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We have presented a derivation of the asymptotic equations for transverse magnetic multiple
scattering coefficients of an infinite grating of penetrable circular cylinders for obliquely incident
plane electromagnetic waves. We have first deducted an “Ansatz” delineating the asymptotic
behavior of the transverse magnetic multiple scattering coefficients associated with the most
generalized condition of oblique incidence (Kavaklıoğlu, 2000) by exploiting Schlömilch series
corresponding to the special circumstance that the grating spacing is much smaller than the
wavelength of the incident electromagnetic radiation. The validity of the asymptotic equations for
the aforementioned scattering coefficients has been verified by collating them with the Twersky’s
asymptotic equations at normal incidence. Besides, we have deduced the consequences that the
asymptotic forms of the equations at oblique incidence acquired in this paper reduce to Twersky’s
asymptotic forms at normal incidence by expanding the generalized scattering coefficients at
oblique incidence into an asymptotic series as a function of the ratio of the cylinder radius to
the grating spacing.

1. Introduction

Rayleigh [1] first treated the problem of the incidence of plane electric waves on an insulating
dielectric cylinder as long ago as 1881. He published the classical electromagnetic problem of
the diffraction of a plane wave at normal incidence by a homogeneous dielectric cylinder
[2]. His solution was later generalized for obliquely incident plane waves when the magnetic
vector of the incident wave is transverse to the axis of the cylinder by Wait [3]. Moreover,
Rayleigh [4, 5] adduced the first theoretical investigation for the problem of diffraction
by gratings. His results have been extended by Wait [6] for the treatment of scattering of
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plane waves by parallel-wire grids with arbitrary angle of incidence. Wait [6] developed
the solution of the problem of the scattering of plane electromagnetic waves incident upon
a parallel-wire grid that was backed by a plane-conducting surface. He generalized this
result subsequently to a plane wave, incident obliquely with arbitrary polarization on a
planar grid [7]. Wait did not treat the scattering of obliquely incident plane electromagnetic
waves by the infinite array of thick dielectric cylinders. This configuration has recently
been studied by Kavaklıoğlu [8–10], and an analytic expression for the generalized multiple
scattering coefficients of the infinite grating at oblique incidence was captured in the form of
a convergent infinite series [11].

The formal analytical solution for the scattering of a plane acoustic or electromagnetic
wave by an arbitrary configuration of parallel cylinders of different radii and physical
parameters in terms of cylindrical wave functions was obtained by Twersky [12] who
considered all possible contributions to the excitation of a particular cylinder by the
radiation scattered by the remaining cylinders in the grating and extended this solution
to expound the case where all the axes of cylinders lie in the same plane [13]. Twersky
[14] subsequently introduced the formal multiple scattering solution of a plane wave by
an arbitrary configuration of parallel cylinders to the finite grating of cylinders. He later
employed Green’s function methods to represent the multiple scattering amplitude of one
cylinder within the grating in terms of the functional equation and the single-scattering
amplitude of an isolated cylinder [15]. Furthermore, Twersky [16] acquired a set of algebraic
equations for the multiple scattering coefficients of the infinite grating in terms of the
elementary function representations of Schlömilch series [17] and the well-known scattering
coefficients of an isolated cylinder.

In the area of acoustics, Millar [18] studied the problem of scattering of a plane wave
by finite number of cylinders equispaced in a row that are associated with scatterers both
“soft” and “hard” in the acoustical sense. The solutions in the form of series in powers of a
small parameter, essentially the ratio of cylinder dimension to wavelength, were obtained.
Besides, Millar [19] investigated the scattering by an infinite grating of identical cylinders.
In a more recent investigation, Linton and Thompson [20] formulated the diffracted acoustic
field by an infinite periodic array of circles and determined the conditions for resonance by
employing the expressions which enable Schlömilch series to be computed accurately and
efficiently [21–23].

