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We introduce a general composite algorithm for finding a common element of the set of solutions of
a general equilibrium problem and the common fixed point set of a finite family of asymptotically
nonexpansive mappings in the framework of Hilbert spaces. Strong convergence of such iterative
scheme is obtained which solving some variational inequalities for a strongly monotone and
strictly pseudocontractive mapping. Our results extend the corresponding recent results of Yao
and Liou (2010).

1. Introduction

Let C be a nonempty, closed, convex subset of a real Hilbert space H. Recall that a mapping
A : C — H is called a-inverse-strongly monotone if there exists a positive real number «
such that (Ax - Ay, x - y) > a||Ax — Ay|?, for all x,yy € C. It is clear that any a-inverse-
strongly monotone mapping is monotone and 1/a-Lipschitz continuous. Let f : C — H be
a p-contraction, that is, there exists a constant p € [0,1) such that ||f(x) - f(y)|| < pllx — v
for all x,y € C. Amapping S : C — C is said to be nonexpansive if ||Sx — Sy|| < ||x — y|| for
all x, y € C and asymptotically nonexpansive [1] if there exists a sequence {k,} C [0, o0) with
lim,, _, k,, = 0 such that

15> = S"y[l < 1+ ka)[|x -y

, Yx,yeC (1.1)

Denote the set of fixed points of S by Fix(S). For asymptotically nonexpansive self-map S, it
is well known that Fix(S) is closed and convex (see, e.g., [1]).
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The class of asymptotically nonexpansive mappings which is an important general-
ization of that of nonexpansive mappings was introduced by Goebel and Kirk [1]. They
established that if C is a nonempty, closed, convex, bounded subset of a uniformly convex
Banach space E and S is an asymptotically nonexpansive self-mapping of C, then S has a
fixed point in C.

Let A: C — H be a nonlinear mapping and ¢ : C x C — R a bifunction. Consider a
general equilibrium problem:

Find z € C such that ¢(z,y) + (Az,y—z) >0, VyeC. (1.2)
The set of all solutions of the general equilibrium problem (1.2) is denoted by EP, that is,
EP={zeC:¢(z,y)+(Az,y-z) >0, Vy e C}. (1.3)
If A =0, then (1.2) reduces to the following equilibrium problem of finding z € C such that
#(z,y) >0, VyeC. (1.4)
If ¢ = 0, then (1.2) reduces to the variational inequality problem of finding z € C such that
(Az,y-z)>0, VyeC. (1.5)

We note that the problem (1.2) is very general in the sense that it includes, as special
cases, optimization problems, variational inequalities, minimax problems, Nash equilibrium
problem in noncooperative games, and others. See, for example, [2-5].

In 2005, Combettes and Hirstoaga [6] introduced an iterative algorithm of finding the
best approximation to the initial data and proved a strong convergence theorem. In 2007, by
using the viscosity approximation method, S. Takahashi and W. Takahashi [7] introduced
another iterative scheme for finding a common element of the set of solutions of the
equilibrium problem and the set of fixed points of a nonexpansive mapping. Subsequently,
algorithms constructed for solving the equilibrium problems and fixed point problems have
further developed by some authors. In particular, Ceng and Yao [8] introduced an iterative
scheme for finding a common element of the set of solutions of the mixed equilibrium
problem (1.2) and the set of common fixed points of finitely many nonexpansive mappings.
Maingé and Moudafi [9] introduced an iterative algorithm for equilibrium problems and
fixed point problems. Yao et al. [10] considered an iterative scheme for finding a common
element of the set of solutions of the equilibrium problem and the set of common fixed
points of an infinite nonexpansive mappings. Noor et al. [11] introduced an iterative method
for solving fixed point problems and variational inequality problems. Wangkeeree [12]
introduced a new iterative scheme for finding the common element of the set of common
fixed points of nonexpansive mappings, the set of solutions of an equilibrium problem, and
the set of solutions of the variational inequality. Wangkeeree and Kamraksa [13] introduced
an iterative algorithm for finding a common element of the set of solutions of a mixed
equilibrium problem, the set of fixed points of an infinite family of nonexpansive mappings,
and the set of solutions of a general system of variational inequalities for a cocoercive
mapping in a real Hilbert space. Their results extend and improve many results in the
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literature. For some works related to the equilibrium problem, fixed point problems, and
the variational inequality problem, please see [1-57] and the references therein.

However, we note that all constructed algorithms in [7, 9-13, 16, 57] do not work
to find the minimum-norm solution of the corresponding fixed point problems and the
equilibrium problems. Very recently, Yao and Liou [46] purposed some algorithms for finding
the minimum-norm solution of the fixed point problems and the equilibrium problems. They
first suggested two new composite algorithms (one implicit and one explicit) for solving
the above minimization problem. To be more precisely, let C be a nonempty, closed, convex
subset of H, ¢ : C x C — R a bifunction satisfying certain conditions, and S : C — C a
nonexpansive mapping such that Q := Fix(S) N EP #0. Let f be a contraction on a Hilbert
space H. For given xj € C arbitrarily, let the sequence {x,} be generated iteratively by

1
U, Y) + (AXp, Y — Uy + — (Y — Uy, U, — X)) >0, YyeC,
P (un,y) + (Axn,y = tn) + —(y ) y e

Xni1 = PnPe[anf (x5) + (1 — an)Sxy] + (1 = pu)un, n>0,

where A is an a-inverse strongly monotone mapping. They proved that if {a,} and {u,} are
two sequences in [0,1] satisfying the following conditions:

(i) limy,— oty =0, X2 ay = 0o and limy, , o (1,1 /atn) = 1,

(ii) 0 < liminf,  op, <limsup, ,  pn <1and limy, . o ((Hne1 — pn) / an1) = 0, then, the
sequence {x,} generated by (1.6) converges strongly to x* € Q which is the unique solution
of variational inequality

(I-f)x',x-x*)>0, xeQ. (1.7)

In particular, if we take f = 0 in (1.6), then the sequence {x,} generated by

1
P(un, y) + (Axp, y — up) + ;(y — U, Up—Xy) >0, VyeC, e

Xni1 = PnPe[(1 = an)Sxn] + (1= pn)un, n20,

converges strongly to a solution of the minimization problem which is the problem of finding
x* such that

x* = arg min|lx]?, (1.9)

where Q stands for the intersection set of the solution set of the general equilibrium problem
and the fixed points set of a nonexpansive mapping.

