassical Radau Collocation Method

2.1. NGR Points

In classical pseudospectral methods [14, 22–24], the classical Gauss-Lobatto and Gauss-
Radau collocation points are based on Chebyshev or Legendre polynomials and lie on the
closed interval [−1, 1] and half-open interval [−1, 1), respectively. In the present work, we
consider the generation of the NGR collocation points based on nonclassical orthogonal
polynomials with respect to exponential weights in the intervals [a, T] where a and T are
any real numbers.

Let N + 1 be the number of collocation points and let PN(t) be the Nth-degree
nonclassical orthogonal polynomial with respect to weight w(t) which can be obtained from
the following three-term recurrence relation [25]:

Pk+1(x) = (x − αk)Pk(x) − βkPk−1(x), k = 0, 1, 2, . . . ,

P−1(x) = 0, P0(x) = 1.
(2.1)

The recurrence coefficients in (2.1) are given in [26] by

αk =

∫T
a tw(x)P 2

k (x)dx
∫T
a w(x)P 2

k (x)dx
, k = 0, 1, 2, . . . ,

β0 =
∫T

a

w(x)P 2
0 (x)dx, βk =

∫T
a w(x)P 2

k (x)dx
∫T
a w(x)P 2

k−1(x)dx
.

(2.2)

The NGR collocation points xj for j = 0, 1, . . . ,N are obtained by the method outlined by
Golub [27]. The tridiagonal Jacobi-Radau matrix of order N + 1 is defined by

JRN+1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α0
√
β1√

β1 α1
√
β2√

β2 α2
√
β3

. . . . . . . . .√
βN−1 αN−1

√
βN√

βN αR
N

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.3)
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where αR
N is obtained from

αR
N = a − βN

PN−1(a)
PN(a)

. (2.4)

Theorem 2.1 (see Golub [27]). The Gauss-Radau nodes a = x0 < x1 < · · · < xN < T are the
eigenvalues of JRN+1, and the Gauss-Radau weights wj are given by

wj = β0
(
v1j
)2
, j = 0, 1, . . . ,N, (2.5)

where vj is the normalized eigenvector of JRN+1 corresponding to the eigenvalue xj (i.e., vT
j vj = 1) and

v1j its first component.

2.2. Function Approximation and Differentiation Matrices

Consider the NGR collocation points (x0, x1, . . . , xN) defined in Section 2.1 on the interval
[a, T) and additional noncollocated point xN+1 = T . The function y ∈ L2[a, T] is
approximated by weighted Lagrange interpolation as [26, 28]

y(x) ≈ yN(x) =
N+1∑

j=0

W(x)
W
(
xj

)Lj(x)yj , x ∈ [a, T], (2.6)

where W is a positive and bounded weight function, and yj = y(xj),

Lj(x) =
N+1∏

k=0
k /= j

x − xk

xj − xk
, j = 0, 1, . . . ,N + 1, (2.7)

is a basis of (N + 1)th-degree Lagrange polynomials. Notice that the basis includes the func-
tion LN+1 corresponding to the terminal value xN+1 = T . Differentiating twice the series of
(2.6) and evaluating the NGR collocation points xi, 0 � i � N give

y′(xi) ≈
N+1∑

j=0

yj
d

dx

[
W(x)
W
(
xj

)Lj(x)

]

x=xi

= D
(1)
i · Y,

y′′(xi) ≈
N+1∑

j=0

yj
d2

dx2

[
W(x)
W
(
xj

)Lj(x)

]

x=xi

= D
(2)
i · Y,

(2.8)

where

Y =
[
y0, y1, . . . , yN+1

]T
, (2.9)
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D
(1)
i and D

(2)
i are the ith row of D(1) and D(2),

D
(1)
ij =

d

dx

[
W(x)
W
(
xj

)Lj(x)

]

x=xi

,

D
(2)
ij =

d2

dx2

[
W(x)
W(xj)

Lj(x)

]

x=xi

.

(2.10)

The rectangular (N + 1) × (N + 2) matrices D(1) and D(2) formed by the coefficients D(1)
ij and

D
(2)
ij , i = 0, 1, . . . ,N; j = 0, 1, . . . ,N + 1 are the first and second order Gauss-Radau differentiation

matrices, respectively. These matrices transform the approximation of y(x) at x0, . . . , xN+1 to
the first and second derivatives of y at the collocation points x0, . . . , xN .

