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We discuss a new concept of the q-extension of Bernoulli measure. From those measures, we derive
some interesting properties on the generalized q-Bernoulli numbers with weight α attached to χ.

1. Introduction

Let p be a fixed prime number. Throughout this paperZp,Qp, andCp will, respectively, denote
the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion
of algebraic closure of Qp. Let N be the set of natural numbers and Z+ = N ∪ {0}. Let νp be the
normalized exponential valuation of Cp with |p|p = p−νp(p) = 1/p (see [1–14]).

When we talk of q-extension, q is variously considered as an indeterminate, a complex
number q ∈ C, or a p-adic number q ∈ Cp. Throughout this paper we assume that q ∈ Cp with
|1 − q|p < 1, and we use the notation of q-number as

[x]q =
1 − qx
1 − q , (1.1)

(see [1–14]). Thus, we note that limq→ 1[x]q = x.
In [2], Carlitz defined a set of numbers ξk = ξk(q) inductively by

ξ0 = 1,
(
qξ + 1

)k − ξk =

{
1, if k = 1,
0, if k > 1,

(1.2)

with the usual convention of replacing ξk by ξk.
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These numbers are q-extension of ordinary Bernoulli numbers Bk. But they do not re-
main finite when q = 1. So he modified (1.2) as follows:

β0,q = 1, q
(
qβ + 1

)k − βk,q =
⎧
⎨

⎩

1, if k = 1,

0, if k > 1,
(1.3)

with the usual convention of replacing βk by βk,q.
The numbers βk,q are called the k-th Carlitz q-Bernoulli numbers.
In [1], Carlitz also considered the extended Carlitz’s q-Bernoulli numbers as follows:

βh0,q =
h

[h]q
, qh

(
qβh + 1

)k − βhk,q =
⎧
⎨

⎩

1, if k = 1,

0, if k > 1,
(1.4)

with the usual convention of replacing (βh)k by βhk,q.
Recently, Kim considered q-Bernoulli numbers, which are different extended Carlitz’s

q-Bernoulli numbers, as follows: for α ∈ N and n ∈ Z+,

β̃
(α)
0,q = 1, q

(
qαβ̃(α) + 1

)n − β̃(α)n,q =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α

[α]q
, if n = 1,

0, if n > 1,

(1.5)

with the usual convention of replacing (β̃(α))
k
by β̃

(α)
k,q

(see [3]).

The numbers β̃(α)
k,q

are called the k-th q-Bernoulli numbers with weight α.
For fixed d ∈ Z+ with (p, d) = 1, we set

X = Xd = lim
←
N

(
Z

dpNZ

)
, X1 = Zp,

X∗ =
⋃

0<a<dp
(a,p)=1

(
a + dpZp

)
,

a + dpNZp =
{
x ∈ X | x ≡ a

(
mod dpN

)}
,

(1.6)

where a ∈ Z satisfies the condition 0 ≤ a < dpN .
Let UD(Zp) be the space of uniformly differentiable functions on Zp. For f ∈ UD(Zp),

the p-adic q-integral on Zp is defined by Kim as follows:

Iq
(
f
)
=
∫

Zp

f(x)dμq(x) = lim
N→∞

1
[
pN
]
q

pN−1∑

x=0

f(x)qx, (1.7)
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(see [3, 4, 15, 16]). By (1.5) and (1.7), the Witt’s formula for the q-Bernoulli numbers with
weight α is given by

∫

Zp

[x]nqαdμq(x) = β̃
(α)
n,q , where n ∈ Z+. (1.8)

The q-Bernoulli polynomials with weight α are also defined by

β̃
(α)
n,q(x) =

n∑

l=0

(
n

l

)

[x]n−lqα qαlxβ̃
(α)
l,q

. (1.9)

From (1.7), (1.8), and (1.9), we can derive the Witt’s formula for β̃(α)n,q(x) as follows:

∫

Zp

[
x + y

]n
qαdμq

(
y
)
= β̃

(α)
n,q(x), where n ∈ Z+. (1.10)

For n ∈ Z+ and d ∈ N, the distribution relation for the q-Bernoulli polynomials with
weight α are known that

β̃
(α)
n,q(x) =

[d]nqα

[d]q

d−1∑

a=0

qaβ̃
(α)
n,qd

(x + a

d

)
, (1.11)

(see [3]). Recently, several authors have studied the p-adic q-Euler and Bernoulli measures
on Zp (see [8, 9, 11, 13, 14]). The purpose of this paper is to construct p-adic q-Bernoulli
distribution with weight α (= p-adic q-Bernoulli unbounded measure with weight α) on Zp

and to study their integral representations. Finally, we construct the generalized q-Bernoulli
numbers with weight α and investigate their properties related to p-adic q-L-functions.