On the other hand, iterative approximation methods for nonexpansive mappings have
recently been applied to solve convex minimization problems; see, for example, [25, 43, 44]
and the references therein. Let B be a strongly positive bounded linear operator on H, that is,
there is a constant ¥ > 0 with property

(Bx,x) >7l||lx|* VxeH. (1.10)
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A typical problem is to minimize a quadratic function over the set of the fixed points of a
nonexpansive mapping on a real Hilbert space H

.1
min —

xeFiX(s)2<Bx,x) - (x,b), (1.11)

where b is a given point in H. In 2003, Xu [43] proved that the sequence {x,} defined by the
iterative method below, with the initial guess xo € H chosen arbitrarily:

Xp1 = —a,B)Tx, +a,u, n>0, (1.12)

converges strongly to the unique solution of the minimization problem (1.11) provided
the sequence {a,} satisfies certain conditions. Using the viscosity approximation method,
Moudafi [29] introduced the following iterative process for nonexpansive mappings (see [43]
for further developments in both Hilbert and Banach spaces). Let f be a contraction on H.
Starting with an arbitrary initial xo € H, define a sequence {x,} recursively by

Xne1 = (1 —ay)Txy + anf(x,), n>0, (1.13)

where {a,} is a sequence in (0,1). It is proved [29, 43] that under certain appropriate
conditions imposed on {a,}, the sequence {x,} generated by (1.13) strongly converges to
the unique solution x* in C of the variational inequality

(I-f)x*,x-x*)>0, xeH. (1.14)

Recently, Marino and Xu [28] mixed the iterative method (1.12) and the viscosity
approximation method (1.13) introduced by Moudafi [29] and considered the following
general iterative method:

Xne1 = (I —ayB)Txy + ayyf(x,), n>0, (1.15)

where B is a strongly positive bounded linear operator on H. They proved that if the sequence
{an} of parameters satisfies the certain conditions, then the sequence {x,} generated by (1.15)
converges strongly to the unique solution x* in H of the variational inequality

(B-yf)x",x-x*)>0, xeH (1.16)

which is the optimality condition for the minimization problem: minycrix(s)(1/2)(Bx, x) —
h(x), where h is a potential function for y f(i.e., h'(x) = yf(x) for x € H).

Recall thatamapping F : H — H is called 6-strongly monotone if there exists a positive
constant 6 such that

(Fx-Fy,x-y)>6 ||[x-y|’, VYxyeH. (1.17)
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Recall also that a mapping F is called M-strictly pseudocontractive if there exists a positive
constant A such that

(Fx-Fy,x-y) < x-y|* - A|(x-y) - (Fx-Fy)|", VxyeH (118
It is easy to see that (1.18) can be rewritten as
(I-F)x-(I-F)y,x-y)>A||(I-F)x— (I—F)y||2. (1.19)

Remark 1.1. If F is a strongly positive bounded linear operator on H with coefficient y, then
F is y-strongly monotone and 12-strictly pseudocontractive. In fact, since F is a strongly
positive, bounded, linear operator with coefficient y, we have

(Fx-Fy,x-y)=(F(x-y),x-y) 27 |x-y|" (120)
Therefore, F is y-strongly monotone. On the other hand,

1= F)x = (I = Fy|” = ((x~y) - (Fx - Fy), (x - y) - (Fx - Fy))
=(x-y,x-y)-2(Fx-Fy,x-y)+ (Fx - Fy,Fx - Fy)
(1.21)
= lx = yl* ~2(Fx~Fy,x—y) + | Fx~ Fy|’
< llx=yll” ~2(Fx~ Fy, x = y) + [ FI*||x -y

Since F is strongly positive if and only if (1/||F||)F is strongly positive, we may assume,
without loss of generality, that ||F|| = 1. From (1.21), we have

1
(Fx-Fy,x-y) < |lx-y|*- SN =F)x—(I- By’
(1.22)

2 1 2
=llx=yl" =5l =y) - (Fx=Fy)".
Hence, F is 12-strictly pseudocontractive.
In this paper, motivated by the above results, we introduce a general iterative scheme
below in a real Hilbert space H, with the initial guess xy € C chosen arbitrary:
1
P(un, y) + (Axp, y — up) + ;(y — U, Up—Xy) >0, VyeC,

Y = Y f(xn) + (L= auF) Sy, (1.23)

Xn+1 = pnPc [yn] + (]— - ﬂn)un/ n>0,

where p(n) = j+1if jN <n < (j+1)N,j=1,2,...andn = jN +i(n), i(n) € {1,2,...,N},
C is a nonempty, closed, convex subset of H, {a,} and {p,} are two sequences in [0,1],
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¢ : C xC — Ris abifunction satisfying certain conditions, Si,5,...,Sn : C — C is a finite
family of asymptotically nonexpansive mappings with sequences {1 + k;(("n)) }, respectively,
f + C — H is a contraction with coefficient 0 < p < 1, F is 6-strongly monotone and -
strictly pseudocontractive with 6 + A > 1, y is a positive real number such that y < (1/p)
(1 -4/(1-06)/1), and A is an a-inverse strongly monotone mapping. We prove that the
proposed algorithm converges strongly to x* € Q which is the unique solution of the
following variational inequality:

((F-yf)x*, x-x*)>0, xeQ. (1.24)

In particular,
(I) if F is a strongly positive bounded linear operator on H, then x* is the unique
solution of the variational inequality (1.16),

(II) if F = I, the identity mapping on H and y = 1, then x* is the unique solution of the
variational inequality (1.14),

(IT) if F = I, the identity mapping on H and f = 0, then x* is the unique solution of
minimization problem (1.9).