Previous investigations mentioned above do not include the most general case of
oblique incidence although the grating is illuminated by an incident plane E-polarized
electromagnetic wave at an arbitrary angle φi to the x-axis, whereas in the generalized oblique
incidence solution presented in this investigation, the direction of the incident plane wave
makes an arbitrary oblique angle θi with the positive z-axis as indicated in Figure 1. As
far as can be ascertained by the writers, Sivov [24, 25] first treated the diffraction by an
infinite periodic array of perfectly conducting cylindrical columns for the most generalized
case of obliquely incident plane-polarized electromagnetic waves in order to determine
the reflection and transmission coefficients of the infinite grating of perfectly conducting
cylinders in free space under the assumption that the period of the grating spacing was
small compared to a wavelength. The configuration of a greater relevance to the problem
has recently been investigated by many other researchers. For instance, Lee [26] studied
the scattering of an obliquely incident electromagnetic wave by an arbitrary configuration
of parallel, nonoverlapping infinite cylinders and acquired the solution for the scattering
of an obliquely incident plane wave by a collection of closely spaced radially stratified
parallel cylinders that can have an arbitrary number of stratified layers [27]. Moreover,
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Figure 1: The schematic of the scattering by an infinite grating at oblique incidence.

Lee [28] presented a general treatment of scattering of arbitrarily polarized incident light by a
collection of radially stratified circular cylinders at oblique incidence, described the solution
to the problem of scattering of obliquely incident light by a closely spaced parallel radially
stratified cylinders embedded in a semi-infinite dielectric medium [29], and developed a
general scattering theory for obliquely incident plane-polarized monochromatic waves on a
finite slab containing closely spaced radially stratified circular cylinders [30]. In addition, the
formulation for the extinction and scattering cross-sections of closely spaced parallel infinite
cylinders in a dielectric medium of finite thickness is presented [31]. In the area of modeling
photonic crystal structures, Smith et al. [32] developed a formulation for cylinder gratings
in conical incidence using a multipole method and studied scattering matrices and Bloch
modes in order to investigate the photonic band gap properties of woodpile structures [33].
This area of research has recently received a lot of attention due to potential applications to
microcircuitry, nanotechnology, and optical waveguides.

Three-dimensional generalization of Twersky’s solution [15, 16] for scattering of
waves by the infinite grating of dielectric circular cylinders was originally developed by
Kavaklıoğlu [8–10] by employing the separation-of-variables method for both TM and TE
polarizations, and the reflected and transmitted fields were derived for obliquely incident
plane H-polarized waves in [34]. Kavaklıoğlu and Schneider [35] presented the asymptotic
solution of the multiple scattering coefficients for obliquely incident and vertically polarized
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plane waves as a function of the ratio of the cylinder radius to grating spacing when the
grating spacing, d, is small compared to a wavelength.

Furthermore, Kavaklıoğlu and Schneider [11] acquired the exact analytical solution
for the multiple scattering coefficients of the infinite grating for obliquely incident plane
electromagnetic waves by the application of the direct Neumann iteration technique to two
infinite sets of equations describing the exact behavior of the multiple scattering coefficients,
which was originally published in [8, 10], in the form of a convergent infinite series and
obtained the generalized form of Twersky’s functional equation for the infinite grating in
matrix form for obliquely incident waves [11].

The purpose of this paper is to elucidate the derivation of the equations pertaining
to the asymptotic behavior of the transverse magnetic multiple scattering coefficients of
an infinite array of infinitely long circular dielectric cylinders illuminated by obliquely
incident plane electromagnetic waves. The arbitrarily polarized obliquely incident plane
wave depicted in Figure 1 can be decomposed into two different modes of polarization. The
asymptotic representation associated with the transverse magnetic (TM) mode that is also
defined as vertical polarization, for which the incident electric field Einc has a component
parallel to the constituent cylinders of the grating, will be treated in this investigation.

2. Problem Formulation

“An infinite number of infinitely long identical dielectric circular cylinders,” which are
separated by a distance “d,” are placed parallel to each other in the y-z plane and positioned
perpendicularly to the x-y plane as indicated in Figure 1. For TM mode; v̂i is the unit vector
associated with the vertical polarization and has a component parallel to the cylinders of the
grating. The fact that “the incident E-field has a component parallel to all the cylinders of the
dielectric grating” does not mean that we deal with the TM mode as it does not exclude the
existence of other components of E-field. The incident plane wave depicted in Figure 1 makes
an angle of obliquity θi with the positive z-axis.