2. p-Adic q-Bernoulli Distribution with Weight α

Let X be any compact-open subset of Qp, such as Zp or Z
∗
p. A p-adic distribution μ on X is

defined to be an additive map from the collection of compact open set in X to Qp:

μ

(
n⋃

k=1

Uk

)

=
n∑

k=1

μ(Uk)
(
additivity

)
, (2.1)

where {U1, U2, . . . , Un} is any collection of disjoint compact opensets in X.
The set Zp has a topological basis of compact open sets of the form a + pnZp.
Consequently, ifU is any compact open subset ofZp, it can bewritten as a finite disjoint

union of sets

U =
k⋃

j=1

(
aj + pnZp

)
, (2.2)

where n ∈ N and a1, a2, . . . , ak ∈ Z with 0 ≤ ai < pn for i = 1, 2, . . . k.
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Indeed, the p-adic ball a + pnZp can be represented as the union of smaller balls

a + pnZp =
p−1⋃

b=0

(
a + bpn + pn+1Zp

)
. (2.3)

Lemma 2.1. Every map μ from the collection of compact-open sets in X to Qp for which

μ
(
a + pNZp

)
=

p−1⋃

b=0

(
a + bpN + dpN+1

Zp

)
(2.4)

holds whenever a + pNZp ⊂ X, extends to a p-adic distribution (= p-adic unbounded measure) on X.

Now we define a map μ
(α)
k,q on the balls in Zp as follows:

μ
(α)
k,q

(
a + pnZp

)
=

[
pn
]k
qα

[
pn
]
q

qaf
(α)
k,qp

n

({a}n
pn

)
, (2.5)

where {a}n is the unique number in the set {0, 1, 2, . . . , pn − 1} such that {a}n ≡ a(mod pn).
If a ∈ {0, 1, 2, . . . , pn − 1}, then

p−1∑

b=0

μ
(α)
k,q

(
a + bpn + pn+1Zp

)
=

p−1∑

b=0

[
pn+1
]k
qα

[
pn+1
]
q

qa+bp
n

f
(α)

k,qp
n+1

(
a + bpn

pn+1

)

= qa

[
pn
]k
qα

[
pn
]
q

[
p
]k
(qpn)α
[
p
]
qp

n

p−1∑

b=0

qbp
n

f
(α)

k,(qpn)p

((
a/pn

)
+ b

p

)

.

(2.6)

From (2.6), we note that μ(α)
k,q

is p-adic distribution on Zp if and only if

[
p
]k
(qpn)α
[
p
]
qp

n

p−1∑

b=0

qbp
n

f
(α)

k,(qpn)p

((
a/pn

)
+ b

p

)

= f
(α)
k,qp

n

(
a

pn

)
. (2.7)

Theorem 2.2. Let α ∈ N and k ∈ Z+. Then we see that μ(α)
k,q(a + pnZp) is p-adic distribution on Zp if

and only if

[
p
]k
(qpn)α
[
p
]
qp

n

p−1∑

b=0

qbp
n

f
(α)

k,(qpn)p

((
a/pn

)
+ b

p

)

= f
(α)
k,qp

n

(
a

pn

)
. (2.8)

One sets

f
(α)
k,qp

n (x) = β̃
(α)
k,qp

n (x). (2.9)
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From (2.5) and (2.9), one gets

μ
(α)
k,q

(
a + pnZp

)
=

[
pn
]k
qα

[
pn
]
q

qaβ̃
(α)
k,qp

n

(
a

pn

)
. (2.10)

By (1.11), (2.10), and Theorem 2.2, we obtain the following theorem.