The results presented in this paper extend and improve the main results in Yao and
Liou [46], Marino and Xu [28], and many others.

2. Preliminaries

Let C be a nonempty, closed, convex subset of a real Hilbert space H. For every point x € H,
there exists a unique nearest point in C, denoted by Pcx such that

lx - Pex|| < ||x-y|, VyeC (2.1)

Pc is called the metric projection of H onto C. It is well known that Pc is a nonexpansive
mapping of H onto C and satisfies

2 (2.2)

(x -y, Pex = Pcy) > ||Pex - Pey

for every x,y € H. Moreover, Pcx is characterized by the following properties: Pcx € C and
(x = Pcx,y — Pcx) <0,

(2.3)

[l = y||* > llx = Pex|* + ||y - Pex||?,

forall x € H,y € C. For more details, see [39]. We will make use of the following well-known
result.

Lemma 2.1. Let H be a Hilbert space. Then, the following inequality holds:

[+ ylIP< x> +2(y, x +y), V¥x,y€H. (2.4)
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Throughout this paper, we assume that a bifunction ¢ : C x C — R satisfies the
following conditions:

(Al) ¢(x,x) =0forallx € C,
(A2) ¢ is monotone, thatis, ¢(x,y) + ¢(y,x) <0forallx,y € C,
(A3) for each x,y,z € C, limyjpp(tz + (1 - t)x,y) < p(x,y),

(A4) for each x € C, the mapping y — ¢(x, y) is convex and lower semicontinuous.

We need the following lemmas for proving our main results.

Lemma 2.2 (see [6]). Let C be a nonempty, closed, convex subset of a real Hilbert space H. Let
¢ : CxC — R bea bifunction which satisfies conditions (A1)—(A4). Let r > 0 and x € C. Then,
there exists z € C such that

gb(z,y)+%<y—z,z—x>20, Vy e C. (2.5)

Further, if T, (x) = {z € C: ¢(z,y) + (1/r){y — 2,z — x) > 0,Yy € C}, then the following hold:

(i) T; is single-valued and T, is firmly nonexpansive, that is, for any x,y € H,

|| Tx - T,y”2 <(Tyx-Ty,x-y), (2.6)

(ii) EP is closed and convex and EP = Fix(T,).

Lemma 2.3 (see [30]). Let C be a nonempty, closed, convex subset of a real Hilbert space H. Let the
mapping A : C — H be a-inverse strongly monotone and r > 0 a constant. Then, one has

(I -rA)x - (I -rA)y|* < ||x-y||> +r(r -20)||Ax - Ay|>, Vx,yeC. — (2.7)

In particular, if 0 < v < 2a, then I — r A is nonexpansive.

Lemma 2.4 (see [45]). Let S be an asymptotically nonexpansive mapping defined on a bounded,
closed, convex subset C of a Hilbert space H. If {x,} is a sequence in C such that x, — x and
|Sxn — xnl] = 0asn — oo, then x € Fix(S).

Lemma 2.5 (see [44]). Assume {a,} is a sequence of nonnegative real numbers such that

ani1 < (1= ap)ay + anOn +yn, n20, (2.8)

where {a,}, {0n}, and {y,} are nonnegative real sequences satisfying the following conditions:
(1) {an} C [O/]-]/ Z:lo:] an = o0,
(ii) limsup,_, 0, <0,
(ifi) X7y ¥n < o0.

Then, lim,, _, wa, = 0.
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Lemma 2.6 (see [41]). Let E be a strictly convex Banach space and C a closed, convex subset of E.
Let 51,S55,...,5n : C — C be a finite family of nonexpansive mappings of C into itself such that the
set of common fixed points of S1,So,..., SN is nonempty. Let T1, Ty, ..., Tn : C — C be mappings
given by

Ti=(1-a)l+axS;, Yi=1,2,...,N, (2.9)

where I denotes the identity mapping on C. Then, the finite family {T;,T,,...,Tn} satisfies the
following:

N N

(Fix(T;) = (" Fix(S:),
N o ! (2.10)
ﬂ FlX(T,) = PiX(TNTN_lTN_z cee Tl) = FiX(TlTN s Tz) = FiX(TN_lTN_z cee TlTN).

i=1

The following lemma can be found in [35, Lemma 2.7]. For the sake of the
completeness, we include its proof in a Hilbert space’s version.

Lemma 2.7. Let H be a real Hilbert space and F : H — H a mapping.

(i) If F is 6-strongly monotone and \-strictly pseudocontractive with & + A > 1, then I — F is
contractive with constant \/(1 — 6)/A.

(ii) If F is 6-strongly monotone and A-strictly pseudocontractive with 6 + A > 1, then for any
fixed number T € (0,1), I — TF is contractive with constant 1 — (1 — /(1 - 6)/1).