Lemma 2.1 (multiple scattering representation for an infinite grating of dielectric circular
cylinders for obliquely incident E-polarized plane electromagnetic waves [3, 7, 8]). A
vertically polarized plane electromagnetic wave, which is obliquely incident upon the infinite array of
identical insulating dielectric circular cylinders with radius “a,” dielectric constant “εr,” and relative
permeability “μr,” can be expanded in “the individual cylindrical coordinate system (Rs, φs, z) of the
sth cylinder” in terms of the cylindrical waves referred to the axis of sth cylinder as

Einc
v

(
Rs, φs, z

)
= v̂iE0ve

ikrsd sinψi

{ ∞∑
n=−∞

e−inψiJn(krRs)ein(φs+π/2)

}
e−ikzz. (2.1)

The origin of each individual cylindrical coordinate system, namely, (Rs, φs, z), is
located at the center of the corresponding cylinder. In the above description of the incident
field, v̂i is a unit vector that denotes the vertical polarization having a component parallel to
all the cylinders, φi is the angle of incidence in x-y plane measured from the x-axis in such
a way that ψi = π + φi, implying that the wave is obliquely incident in the first quadrant of
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the coordinate system, and “Jn(x)” stands for a Bessel function of order n. In addition, we
have the following definitions:

kr = k0 sin θi,

kz = k0 cos θi,

k0 =
ω

c
.

(2.2)

“e−iωt” time dependence is suppressed throughout the paper, where “ω” stands for the
angular frequency of the incident wave in radians per second, “k0” is the free-space wave
number, “c” denotes the speed of light in free space, and “t” represents time in seconds. The
centers of the cylinders in the infinite grating are located at the positions r0, r1, r2, . . ., and so
forth. The exact solution for the z-component of the electric field in the exterior of the grating
belonging to this configuration can be expressed in terms of the incident electric field in the
coordinate system of the sth cylinder located at rs, plus a summation of cylindrical waves
outgoing from each individual mth cylinder located at rm, as |r − rm| → ∞, that is,

E
(ext)
z

(
Rs, φs, z

)
= Einc

z

(
Rs, φs, z

)
+

+∞∑
m=−∞

E
(m)
z

(
Rm, φm, z

)
. (2.3)

Lemma 2.2 (expressions for the z-components of the exterior fields [8]). Let {An,A
H
n }∞n=−∞

for all n ∈ Z, where “Z” stands for the set of all integers, denote the set of all multiple scattering
coefficients corresponding to the exterior electric and magnetic fields of the infinite grating associated
with obliquely incident plane E-polarized electromagnetic waves, respectively. Then, the exterior
electric and magnetic field intensities associated with vertically polarized obliquely incident plane
electromagnetic waves are given as

E
(ext)
z

(
Rs, φs, z

)
=

{
eikrsd sinψi

+∞∑
n=−∞

[(
Ein +

∞∑
m=−∞

AmIn−m(krd)
)
Jn(krRs) +AnH

(1)
n (krRs)

]
ein(φs+π/2)

}
e−ikzz,

(2.4a)

H
(ext)
z

(
Rs, φs, z

)
=

{
eikrsd sinψi

+∞∑
n=−∞

[( ∞∑
m=−∞

AH
mIn−m(krd)

)
Jn(krRs) +AH

n H
(1)
n (krRs)

]
ein(φs+π/2)

}
e−ikzz.

(2.4b)

In this representation, {An}∞n=−∞ depicts the set of all undetermined multiple scattering
coefficients associated with exterior electric fields defined by the expressions (29) and
(34)–(37) in [8], and {AH

n }∞n=−∞ delineates the set of all undetermined multiple scattering
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coefficients associated with exterior magnetic fields defined by the expressions (40)–(42) in
[8], respectively. In expressions (2.4a) and (2.4b), we have

Ein = sin θiE0ve
−inψi , (2.5a)

In(2πΔ) =
+∞∑
p=1

H
(1)
n

(
2πpΔ

)[
e2πipΔ sinψi(−1)n + e−2πipΔ sinψi

]
, (2.5b)

where Δ ≡ krd/2π and “H(1)
n (x)” denotes the nth order Hankel function of first kind, for all

n ∈ Z. The series In−m(krd) in expression (2.4b) is the generalization of the “Schlömilch series
for obliquely incident electromagnetic waves” [10, 17] and converges provided that krd(1 ±
sinψi)/2π does not equal integers. The integral values of krd(1± sinψi)/2π are known as the
“grazing modes” or “Rayleigh values” [17]. The convergence of the series for the scattering
coefficients can be found on page 342 in [11]. Moreover, the convergence of the Schlömilch
series has been discussed by Twersky [17] in detail, who also gives additional references. The
exact expressions corresponding to the radial and angular components of the electric and
magnetic field intensities have already been obtained in [8] by employing the z-component
of the external field in the expressions (2.4a) and (2.4b).