Theorem 2.3. Let μ(α)
k,q be given by

μ
(α)
k,q

(
a + dpNZp

)
=

[
dpN

]k
qα

[
dpN

]
q

qaβ̃
(α)

k,qdp
N

(
a

dpN

)
. (2.11)

Then μ
(α)
k,q

extends to a Q(q)-valued distribution on the compact open setsU ⊂ X.
From (2.11), one notes that

∫

X

dμ
(α)
k,q(x) = lim

N→∞

dpN−1∑

x=0

μ
(α)
k,q

(
x + dpNZp

)

= lim
N→∞

[
dpN

]k
qα

[
dpN

]
q

dpN−1∑

a=0

qaβ̃
(α)

k,qdp
N

(
a

dpN

)
.

(2.12)

By (1.11) and (2.12), one gets

∫

X

dμ
(α)
k,q(x) = β̃

(α)
k,q

. (2.13)

Therefore, we obtain the following theorem.

Theorem 2.4. For α ∈ N and k ∈ Z+, one has

∫

X

dμ
(α)
k,q(x) = β̃

(α)
k,q

. (2.14)

Let χ be Dirichlet character with conductor d ∈ N. Then one defines the generalized q-Bernoulli
numbers attached to χ as follows:

β̃
(α)
n,χ,q =

∫

X

χ(x)[x]nqαdμq(x)

=
[d]nqα

[d]q

d−1∑

a=0

qaχ(a)β̃(α)
n,qd

(a
d

)
.

(2.15)
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From (2.11) and (2.15), one can derive the following equation;

∫

X

χ(x)dμ(α)
k,q(x) = lim

N→∞

dpN−1∑

x=0

χ(x)μ(α)
k,q

(
x + dpNZp

)

= lim
N→∞

[
dpN

]k
qα

[
dpN

]
q

dpN−1∑

x=0

χ(x)qxβ̃(α)
k,qdp

N

(
x

dpN

)

=
[d]kqα

[d]q

d−1∑

a=0

qaχ(a)

⎧
⎨

⎩
lim

N→∞

[
pN
]k
qαd

[
pN
]
qd

pN−1∑

x=0

qdxβ̃k,qdpN

(
(a/d) + x

pN

)
⎫
⎬

⎭

=
[d]kqα

[d]q

d−1∑

a=0

qaχ(a)β̃(α)
k,qd

(a
d

)
= β̃

(α)
k,χ,q

,

∫

pX

χ(x)dμ(α)
k,q(x) = lim

N→∞

[
dpN+1]k

qα
[
dpN+1

]
q

dpN−1∑

x=0

χ
(
px
)
qpxβ̃

(α)

k,qdp
N+1

(
px

dpN+1

)

=

[
p
]k
qα

[
p
]
q

[d]kqpα

[d]qp

d−1∑

a=0

χ
(
pa
)
qpa lim

N→∞

[
pN
]k
qdpα

[
pN
]
qdp

pN−1∑

x=0

qpdxβ̃
(α)

k,qpdp
N

(
p(xd + a)
pdpN

)

=

[
p
]k
qα

[
p
]
q

[d]kqαp

[d]qp

d−1∑

a=0

χ
(
p
)
χ(a)qpaβ̃(α)

k,qpd

(a
d

)
= χ
(
p
)
[
p
]k
qα

[
p
]
q

β̃
(α)
k,χ,qp

.

(2.16)

For β(/= 1) ∈ X∗, one has

∫

pX

χ(x)dμ(α)
k,q1/β

(
βx
)
= χ

(
p

β

)[p
]k
qα/β

[
p
]
q1/β

β̃
(α)
k,χ,qp/β

,

∫

X

χ(x)dμ(α)
k,q1/β

(
βx
)
= χ

(
1
β

)
β̃
(α)
k,χ,q1/β

.

(2.17)

Therefore, we obtain the following theorem.

Theorem 2.5. For β(/= 1) ∈ X∗, one has

∫

X

χ(x)dμ(α)
k,q(x) = β̃

(α)
k,χ,q,

∫

pX

χ(x)dμ(α)
k,q(x) = χ

(
p
)
[
p
]k
qα

[
p
]
q

β̃
(α)
k,χ,qp

,
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∫

pX

χ(x)dμ(α)
k,q1/β

(
βx
)
= χ

(
p

β

)[p
]k
qα/β

[
p
]
q1/β

β̃
(α)
k,χ,qp/β

,

∫

X

χ(x)dμ(α)
k,q1/β

(
βx
)
= χ

(
1
β

)
β̃
(α)
k,χ,q1/β

.