Proof. (i) For any x,y € H, we have

M =Fyx = =Fy|l* < [lx-y||* - (Fx~Fy,x~y) <1 -8)|x~y|", VYxyeH.
(2.11)
Thus,
[1-6
I -F)x-(-Fyll <\|——llx-vl, ¥xyeH (2.12)

Since 6+ > 1, we have (1-6)/A € (0,1). Hence, I - F is contractive with constant \/(1 - 6) /\.
(ii) Since I — F is contractive with constant 1/(1 — 6) /A, we have for any 7 € (0,1),

|x-y-7(Fx-Fy)|| = |1-7)(x-y) + T[T - F)x - (I - F)y]||

<A-7)||x-y| +7||I-F)x-(I-F)yl
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1-6
<@-nlx-yl+ 252 Ix- vl

:(1_T<1— —1;6>>||x—y, Vx,y € H.
(2.13)
Hence, I — 7F is contractive with constant 1 — 7(1 — /(1 - 6)/1). O

Lemma 2.8. Let S1,S,,...,5n : C — C bea finite family of asymptotically nonexpansive mappings
with sequences {1+ k;((';)) }, respectively, such that k;((';)) — 0asn — oo. Then, there exists a sequence

{h,} C [0, 0) with h, — 0asn — oo such that

ST x = St y||< A+ R lx -yl ¥xyeC, (2.14)

i(n)

wherep(n) =j+1if N <n<(j+1)N,j=1,2,...andn = jN +i(n);i(n) € {1,2,...,N}.

Proof. Define the sequence {h,} by h, := max{k;(&)) : 1 <i(n) < N} and the result follows

immediately. O

In the rest of our discussion in this paper, we will assume that p(n) = j+1if jN <n <
(j+1)N,j=1,2,...and n = jN +i(n);i(n) € {1,2,...,N} and h,, := max{k;‘gj) :1<i(n) <N}
foralln > 1, and foreachn >1,n = (p(n) - 1)N +i(n).

3. Main Results
Now, we are a position to state and prove our main results.

Theorem 3.1. Let C be a nonempty, closed, convex subset of a real Hilbert space H. Let S1,5,, ...,
Sn : C — C be a finite family of asymptotically nonexpansive mappings with sequences {1 + k;((r;)) 1,

respectively, such that k;(("n)) — 0asn — oo, hy, = maX1§i(n)5N{k;((nn))} and T := nfﬁl Fix(S;),
I'= FiX(SNSN_lsN_z cee Sl) = Fix(SlSN s 52) == FiX(SN_lsN_z s 515]\]). (31)

Let A: C — H be an a-inverse strongly monotone mapping. Let ¢ : C x C — R be a bifunction
which satisfies conditions (A1)-(A4) such that Q := EPNI is nonempty. Let F : C — H be 6-
strongly monotone and A-strictly pseudocontractive with 6+ A > 1, f : C — H a p-contraction, y a
positive real number such that y < (1 —~/(1-06)/\)/p, and r a constant such that r € (0,2a). For
xo € C arbitrarily, let the sequence {x,} be generated iteratively by (1.23). Suppose that {a,} and
{pn} are two sequences in [0, 1] satisfying the following conditions:

(C1) limy— oty = 0, limy, s oo (i1 /) = 1, > @ty = 00 and limy, oo (hy /aty) = 0,

(C2) 0 < liminf, . op, <limsup, | pn < 1and limy, o ((fns1 — Hn) /ni1) = 0.
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Assume that 37>, sup, g ||Sﬁ:l:11))z—5ﬁ%)z|| < oo, for each bounded subset B of C. Then, the sequence

{xn} converges strongly to x* of the following variational inequality:

((F-yf)x",x-x*)>0, x€Q (3.2)

or equivalently X = Po(I — F + yf)X, where Pg is the metric projection of H onto Q.

Proof. First, we rewrite the sequence {x,} by the following:
Xn+1 = /f‘nPC [yn] + (1 - ,un)Tr(xn -rAx,), n2>0, (3.3)

where the mapping T, is defined in Lemma 2.2. Pick z € Q and u, = T,(x, — rAx,). The
nonexpansivity of T, and I — r A implies that

lun — zl| = | T (xn —T7Axy) = Tr(z — T AZ)||

(3.4)
<|lxn —z|l, VzeQ.
Setting y := (1 —4/(1 - 6)/A) and using Lemma 2.7(ii), we have
lyn —z|| = ||@ny (f (xn) = F2) + (I — a,F) (Sﬁrjll))xn - z> ”
< aapyllxn — z|| + an ||y f (xn) = Fz|| + (1 = ay) (1 + hyir) |12 — z|| (3.5)

= [1-an(y —ay) + (1= anY) hua] 20 = 2l + an ||y f (xn) - F2||-

By our assumptions, we have (1-a,y)(h,,,/a,) — 0asn — oo. We can assume, without loss
of generality, that (1 — a,,y)(h,,1 /) < (1/2)(y — ay). Applying Lemma 2.7, we can calculate
the following:

21 = 2l = || n (P [ya] = 2) + (1= pn) (un = 2)|
< pin|Pelyn] = 2| + (1= ) 1t - 2|
< |y = =l + (L = pn) o = 2|
< [l = au (¥ - ay) + (1 - any) hpa] xn - 2|

3.6
+ |y FGea) = 2]| + (1= pn) 16 = 2] (3.6)

By
22| | 21+ sl ) ~ P
n

pnotn(1/2) (Y - ay)
(1/2)(y - ay)

= |ttt (7= r) - (1= )

1 —
< [1- gpntn - ), 211+

|y f (xn) - Fz||.
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By induction, we obtain, for alln > 0,

(3.7)

l|xn — z|]| < max{ [|xo0 —

2||Yf(xo) F(2)| }
y—ay

Hence, {x,} is bounded. Consequently, we deduce that {u,}, {f(x,)}, and {y.} are all
bounded.
Next, we show that

Jim [lxpen = x| = 0. (3.8)