3. Derivation of the Asymptotic Equations for the Multiple Scattering
Coefficients of the Infinite Grating at Oblique Incidence

This section is devoted to the formal derivation of the asymptotic equations for the exterior
electric and magnetic multiple scattering coefficients of the infinite grating of dielectric
cylinders for obliquely incident vertically polarized plane waves. Since the wavelength of the
incident radiation is much larger than the grating spacing, the condition max{(krd/2π)(1 ±
sinψi)} ≡ krd/π < krd � 1 is automatically satisfied thereby excluding any special case
associated with the grazing modes. In order to demonstrate the procedure of obtaining the
asymptotic equations for the TM multiple scattering coefficients of the infinite grating at
oblique incidence, we will first introduce the exact equations corresponding to the transverse
magnetic multiple scattering coefficients {An;AH

n }+∞n=−∞ associated with the exterior electric
and magnetic fields of the infinite grating of dielectric circular cylinders at oblique incidence
by asserting the following lemma.

Lemma 3.1 (exact equations of the transverse magnetic multiple scattering coefficients of
the infinite grating of insulating dielectric cylinders at oblique incidence [8]). Exact equations
corresponding to the transverse magnetic multiple scattering coefficients of an infinite grating of
insulating dielectric cylinders associated with obliquely incident plane electromagnetic waves are first
presented by the equations (85a) and (85b) in [8] as

b
μ
n

{
An + cn

[
Ein +

+∞∑
m=−∞

AmIn−m(krd)
]}

= −
[
AH
n + aμn

+∞∑
m=−∞

AH
mIn−m(krd)

]
, ∀n ∈ Z,

bεn

[
AH
n + cn

+∞∑
m=−∞

AH
mIn−m(krd)

]
= An + aεn

[
Ein +

+∞∑
m=−∞

AmIn−m(krd)
]
, ∀n ∈ Z.

(3.1)
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The coefficients arising in this infinite set of linear algebraic equations are defined as

cn :=
Jn(kra)

H
(1)
n (kra)

, ∀n ∈ Z. (3.2)

Two sets of constants aζn and bζn, in which ζr ∈ {εr , μr} stands for the relative permittivity and
permeability of the dielectric cylinders, respectively, are given as

a
ζ
n =

[
Jn(k1a)J ′n(kra) − ζr(kr/k1)Jn(kra)J ′n(k1a)

Jn(k1a)H
(1)
n

′
(kra) − ζr(kr/k1)H

(1)
n (kra)J ′n(k1a)

]
(3.3)

for ζ ∈ {ε, μ}, and for all n ∈ Z; where k1 is defined as k1 = k0

√
εrμr − cos2θi, and

b
ζ
n =

√
ε0μ0

ζ2
0

[
Jn(k1a)H

(1)
n (kra)

Jn(k1a)H
(1)
n

′
(kra) − ζr(kr/k1)H

(1)
n (kra)J ′n(k1a)

](
inF

kra

)
(3.4)

for ζ ∈ {ε, μ} and for all n ∈ Z, where F in the expression above is a constant and given as

F =

(
μrεr − 1

)
cos θi

μrεr − cos2θi
, ∀n ∈ Z. (3.5)

In these equations εr and μr denote the relative dielectric constant and the relative permeability of the
insulating dielectric cylinders; ε0 and μ0 stand for the permittivity and permeability of the free space,

respectively. In addition, J ′n, andH
(1)
n

′
in expressions (3.2) and (3.3) are defined as

J ′n(ς) ≡
d

dς
Jn(ς),

H
(1)
n

′
(ς) ≡ d

dς
H

(1)
n (ς),

(3.6)

which imply the first derivatives of the Bessel and Hankel functions of first kind and of order n with
respect to their arguments.