2.3. Weight Selection

When studying the uniform convergence behavior of the weighted Lagrange interpolation as
N → ∞, a crucial role is played by the Lebesgue function

λN,W(x) = W(x)
N+1∑

j=0

∣∣Lj(x)
∣∣

W
(
xj

) , (2.11)

and the Lebesgue constant

ΛN,W = ‖λN,W(x)‖∞, (2.12)

(see, e.g., [29–32] and references therein).
In general, the orthogonal weight functionw andweight of interpolationW are chosen

independently [26, 28, 33–35]. Nevertheless, if we expect a reasonable upper estimate for the
Lebesgue constant, then we have to assume some connections between these two weights.
The most natural assumption, as suggested in [29], is to generate the interpolation nodes
(collocation points) xj with respect to the weight w = W2. In addition, to obtain uniform
convergence in weighted interpolation some conditions on W should be considered. The
Bernstein’s approximation problem deals with the uniform convergence behavior of weighted
interpolation. The problem is as follows

Let W > 0 be measurable. When it is true that for every continuous y : R → R with

lim
|x|→∞

W(x)y(x) = 0, (2.13)

there exist a sequence of polynomials {FN}∞N=1 with

EN

(
y
)
W = lim

N→∞

∥∥W
(
y − FN

)∥∥ = 0? (2.14)

The condition lim|x|→∞ W(x)y(x) = 0 is essential to counteract the growth of any polynomial
at infinity.
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As stated above, the Lebesgue constant plays an important role in answering the
Bernstein’s problem. Now it is known that for any set of interpolation nodes and any weight
W , ΛN,W is unbounded with respect to N. A consequence of this is that there exists y such
that weighted interpolation does not converge uniformly to y. However, if y is not too badly
behaved (e.g., as measured by the modulus of continuity) and the ΛN,W are not too large,
then uniform convergence is achieved (as positive answers to the Bernstein’s problem).

The Freud-type weights, as positive answers to the Bernstein’s problem, (see, e.g.,
[36]) are defined as W(t) = exp(−Q(t)) with the following conditions: Q : R → R is even,
continuous in R, Q′′ is continuous in (0,∞), Q′ > 0 on (0,∞) and for some 1 < a ≤ b

a ≤ (xQ′(x))′

Q′(x)
≤ b, x ∈ (0,∞). (2.15)

If W is a Freud weight we write W ∈ F, and if, moreover, Q is differentiable in R, we
write w ∈ F1. By definition, if W ∈ F, then W2 ∈ F, too. Canonical example is as

Wβ(x) = exp
(
−|x|β

)
, β ≥ 1, x ∈ R. (2.16)

Clearly Wβ ∈ F1 with a = b = β. In this work, we consider the Freud weight with β = 1.
Vértesi in [32] has shown that given a Freud-type weight satisfying the previous

conditions and any set of interpolation nodes

logN = O(ΛN,W), N → ∞. (2.17)

3. Solution of Nonlinear Initial-Value Problems

Our discrete approximation to the nonlinear initial-value problem in (1.3)-(1.4) is obtained
by evaluating (2.6) at N collocation points x1, . . . , xN and replacing y′(xi) and y′′(xi) by
their discrete approximations in (2.8), and evaluating the boundary conditions in (1.4) at
collocation point x0 = 0. Hence, the discrete approximation to the nonlinear initial-value
problem is

f
(
xi, yi,D

(1)
i · Y,D(2)

i · Y
)
= 0, i = 1, 2, . . . ,N, (3.1)

y(x0) = y0 = c1, D
(1)
0 · Y = c2. (3.2)

Using (3.1) and (3.2), we obtain a system ofN+2 nonlinear algebraic equations which
can be solved using the Newton’s iterative method.

It is well known that the initial guess for Newton’s iterative method is very important
especially for complicated problems. To choose the initial guess for our problem, in the first
stage we set N = 5 and apply the Newton’s iterative method for solving N + 2 nonlinear
equations by choosing c1 in (1.4) as our initial guess. We then increase N by 5 and use the
approximate solution in stage one as our initial guess in this stage. We continue this approach
until the results are similar up to a required number of decimal places for two consecutive
stages.
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It is worth mentioning that, in the case that the initial-value problem has a singularity
at x = 0 (e.g., the Lane-Emden type equations), this method avoids the singularity, because
we compute (3.1) at the collocation points that are straightly more than zero.