From (1.23), we have

N+1
e f (o) + (I = e F)S N Vo

yen = Yen-a]l = |

(n+N)

—neN-1Y f (Xpan-1) — (I - an+N—1F)Sf(:+N) Xn+N-1 ”

e NY (f (XnaN) = f (nan=1)) + (@nenN = XneN-1)Y f (Xnen-1)

N+1 N+1

+ (I - anNF) <Sp::N:1))x"+N Sﬁ(:rN:l))xHN—l)
N+1

+[(I —ansNF) = (I — anin- 1F)]Sp:++N++1))xn+N—1

N+1
+(I = anen-1 F) (I %nen-1 = Sy Znen-1 ) |

< ANy XniN = XNt + [N = Anen-a |y || f (enen-1) ||

(3.9)
+ (1 - “n+N?)(1 + hn+N+1)”xn+N - xn+N—1”
N+1
+ |an+N71 - an+N|”F|| ||Sf(<::N:1))xn+N,1 ||
— N+1
+ (1 - apn-1Y) ||Sf’((,;1:N:1))xn+N 1- ,HN) XN~ 1”

< e NY XN = XpaN-1]| + [@neN = Anen-1 Y] f (nan-1) ||

+ (1= anenY) (1 + Byene1) | XN — Xnan- |

N+1
#lanen-1 = ann [ SHny e |

Sp n+N+1) Sp(n+N)

+ sup i n+N+1) i(n+N)

x€e{x,:neN}
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and from (3.3), we have

1XneN+1 = XnenN || = || HneNPe [Ynen] + (1 = pnenN ) thneN = pineN-1PC [Ynen-1]
—(1 = ptnsn-1) tnen-a |
= || nen (P [Ynen] = Pe [Ynin-1]) + (UneN — pnen-1) Pe [Ynen-1]
+(1 = pnen) (UneN = UnenN-1) + (HneN-1 = PneN ) UneN—1 |
< PN ||YnenN = Ynen-t || + (1= o) Jtnan = tpen- || (3.10)
+ | pnen = pnen-1 | (|| Pe [ynenaa] || + 1nen-1ll),
lunen = tnenll = [ITr (Xnen = T AXnN) = Tr (XneN-1 = T AXnen-1) ||
< enen = T AXpeN) = (XneN-1 = TAXpN-1) |

< ”xn+N - xn+N—1”.
Therefore,

[1%neN+1 = XnanN || < PN O N YA XN = XneN-1 || + PN |EnenN = Cnen-1]y || f Ccnen-1) ||

+ N (1 = penY) (1 + BN | %nen = Xpan-t|

p(n+N+1)
+ HueN|AneN-1 = &N ||| F | ||S,(n+N+1) Xn+N-1
p n+N+1) p(n+N)
+ HneN  SUP ||S n+N+1) 1(n+N)
x€{x,:ne

+ (1 - /4n+N) 12N = Xnen-1|
+ | pnen = pnen- | (|| Pe [Ynen-1] || + lttnen-1ll)

< (1= pnen@nen (F = Y) ) |1%neN = Xnan—1 || + pneNAninN

hpn+ —
X [<$ +hn+N+1Y)M

An+N
Xn+N-1 Xn+N-1 pn+N+1)
+1- o ¥l f Cenen-0) || + o i N+1) XnN- 1”
1 N ~ HntN-1
b [EeN N ]+ ||un+N,1||)]
Hn+N AN
p(n+N+1) p(n+N)
+ sup |S1(n+N+1) -5 i(n+N) ||
xe{x,:neN}

(3.11)
By Lemma 2.5, we obtain that

lim ||xn+N+1 - xn+N|| =0. (312)
n— oo
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Furthermore,

12¢n+n = 2|l < [XneN = Xpen-1ll + [[XneN-1 = Xnen-2ll + - + [[Xpe1 = Xn]| — 0, as n — co.

(3.13)
Hence,
m [l n = xul| = 0. (3.14)
Next, we show that
Jim [l2c, — un | = 0. (3.15)

By the convexity of the norm || - ||, we have

lnsr = 217 = [lpn (Pe[ya] = 2) + (1= ) (= 2) ||
< pn|| Peyn] = 2II° + (1 = o) 14 — 21
< pnllyn = 2[|* + (1= o)l - 2|1

2
any f ) + (L= anF) S 0 = 2|+ (1= )t = 22

:‘un

n+ 2
= pin| @y f (en) = anF () + (I = @ F)Siny) n = (1 = anF)z||” + (1= p) 1t = 2IP

i(n+1)

2
(I - anF)Siry 0 = (I = auP)z||” + puctl||yf (n) = F(2)|°

<
+ 24ty (1= anF)S[ %0 = (I = auF)z, v f () = F(2) ) + (1= o) 14w = 21
< pin (1= )" (14 hyer) 2 = 21+ et |y £ () = F(2)|°
+ 20t (1 = a7 ||y £ (3n) = F(2) |16 = 2l + (1 = pan) |14 = 21|
< pn (1= ) (14 2k + B2, )10 = 20 + e[y f () = F(2)|?
+ 20t ptn (1= @) |¥ £ (xn) = F(2) |10 = 2l + (1 = pu) [0 = 2|
= ptn (1= ) (1 + 1) 120 = 21 + pacl ||y £ (2n) = F(2) |

+ 20 (1 = an¥) ||y f (xn) = F@)|| 1260 = 2]l + (1 = pn) |18 — 217,
(3.16)
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where h*

* 1 = 2hp + k2. From Lemma 2.3, we get

n+l°

llun - 2”2 =Ty (xp —rAxy) = Tr(z - TAZ)HZ
< (xn = 7AXy) - (z— rAZ)|? (3.17)