Theorem 3.2 (approximate equations for the scattering coefficients of the infinite grating at
oblique incidence when krd � 1). The asymptotic form of the exact equations for the transverse
magnetic multiple scattering coefficients of an infinite grating at oblique incidence can be inferred by
two different sets, in which the first one contains only the odd coefficients and the second set contains
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only the even coefficients. Odd multiple scattering coefficients associated with the infinite grating of
dielectric circular cylinders at oblique incidence satisfy the following two sets of asymptotic equations:

A±(2n−1)
∼= (kra)

4n−2

D

[
s
εμ

2n−1

(
Ei±(2n−1) +

∞∑
m=−∞

H±(2n−1)−mAm

)
+ sξ±(2n−1)

( ∞∑
m=−∞

H±(2n−1)−mAH
m

)]
,

AH
±(2n−1)

∼= (kra)
4n−2

D

[
sn±(2n−1)

(
Ei±(2n−1) +

∞∑
m=−∞

H±(2n−1)−mAm

)
+ sμε2n−1

( ∞∑
m=−∞

H±(2n−1)−mAH
m

)]
.

(3.7)

Similarly, the even multiple scattering coefficients satisfy the following two infinite sets of asymptotic
equations associated with the transverse magnetic multiple scattering coefficients of the infinite grating
of dielectric circular cylinders at oblique incidence as

A±2n
∼= (kra)

4n

D

[
s
εμ

2n

(
Ei±2n +

∞∑
m=−∞

H±2n−mAm

)
+ sξ±2n

( ∞∑
m=−∞

H±2n−mAH
m

)]
,

AH
±2n

∼= (kra)
4n

D

[
s
η

±2n

(
Ei±2n +

∞∑
m=−∞

H±2n−mAm

)
+ sμε2n

( ∞∑
m=−∞

H±2n−mAH
m

)]
,

∀n ∈ N,

(3.8)

whereN denotes the set of all natural numbers.

Proof. The exact equations in (3.1) can be solved for An, and AH
n when the distance between

the cylinders of the infinite grating is smaller than the wavelength of the incident wave, that
is, for krd � 1 the exact equations take the following form:

(
A±n

AH
±n

)
∼= S

n

⎛⎜⎜⎜⎝
Ei±n +

∞∑
m=−∞

AmH±n−m(krd)

∞∑
m=−∞

AH
mH±n−m(krd)

⎞⎟⎟⎟⎠, (3.9)

where S
n

is a (2 × 2) matrix defined as

S
n

:=

⎛⎝s
εμ
n s

ξ
±n

s
η
±n s

με
n

⎞⎠ (kra)
2n

D
, (3.10)

and “Hn(krd)” connotes the approximation to the “exact form of the Schlömilch series
In(krd)” in the limiting case when for krd � 1. Introducing (3.10) into (3.9), the approximate
set of equations for the scattering coefficients of the infinite grating at oblique incidence can
explicitly be written as

(
A±n

AH
±n

)
∼= (kra)

2n

D

⎛⎝s
εμ
n s

ξ
±n

s
η
±n s

με
n

⎞⎠
⎛⎜⎜⎜⎝
Ei±n +

∞∑
m=−∞

AmH±n−m(krd)

∞∑
m=−∞

AH
mH±n−m(krd)

⎞⎟⎟⎟⎠. (3.11)
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In the above, we have

D =

[
1 + εr

(
kr
k1

)2
][

1 + μr
(
kr
k1

)2
]
− F2. (3.12)

The n-dependent constants appearing in (3.10) and (3.11) are defined as

s
εμ
n :=

[
inπ

(2nn!)2

]
sεμ, (3.13a)

s
ξ
±n :=

[
inπ

(2nn!)2

]
s±ξ, (3.13b)

s
η
±n :=

[
inπ

(2nn!)2

]
s±η, (3.13c)

s
με
n :=

[
inπ

(2nn!)2

]
sμε. (3.13d)

The various constants appearing in the definitions (3.13a)–(3.13d) are expressed as

sεμ =

[
1 − εr

(
kr
k1

)2
][

1 + μr
(
kr
k1

)2
]
+ F2,

sμε =

[
1 − μr

(
kr
k1

)2
][

1 + εr
(
kr
k1

)2
]
+ F2,

s±ξ = ±2iξ0F,

s±η = ∓2iη0F.