4. Illustrative Examples

We applied the method presented in this paper and solved two problems. The first example is
a nonlinear Lane-Emden equation considered in [10] and the second example is the standard
Lane-Emden equation of index α. As stated in Section 2.3, we consider the Freud-type weight
W(x) = exp(−|x|) as interpolation weight function and generate the nonclassical orthogonal
polynomials and the NGR collocation points in the intervals [0, T]with respect to the weight
w = W2.

Example 4.1. This example corresponds to the following singular nonlinear Lane-Emden
equation [10]:

y′′ +
2
x
y′ + 4

(
2ey + ey/2

)
= 0, 0 < x < ∞,

y(0) = 0, y′(0) = 0,
(4.1)

which has the following exact solution:

ye(x) = −2 ln
(
1 + x2

)
. (4.2)

Define

EN,T = max
{∣∣ye(x) − yN(x)

∣∣ : 0 � x � T
}
,

ẼN,T = max
{∣∣y′

e(x) − y′
N(x)

∣∣ : 0 � x � T
}
,

(4.3)

where yN(x) and ye(x) denote the approximate solution obtained by the present method
and the exact solution, respectively. In Table 1, the maximum absolute errors between
approximate and exact solutions are denoted by EN,T , and maximum absolute error between
the derivative of approximate and exact solutions is denoted by ẼN,T , for different values
of N and T are given, which show the efficiency of the present method in large interval
calculation. Further, in Table 2 a comparison is made between the values of y(x) obtained
using the present method for T = 10 and N = 30 together with the values given in [16] using
Hermite functions collocation method and the exact solutions.

Example 4.2. Consider the standard Lane-Emden equation of index α given by

y′′ +
2
x
y′ + yα = 0, 0 < x < ∞,

y(0) = 1, y′(0) = 0,
(4.4)
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Table 1: The maximum absolute errors EN,T and ẼN, T for Example 4.1.

T N EN,T ẼN, T

20
20 1.80 × 10−4 4.40 × 10−4

25 1.15 × 10−5 1.50 × 10−4

30 1.25 × 10−6 9.20 × 10−6

10
20 8.50 × 10−6 1.25 × 10−4

25 4.10 × 10−7 1.24 × 10−5

30 3.65 × 10−8 4.50 × 10−7

5
20 1.85 × 10−7 4.30 × 10−6

25 5.40 × 10−9 1.83 × 10−7

30 1.60 × 10−10 7.50 × 10−9

Table 2:Comparison of y(x) between presentmethod,method in [16] and the exact values for Example 4.1.

x Method in [16] Error Present method Error Exact
0.00 0.0000000000 0.00 × 100 0.0000000000 0.00 × 100 0.0000000000
0.01 −0.0001970587 2.93 × 10−6 −0.0001999904 4.08 × 10−10 −0.0001999900
0.10 −0.0198967225 3.94 × 10−6 −0.0199006640 2.27 × 10−9 −0.0199006617
0.50 −0.4462840851 3.02 × 10−6 −0.4462870994 3.28 × 10−9 −0.4462871026
1.00 −1.3862934297 9.31 × 10−7 −1.3862943490 1.21 × 10−8 −1.3862943611
2.00 −3.2188763248 5.00 × 10−7 −3.2188758411 1.63 × 10−8 −3.2188758249
3.00 −4.6051709964 8.10 × 10−7 −4.6051702055 1.95 × 10−8 −4.6051701860
4.00 −5.6664274573 7.69 × 10−7 −5.6664266969 8.80 × 10−9 −5.6664266881
5.00 −6.5161937402 6.64 × 10−7 −6.5161930821 6.09 × 10−9 −6.5161930760
6.00 −7.2218363729 5.48 × 10−7 −7.2218358310 5.68 × 10−9 −7.2218358253
7.00 −7.8240461812 1.70 × 10−7 −7.8240460154 4.57 × 10−9 −7.8240460109
8.00 −8.3487734467 1.09 × 10−7 −8.3487745418 1.97 × 10−9 −8.3487745398
9.00 −8.8134506165 1.21 × 10−5 −8.8134384925 2.05 × 10−9 −8.8134384945
10.00 −9.2302027821 3.83 × 10−5 −9.2302410337 1.18 × 10−11 −9.2302410337

This equation is linear for α = 0 and 1, nonlinear otherwise, and exact solutions exist only for
α = 0, 1 and 5 and are given in Bender et al. [2], respectively, by

y(x) = 1 − x2

6
, y(x) =

sin(x)
x

, y(x) =

(

1 +
x2

3

)−1/2
. (4.5)

Moreover, Bender et al. [2] determined the zeros of y(x) asymptotically, here denoted by ξ,
and found that

ξ = π + 0.885273956δ + 0.24222δ2, (4.6)

for δ = −0.5, 0, 0.5, 1.0 and 1.5 which correspond to α = 0, 1, 2, 3, and 4, respectively.