< |l = 2|* + 7(r - 2a) || Ax,, — Az
Substituting (3.17) into (3.16), we have

1 — zlI* < pn (1= any) (1 + hypy)lln — z|* + pnoiy ||y f (xn) = F(2) ”2
+ 205t (1 = an¥) || f (xn) = F(2) ||l - ]|

+ (1= pn) [l = 21 + 7 = 2a) | A, — Az

” (3.18)
-(1- ¥ L - 2| = anpnhnsr ¥l xn — z|*
< cxnyn<r an>>llxn 2| = anpnhna Y| %0 — 2|l

+ @ ||y £ (en) = F(2)|I” + 2ptn (1 = V) ||y £ () = F(2) || 120 — 2]
+ (1— pn)r(r —2a)||Ax,, — Az|]%

Therefore,

(1= pa)r(2a = 1) || Ax, — Az|* < <1 ~ Cupin <? - %>> 1% = 2I = |xns1 — 217

+ pnd2 [y f (n) = F@)||* + 2anptn (1 - aF)
x ||y f (xn) = F(2) ||l — Il

< lloen = 2l = ll2nr = 2I* + ||y f () = F@|I* (3.19)
+ 20t (1= a,Y) ||y f (xn) = F(2) ||| = 2|

< (|1xn = 2l + [1Xne1 = 2l 1% = X |
+ ||y f (x) - F(2)|°
+ 2t (1= a,¥) ||y f (xn) = F(2) ||| = zlI-

Since liminf, oo (1 — pn)r(2a —7r) > 0, ||x,, — Xp41]] — Oand a, — 0, we derive

lim [| Ax, - Az]| = 0. (3.20)
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From Lemma 2.2, we obtain

[, — 2”2 = Ty (xpn —rAxy) = Tr(z - TAZ)HZ

<{(xy —1Axy) — (z—-1Az),uy — z)
1 2 2
= 5 (I =A%) = (2= rAZ)|P + |~ 2

11t = 2) = P(A%y — AzZ) = (1t — 2)])

1
< 5 (llen = 21+l = 217 = 16w = ) = (A = A2
1
= > <||xn - z||2 + ||un — z||2 —||xn — un||2 +2r{xy — Up, Ax, — Az) — r2||Axn — Az||2>.
(3.21)
Thus, we deduce
[t = 21> < Nlxn = 201 = 10 = tnl® + 27|20 — ||| Axw — Az]]. (3.22)
By (3.16) and (3.22), we have
I%n+1 — 2“2 < ,un(l - an?) (1 + h:1+1)||xn - 2”2 + .unai”}’f(xn) - F(z) ”2
+ 20 ptn (1 = a¥) ||y f (xn) — F(2)|| 10 — 2|l
+ (1= pon) [loen = 2 = Nt = nl* + 27 = [ A ~ Az
. ) X , (3.23)
S\ 1T-anpn| ¥ - o llxn — z|| +#n“n”Yf(xn) - F(z)"
+ 2t (1= an¥) ||y f (xn) = F(2) || 1%n — 2l
+ (1= i) [l = sl + 2711, = s Ay = Az
Therefore,
(1= pa) 126 = wnll® < otn = 2l = 121 = 2l + pne2 ||y f (x0) = F(2)]|”
+ 20 ptn (1 = ) |y f (n) = F(2) || |20 — |
+ (1 - /’ln) [2T||xn - un””Axn - AZ”]
(3.24)

< (%0 = 2l = [1Xne1 = 2D 11%n = Xnet || + pna ||y f (xn) = F(2)||?
+ 2Ulnﬂn (1 - an?) ”Yf(xn) - F(z) ” lxn — z||
+ 27‘(1 - #n)”xn = uy||||Ax, — Az||.



16 Abstract and Applied Analysis

Since liminf, oo (1 — pn) >0,y — 0, ||Xp41 — xp|| — O and ||Ax, — Az|| — 0, we derive that

lim [|x; = ]| = 0. (3.25)

Next, we show that

lim ”xn - Sz(n+N)Sz(n+N 1)5 n+N-2) * Si(n+2)Si(n+1)xn” =0. (3.26)

n—oo
By using (3.14), it suffices to show that

nlgr(}o”anrN = Si(neN) SineN-1)Si(naN=-2) * * - Si(n+2) Si(n+1) X || = 0. (3.27)

Observe that

SP("

(n+N
XntN-1 = S0 N) xn+N 1” < |1%neN = Xpen-1 || + | SP" )

XntN = Oj(neN) Xn+N-1 ||

p(n

< lxnenN = Xnen-1l + fuen- 1||Pc Ynin-1] = S n+N) N 1”

+ (1= pen-1) || Unen-1 — ,HN) )1 ”

< xnenN = Xnen-1ll + fneN-1 ||Ynen-1 = 1 n+N) xn+N 1 ||

+ (1= pnan-1) |[Unen-1 = Sigy, N) XN ”
S %neN = XnaN-1]| + PneN-1AneN-1
<”Yf(xn+N D]+ ||F5p,ff15))xn+w 1”)
+ (1 = pnen-1) [|tnen-1 — Xpen-1|

p(n
Xn+N-1 — Sl<n+N) Xn+N-1 ”

+ (1 - /fln+N—1)
(3.28)

Hence,

p(n+N
Xn+N-1 — Sz(n+N) xn+N—1|| <

12N = Xpen—t|

Hn+N-1
+ an+N—1<”Yf(xn+N71)” + ||FS?((:+]5))xn+N—l ||> (3.29)

+ (1 - /fln+N—1)