(3.14)

The elements of the matrix of coefficients in (3.11) can be calculated using the expressions
(3.14), for instance (sεμ/D) and (sμε/D) terms can be written as

sεμ

D
≡

[
1 − εr

(
sin2θi

μrεr − cos2θi

)][
1 + μr

(
sin2θi

μrεr − cos2θi

)]
+

[(
μrεr − 1

)
cos θi

μrεr − cos2θi

]2

[
1 + εr

(
sin2θi

μrεr − cos2θi

)][
1 + μr

(
sin2θi

μrεr − cos2θi

)]
−
[(
μrεr − 1

)
cos θi

μrεr − cos2θi

]2
,

sμε

D
≡

[
1 − μr

(
sin2θi

μrεr − cos2θi

)][
1 + εr

(
sin2θi

μrεr − cos2θi

)]
+

[(
μrεr − 1

)
cos θi

μrεr − cos2θi

]2

[
1 + μr

(
sin2θi

μrεr − cos2θi

)][
1 + εr

(
sin2θi

μrεr − cos2θi

)]
−
[(
μrεr − 1

)
cos θi

μrεr − cos2θi

]2
.

(3.15)
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In terms of the definitions of (3.13a)–(3.13d), the approximate set of equations for the multiple
scattering coefficients of the infinite grating at oblique incidence given in (3.11) takes the
following form:

(
A±n

AH
±n

)
∼= 1
D

(
sεμ s±ξ

s±η sμε

)⎛⎜⎜⎜⎝
Ei±n +

∞∑
m=−∞

AmH±n−m(krd)

∞∑
m=−∞

AH
mH±n−m(krd)

⎞⎟⎟⎟⎠
(

inπ

(2nn!)2

)
(kra)

2n, ∀n ∈ N.

(3.16)

Statement of Theorem 3.2 follows immediately upon decomposition of (3.16) into its odd and
even components as it is designated by (3.7) and (3.8).

The elementary function representations of the Schlömilch series In(krd) in (2.5b)
have originally been derived by Twersky [17] for the normal incidence and modified by
Kavaklıoğlu [10] for the oblique incidence. We will employ these elementary function
representations for the evaluation of the asymptotic forms of the Schlömilch series Hn =
Jn + iNn in the limit of krd � 1. Twersky’s forms [16, 17] are still valid for the case of
obliquely incident waves [10] with a slight modification in their arguments.

Lemma 3.3 (approximate expressions for the “Schlömilch series Hn = Jn + iNn” in the limit
of krd � 1 [10, 17]). We have obtainedH0 for the special case of n = 0 as

H0 = −1 +
1
πΔ

(
μ+∑

μ=−μ−

1
cosφμ

)
+

2
iπ

ln
γΔ
2

+
i

π

⎛⎝ μ+∑
μ=1

+
μ−∑
μ=1

⎞⎠ 1
μ

+
1
iπ

∞∑
μ=μ++1

(
1

Δ sinh η+μ
− 1
μ

)
+

1
iπ

∞∑
μ=μ−+1

(
1

Δ sinhη−μ
− 1
μ

)
,

(3.17)

where γ = 1.781 . . . . In (3.17), cosφμ is defined by the following relationship:

sinφμ := sinψi + μ
2π
krd

. (3.18)

The angles φμ are the usual “diffraction angles” of the grating, and (3.18) that provides these discrete
angles is called the “grating equation”. “Propagating modes” are determined by | sinφμ| < 1, and they
correspond to |μ| ≤ μ±, the μ±’s being the closest integers to them±’s for which | sinφμ| < 1 should be
satisfied, that is, μ± < m±, such that

m± =
(
1 ∓ sinφi

)(krd
2π

)
. (3.19)
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“Evanescent modes” are determined by | sinφμ| > 1, and they correspond to integer values of μ such
that |μ| ≥ m± + 1, we have ± sinφ±

μ > 1, and φ±
μ are determined by φ±

μ = ±π/2 ∓ i|η±μ|. For this case
the “grating equation” takes the form of

cosh
∣∣∣η±μ∣∣∣ = ±

[
sinφi + μ

(
2π
krd

)]
> 1,

{∀μ ∈ Z | ±μ ≥ μ± + 1
}
. (3.20)

For the general case, we have Hn, for all n ∈ N as

H2n =
1
πΔ

μ+∑
μ=−μ−

cos 2nφμ
cosφμ

+
i

π

[
1
n
+

n∑
m=1

(−1)m22m(n +m − 1)!
(2m)!(n −m)!