We applied the method presented in this paper and solved this example and then
evaluated the zeros of y(x), which are also evaluated in [10] using linearization technique, in
[15] by using Lagrangian method, and in [16] using Hermite functions collocation method.
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Figure 1: Lane-Emden graphs obtained by the present method for α = 0, 0.5, 1,. . . , 4.5.

The selection of T is crucial for the computing of zero, ξ, of y(x). In order to obtain
reasonable approximations of zeros, for each value of α, in the first stage we select a
sufficiently large T and set N = 25 then we solve the problem using the present method
to obtain ξ1 as the first approximation of the zero. Then according to the obtained ξ1 we select
a value for T . Finally, we resolve the problem for different values of N.

In Table 3, the resulting values of the zeros of y(x) for α = 0, 0.5, . . . , 4.5 using the
present method for different N, with the results obtained in [10, 15, 16] together with the
exact solutions of Horedt [21], are presented. Table 3 shows that the present method provides
very accurate predictions of the zeros of y(x) even in large intervals. In order to demonstrate
the accuracy of the proposed method, in Tables 4 and 5 we have compared the numerical
results of y(x) using the present method for α = 3, N = 25 and α = 4, N = 30, respectively,
with the methods in [15–17, 21]. In addition, Table 6 shows the maximum absolute errors for
α = 5, for which the exact solution exists, with N = 30 and choosing different values of T . As
can be seen from Tables 3-6, the present method provides very accurate results even for large
values of T . The resulting graphs of the standard Lane-Emden equation for α = 0, 0.5, 1, 1.5,
2, 2.5, 3, 3.5, 4 and 4.5 and different values of N given in Table 3 are shown in Figure 1.

5. Comparison with Other Methods

As stated in the Introduction section, the Lane-Emden equations have been widely solved
using both numerical and analytical methods. In this section we aim to present the
advantages of our numerical method over some other existing methods in the literature.

(i) Comparison with some analytical solutions: among others, the Lane-Emden
equations have been solved with the variational iteration method [11, 12],
homotopy-perturbation method [5, 6], and the Adomian decomposition method
[3]. However, this type of solution methods is dependent on the initial guess so that
the obtained series solution is changed with changing the initial guess, whereas
the present method is not dependent on the initial guess. Furthermore, in the
mentioned methods the interval of convergence of the obtained series solution is
limited (usually [0, 1]), whereas Section 4 shows that our method provides accurate
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Table 3: Comparison of numerical results for ξ (y(ξ) = 0) for Example 4.2.

α N Present method Method in [10] Method in [15] Method in [16] Exact [21]
0 20 2.4494897427832 2.44899 — — 2.4494897427832
0.5 27 2.752698051 — — — 2.75269805
1 20 3.1415926535898 3.14048 — — 3.1415926535898
1.5 25 3.65375374 — — 3.65375374 3.65375374
2 15 4.35287460 4.35086 4.352875 4.35287460 4.35287460
2.5 17 5.35527546 — — 5.35527546 5.35527546
3 25 6.89684862 6.89312 6.896846 6.89684862 6.89684862
3.5 25 9.53580535 — — — 9.53580534
4 30 14.9715464 14.96518 14.971546 14.9715463 14.9715463
4.5 30 31.8364633 — — — 31.8364632

Table 4: Comparison of y(x) for present method, and other methods in the literature for α = 3.

x Present method Error Error in [17] Error in [15] Error in [16] Exact [21]
0.000 1.0000000000 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 1.0000000000
0.100 0.9983358295 2.95 × 10−8 1.82 × 10−5 1.28 × 10−5 1.40 × 10−6 0.9983358000
0.500 0.9598390699 3.00 × 10−8 1.12 × 10−4 1.81 × 10−5 2.99 × 10−6 0.9598391000
1.000 0.8550575686 3.14 × 10−8 1.07 × 10−4 6.00 × 10−7 1.99 × 10−6 0.8550576000
5.000 0.1108198351 3.51 × 10−8 2.02 × 10−4 2.00 × 10−7 3.90 × 10−7 0.1108198000
6.000 0.0437379839 3.90 × 10−9 5.00 × 10−5 2.00 × 10−5 1.14 × 10−6 0.0437379800
6.800 0.0041677894 4.00 × 10−10 2.93 × 10−4 2.79 × 10−6 1.05 × 10−5 0.0041677890
6.896 0.0000360111 1.00 × 10−10 2.10 × 10−5 1.01 × 10−6 8.88 × 10−8 0.0000360112