YN [ttnen-1 = Xpen-1]-
n+N—

From (3.14), (3.25), lim, _, ., = 0, and (C2), we have

XpiN-1 — Sf’::g))me 1” —0 asn— oo. (3.30)
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Since Sjw) is Lipschitz with constant L;y) for each i(n) € ({1,2,...,N} and for L =
maxi<i<N{Lim)}, and for any positive number n > 1, n = (p(n) — 1)N +i(n), we have

(n+N) (n+N)
|nen-1 = Sitnen) Xnen-1|| < | Xn+N-1— Sf(,HN) Xn+N-1|| + Sf(mN) Xn+N-1 = Si(n+N) Xn+N-1
p(n+N) p(n+N)-1
< | Xn+N-1 — Si(nJrN) XniN-1|| + L Si(n+N) Xn+N-1 ~ Xn+N-1
p(n+N)
< | XntN-1 = SNy Xn+N-1

N)-1 N)-1
(S -

+[ 8t ™ 01 = 20| + et = el
(3.31)
Since for each n > N, n+ N = n(modN), and also n = (p(n) —1)N +i(n), so
n+N=(p(n)-1+1)N +i(n) = (p(n+N)-1)N +i(n+N), (3.32)
that is,
p(n+N)-1=p(n), i(n+ N) =i(n). (3.33)
Hence,
||5ﬁ(,:1:,}\\7]))_1xn+1\171 - Sﬁ(,f)JrN)_lan ” = ||Sf((nn))xn+N—1 - SZ(:))XnA ” S L||xpen-1 — X1l (3.34)
Also,
||sf(§1’§*N)*1xn,1 Xt || - | S 1 = 2 | (3.35)
Therefore, substituting (3.34) and (3.35) into (3.31), we have
| xnen-1 = Signeny Xnan-1]| < | Xp+N-1 — Sﬁr:]]\x)xnﬂ\f—l ” + L?|| 2 N-1 — Xt |
(3.36)
+ L||sf(§j)>xn,1 — X1 || + L[t — Xnan- -
From (3.30) and (3.14), we have
nli_I}}O”xn+N—1 = SitneN) Xnen-1]| = 0. (3.37)
Also,
|2nN = Sitneny Xnen-1]| < 1%nen = Xnen-a |l + || Xnen-1 = Signeny Xnen-1]|, (3.38)
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so that

Xn+N-1 — Si(mN)me,l — 0 asn— oo. (339)

Indeed, noting that each S;(,) is Lipschitzian and using (3.39), we can calculate the following;:

XneN = Si(nN)xny — 0 as n— oo,

Si(n+N)XneN-1 = Si(n+N) Si(n+N-1) XnsN-2 @S 1 — 0,

(3.40)
Sin+N)Si(neN-1) = ** Sin+2)Xn+1 = Si(n+N) SigneN-1) * ** Si(n+2)Sins1)Xn — 0 as n — oo.
It follows from (3.40) that
Xn+N = Si(naeN) Si(neN-1) * - Sin+1)Xn — 0 as n — co. (3.41)
Using (3.14), we have
Xn = Sitn+N) Sin+N-1) * - * Si(ns1)Xn — 0 as n — oo. (3.42)

Hence (3.26) is proved. Let @ = Pq. Then, ®(I — F — yf) is a contraction on C. In fact, from
Lemma 2.7(i), we have

(I -F-yf)x-®(I-F-yf)y| <|I-F-yf)x-(I-F-yf)y|
<|| I =F)x= I =F)y| +y|lf(x) - f(»)]

1-6
e R 649
= 1-9 +ay )||x-
- A Y y

Therefore, ®(I — F — yf) is a contraction on C with coefficient (\/(1-6)/A + ay) € (0,1).
Thus, by Banach contraction principal, Po(I — F — yf) has a uninique fixed point x*, that
is Po(I — F — yf)x* = x* which mean that x* is the unique solution in Q of the variational
inequality (3.2). Next, we show that

, VYx,yeC.

lim sup(y f (x*) - Fx*, x, — x*) <0. (3.44)

n—oo
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Let {xy, } be a subsequence of {x,} such that

limsup(y f(x*) — Fx*,x, — x*) = jlirg<yf(x*) — Fx*, xp, — x* > (3.45)

n—oo

Since {x,} is bounded, we may also assume that there exists some X € H such that x,;, — X.

Since the family {S;} Y, is finite, passing to a further subsequence if necessary, we may further
assume, for some i(n) € {1,2,..., N}, it follows that

Xn; = Sin+N)Si(n+N-1) * ** Si(n+1)Xn, — 0 as j — co. (3.46)

By Lemma 2.4, we obtain
X € F(SitneN)SitneN-1) - - - Sin+1) ) s (3.47)

so this implies that X € I'. Next, we show X € EP. Since u,, = T, (x, — rAx,), for any y € C, we
have

1
¢ (un, y) + — (Y = thn, ty = (X = 1 Ax)) 2 0. (3.48)
From the monotonicity of F, we have
1
;(}/ = Un, Un — (Xn — rAxn)) > (i)(y, un), VyeC. (3.49)

Hence,

<y — Uy, Up, ;xm n Axni> >¢(y,un), VyeC. (3.50)

Putz; =ty + (1 —t)x forall t € (0,1] and y € C. Then, we have z; € C. So, from (3.50), we
have

Un

i~ Xy
(zt = Un, Azt) > (24 — Up, Azy) — <zt - Up,, p LA Axni> + Pz, uy,)

= (2t — Up, AZt — Allp,) + (24 — Up,, Ally, — AXp,) (3.51)

Uy — Xy,
+ <zt - Uy, — - "l> + P(zt, Un,).