(2.18)

Define

μ
(α)
k,β,q(U) = μ

(α)
k,q(U) − β−1

[
β−1
]k
qα

[
β−1
]
q

μ
(α)
k,q1/β

(
βU
)
. (2.19)

By a simple calculation, one gets

∫

X∗
χ(x)dμ(α)

k,β,q(x) =
∫

X

χ(x)dμ(α)
k,q(x) − β−1

[
β−1
]k
qα

[
β−1
]
q

∫

pX

χ(x)μ(α)
k,q1/β

(x)

= β̃
(α)
k,χ,q − χ

(
p
)
[
p
]k
qα

[
p
]
q

β̃
(α)
k,χ,qp ,

[
β−1
]k
qα

[
β−1
]k
q

∫

X∗
χ(x)dμ(α)

k,q1/β

(
βx
)
=

[
1/β
]k
qα

[
1/β
]
q

χ

(
1
β

)
β̃
(α)
k,χ,q1/β

− χ
(
p

β

)[p/β
]k
qα

[
p/β
]
q

β̃
(α)
k,χ,qp/β

.

(2.20)

By (2.19) and (2.20), one gets

∫

X∗
χ(x)dμ(α)

k,β,q

(
βx
)
=
∫

X

χ(x)dμ(α)
k,q(x) − β−1

[
β−1
]k
qα

[
β−1
]
q

∫

pX

χ(x)μ(α)
k,q1/β

(
βx
)

= β̃
(α)
k,χ,q − χ

(
p
)
[
p
]k
qα

[
p
]
q

β̃
(α)
k,χ,qp −

1
β

[
1/β
]k
qα

[
1/β
]
q

χ

(
1
β

)
β̃
(α)
k,χ,q1/β

+ χ

(
p

β

)[p/β
]k
qα

[
p/β
]
q

β̃
(α)
k,χ,qp/β

.

(2.21)

Now one defines the operator χy = χy,k,α:q on f(q) by

χyf
(
q
)
= χy,k,α:qf

(
q
)
=

[
y
]k
qα

[
y
]
q

χ
(
y
)
f
(
qy
)
. (2.22)
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Thus, by (2.22), one gets

χx,k,α:q ◦ χy,k,α:qf
(
q
)
= χx,k,α:q

[
y
]k
qα

[
y
]
q

χ
(
y
)
f
(
qy
)

=

[
y
]k
qα

[
y
]
q

χ
(
y
)
χ(x)

[
y
]k
qαy

[
y
]
qy

χ
(
y
)
f
(
qxy
)

=

[
xy
]k
qα

[
xy
]
q

χ
(
xy
)
f
(
qxy
)

= χxy,k,α:qf
(
q
)

= χxyf
(
q
)
.

(2.23)

Let us define χxχy = χx,k,α:q ◦ χy,k,α:q. Then one has

χxχy = χxy. (2.24)

From the definition of χx, one can easily derive the following equation;

(
1 − χp)

(
1 − 1

β
x1/β
)

= 1 − 1
β
x1/β − χp +

1
β
xp/β. (2.25)

Let f(q) = β̃
(α)
k,χ,q

. Then one gets

(
1 − χp)

(
1 − 1

β
x1/β
)
β̃
(α)
k,χ,q

= β̃
(α)
k,χ,q
− 1
β

[
1/β
]k
qα

[
1/β
]
q

χ

(
1
β

)
β̃
(α)
k,χ,q
−
[
p
]k
qα

[
p
]
q

χ
(
p
)
β̃
(α)
k,χ,qp

+
1
β

[
p/β
]k
qα

[
p/β
]
q

χ

(
p

β

)
β̃
(α)
k,χ,qp/β

.

(2.26)

By (2.21) and (2.26), one obtains the following equation:

∫

X∗
χ(x)dμ(α)

k,β,q

(
βx
)
=
(
1 − χp)

(
1 − 1

β
x1/β
)
β̃
(α)
k,χ,q, (2.27)

where β(/= 1) ∈ X∗.
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