Table 5: Comparison of y(x) for present method, and other methods in the literature for α = 4.

x Present method Error Error in [16] Exact [21]
0.0 1.0000000000 0.00 × 100 0.00 × 100 1.0000000000
0.1 0.9983366596 4.04 × 10−8 2.51 × 10−4 0.9983367000
0.2 0.9933862134 1.34 × 10−8 2.48 × 10−4 0.9933862000
0.5 0.9603109024 2.36 × 10−9 2.05 × 10−4 0.9603109000
1.0 0.8608138124 1.24 × 10−8 1.93 × 10−4 0.8608138000
5.0 0.2359227314 3.14 × 10−8 8.59 × 10−5 0.2359227000
10.0 0.0596727418 1.80 × 10−9 6.22 × 10−5 0.0596727400
14.0 0.0083305270 5.30 × 10−12 2.47 × 10−5 0.0083305270
14.9 0.0005764180 9.09 × 10−10 5.00 × 10−7 0.0005764189

Table 6: The maximum absolute errors EN,T and ẼN,T for α = 5 andN = 30.

T EN,T ẼN,T

40 8.0 × 10−6 1.0 × 10−5

30 5.5 × 10−8 6.4 × 10−7

20 6.6 × 10−9 1.1 × 10−7

10 1.4 × 10−10 3.5 × 10−9

5 1.5 × 10−13 3.2 × 10−12
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approximate solutions in larger domains. For instance, consider Example 4.1 of
Section 4. The series solution for this example in [3, 6, 12] is as follows:

y(x) = −2
(
x2 − 1

2
x4 +

1
3
x6 − 1

4
x8 + · · ·

)
, (5.1)

which converges to the exact solution only on the interval [0, 1], while we have
solved this example with high accuracy in the interval [0, 20].

Note that in the mentioned analytical solutions, Padé approximant can be
implemented for manipulating a polynomial approximation into a rational
function to gain more information about the approximate solution. Nevertheless,
comparison between Figure 1 of Wazwaz [3] obtained using Padé approximants
[6/6]with Figure 1 and Table 3 of this paper shows that our method provides much
more accurate predictions of the zeros of the standard Lane-Emden equation in
Example 4.2.

(ii) Comparison with some spectral methods: several spectral methods have been
established for solving the Lane-Emden equations [15–20]. Methods in [19, 20] can
only be implemented in the interval [0, 1], while our method can be implemented
in larger interval. Further, methods in [15–18] are based on orthogonal functions
on the semi-infinite interval [0,∞], such as Laguerre functions, Hermite functions,
and radial basis functions. All of these methods need certain quadratures on
unbounded domains, which introduce errors and so weaken the merit of spectral
approximations. Moreover, for an infinitely smooth function f ∈ L2(0,+∞), the
spectral convergence of the truncated series in these functions occurs only if
f decays exponentially fast at +∞. According to these reasons, we see from
Tables 2–5 that our method provides more accurate numerical results. Also, Table 3
shows that the spectral methods in [15–18] can solve the standard Lane-Emden
equation up to the interval [0, 15], whereas we have solved this equation with high
accuracy up to the interval [0, 32].

(iii) The present method has also the following advantages: first, for another type of
equations the Freud-type weights described in Section 2.3 can be tuned to improve
the accuracy of the discrete approximation. Second, this method provides very
accurate results with moderate number of collocation points even in large intervals.
Third, methods in [26, 28, 33–35], by considering some arbitrary weight functions,
have utilized nonclassical basis polynomials on the interval [0, 1]. But, in the
present work we have developed this idea over an arbitrary interval [0, T] based
on the Freud-type weights.

6. Conclusion

The Lane-Emden equation occurs in the theory of stellar structure and describes the temper-
ature variation of a spherical gas cloud. The difficulty in this type of equations, due to the
existence of singular point at x = 0, is overcome here. In the standard Lane-Emden equation,
the first zero of y is an important point of the function, so we have computed y up to this
zero by utilizing the nonclassical Radau collocation method. A set of nonclassical orthogonal
polynomials based on Freud-type weights is proposed to provide an effective but simple
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way to improve the convergence of the solution by a Radau collocation method. Numerical
examples demonstrate the validity and high accuracy of the technique.
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