Note that ||Au,, — Axy, || < (1/a)||uy, — x| — 0. Further, from monotonicity of A, we have
(2t — Un,, Azy — Auy,) > 0. Letting i — oo in (3.51), we have

(Zt - f, AZt> > (;b(Zt, i) (352)
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From (A1), (A4), and (3.52), we also have

0= (l)(Zt, Zt) < t¢(Zt,y) + (1 - t)gb(zt, 'JE)
<tdp(zr,y) + 1 -1){z - X, Az;) (3.53)

= t¢(z1,y) + (1 - Oy - %, Az)
and, hence,
0<P(z,y) + (1 -t)(Az, y - X). (3.54)
Letting t — 01in (3.54) and using (A3), we have, for each y € C,
0<¢(X,y) + (y - X, AX). (3.55)
This implies that X € EP. Therefore, X € Q. Therefore,

lim sup(y f (x) = Fx", xp = x*) = (yf (x") - Fx", X - x7) <0. (3.56)

n— oo

Finally, we prove that x, — x* asn — oco. From Lemma 2.7 and (1.23), we obtain

ons =217 = [lpen (Pe [ya] =) + (1= pn) (= x")||°

24 (1= pn) [l — x|

< pin| P [yn] - x*
< i |yn = 2 |* + (1= )l — x* |1

" 1 «||
@y f () = anF (") + (I = @ F) S} 0 = (1 - )|

-4

+ (1= )l = x|

|2

an(yf(xn) = F(x*)) + (I - a,F) <Sf(<::ll))xn - x*>

= (1= pn) %0 = X*|* + ptn
< (1= ) 120w = |2 + pn (1 = @ 7)* (1 + hi1)? || — ¥
+ 200t (y f (1) = F(x*), Xps1 — X*)
< (1= ) 1t = x°|1* + i (1 = aa7) <1 + 2R + hi+1> 12 = x>
+ 2Unan (Y f (Xn) = F(x"), i1 = X7)
= (1= o) 130 = X7 + pin (1 = @¥) (1 ) e = 7|2
+ 200y (y f (xn) = F(x*), Xns1 — x*)
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_ h
< <1 — Unln <Y - ;—H>>”xn _x*llz

+2unay <Y - [Xn1> I:(7 _ /“n) <Yf(xn) = F(x"), xp11 —x >],

n+l
(3.57)
where b} | = 2hy + hfl .1- Hence, all conditions of Lemma 2.5 are satisfied. Therefore, x,, —
x*. This completes the proof. O

The following example shows that there exist the sequences {a,} and {p,} satisfying
the conditions (C1) and (C2) of Theorem 3.1.

Example 3.2. For eachn > 0,leta, =1/(n+1) and p, = 1/2+1/(n + 1). Then, it is easy to
obtain lim, ., a, = 0, >0 g, = o0 and limy, (@, .1 /a,) = 1,0 < 1/2 = liminf, oy, <

limsup, , pn=1/2<1and lim, o ((4n+1 — pin) / ans1) = 0. Hence, conditions (C1) and (C2_)
of Theorem 3.1 are satisfied.

Corollary 3.3. Let C,H, A, ¢, Q, f,F,r be as in Theorem 3.1. Let S1,S3,...,Sn : C — C bea
family of nonexpansive mappings. Let T1, Ty, ..., T : C — C be mappings defined by (2.9). For
Ty := Ty mod N, let the sequence {x,} be generated by

1
¢ (un, y) + (AXn Y = tn) + —(Y = thnyUn = %) 20, Yy €C, (3.58)

Xni1 = PnPe[any f(xn) + (1 = anF)Tuxy] + (1 = pn)un, n>0.

Assume that 3,77 sup, g||Tni1z — Tzl < oo for each bounded subset B of C and the sequences {ay, }
and {u,} satisfy the following conditions:

(C1) limy,—, oty = 0, 3070 an = 00 and limy, o (0,1 /tn) =1,

(C2) 0 < liminf, . op, <limsup, | pn < land limy, o ((4,,q — Hn)/ans1) = 0.

Then the sequence {x,} converges strongly to x* of the following variational inequality:
((F-yf)x",x-x*)>0, xe€Q, (3.59)
or equivalently X = Po(I — F + y f)X, where Pq is the metric projection of H onto Q.

Proof. By Lemma 2.6, we have

N
ﬂ FIX(TI) = FiX(TNTN,lTN,z s Tl) = FiX(TlTN tee Tz) = FiX(TN,lTN,z s TlTN). (360)
i=1

Therefore, the result follows from Theorem 3.1. O
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Remark 3.4. As in [58, Theorem 4.1], we can generate a sequence {S,} of nonexpansive
mappings satisfying the condition >,°; sup{||Sps1z — Snz|| : z € B} < oo for any bounded
subset B of C by using convex combination of a general sequence {Tx} of nonexpansive
mappings with a common fixed point.

Settingy =1, F = I, and S,, = S, a nonexpansive mapping, in Corollary 3.3, we obtain
the following result.

Corollary 3.5 ([46], Theorem 3.7). Let C, H, A, ¢, f, r be as in Theorem 3.1. Let S : C — C bea
nonexpansive mapping such that Q := EP NFix(S) # 0. Let the sequence {x,} be generated by

¢(tn, y) + (AXp, y —uy) + %(y — U, Up—Xn) 20, VYyeC,

(3.61)
X1 = pnPe[anf (xn) + (1 — an)Sxp| + (1 = pn)un, n>0.
Assume the sequences {a,} and {u,} satisfy the following conditions:
(Cl) lim, , e, =0, 21?;0 a, = oo and hmnﬂoo(am_l/an) =1,
(C2) 0 < liminf, . op, <limsup, _, pn < 1and limy, o ((fns1 — Hn)/ani1) = 0.
Then, the sequence {x,} converges strongly to x* of the following variational inequality:
(I-f)x",x=x") 20, xeQ. (3.62)
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