B2m
(
Δ sinψi

)
Δ2m

]

+
1

iπΔ

⎡⎣⎛⎝ μ+∑
μ=0

−
−μ−∑
μ=−1

⎞⎠sin 2nφμ
cosφμ

+ (−1)n
⎛⎝ ∞∑

μ=μ++1

e−2nη+μ

sinhη+μ
+

∞∑
μ=μ−+1

e−2nη−μ

sinhη−μ

⎞⎠⎤⎦,
H2n+1 =

1
iπΔ

μ+∑
μ=−μ−

sin(2n + 1)φμ
cosφμ

+
2
π

n∑
m=0

(−1)m22m(n +m)!
(2m + 1)!(n −m)!

B2m+1
(
Δ sinψi

)
Δ2m+1

+
1
πΔ

⎡⎣⎛⎝ μ+∑
μ=0

−
−μ−∑
μ=−1

⎞⎠cos(2n + 1)φμ
cosφμ

+(−1)n+1

⎛⎝ ∞∑
μ=μ++1

e−(2n+1)η+μ

sinhη+μ
−

∞∑
μ=μ−+1

e−(2n+1)η−μ

sinhη−μ

⎞⎠⎤⎦.
(3.21)

Finally, Bn(x) is the Bernoulli polynomial of argument “x” and power “n”, in (3.21).

Remark 3.4 (Bessel series J0, J2n, and J2n+1). The propagating range of the Schlömilch series
Hn, for all n ∈ Z+, where Z+ = {0, 1, 2, 3, . . .} in (3.17) and (3.21), is described by “Jn” Bessel
series, which can explicitly be written as

J2n =

[
2
krd

μ+∑
μ=−μ−

cos 2nφμ
krd cosφμ

− δn0

]
; ∀n ∈ Z+,

J2n+1 =

[
2

ikrd

μ+∑
μ=−μ−

sin(2n + 1)φμ
cosφμ

]
; ∀n ∈ Z+.

(3.22)

Remark 3.5 (Neumann series N0, N2n, and N2n+1). The evanescent range of the Schlömilch
seriesHn, for all n ∈ Z+ in (3.17) and (3.21), is described by “iNn” where Nn is known as the
Neumann series. Nn in (3.17) and (3.21) can be put into the following form for this limiting
case (krd � 1) as

N0
∼= − 2

π
ln
γΔ
2

+
1
π

⎛⎝ μ+∑
μ=1

+
μ−∑
μ=1

⎞⎠ 1
μ
− 1
πΔ

∞∑
μ=μ++1

(
(1/2)

(
Δ/μ

) − sinψi
)(

μ/Δ
)[
μ/Δ + sinψi − (1/2)

(
Δ/μ

)]
− 1
πΔ

∞∑
μ=μ−+1

(
(1/2)

(
Δ/μ

)
+ sinψi

)(
μ/Δ

)[
μ/Δ − sinψi − (1/2)

(
Δ/μ

)] .
(3.23a)
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In addition, we can obtain the simplified expressions for N2n and N2n+1 as

N2n
∼= 1
nπ

+
1
π

n∑
m=1

(−1)m22m(n +m − 1)!
(2m)!(n −m)!

B2m
(
Δ sinψi

)
Δ2m

− 1
π

⎛⎝ −1∑
μ=−μ−

−
μ+∑
μ=0

⎞⎠ n∑
m=1

[
(−1)m22m−1(n +m − 1)!
(2m − 1)!(n −m)!Δ2m

](
μ + Δ sinψi

)2m−1

− (−1)n

πΔ

⎧⎨⎩ ∞∑
μ=μ++1

(
μ/2Δ

)2n +O
((

Δ/μ
)2
)

(
μ/Δ

)
+ sinψi − (1/2)

(
Δ/μ

)
+O

((
Δ/μ

)2
)

+
∞∑

μ=μ−+1

(
μ/2Δ

)2n +O
((

Δ/μ
)2
)

(
μ/Δ

) − sinψi − (1/2)
(
Δ/μ

)
+O

((
Δ/μ

)2
)
⎫⎬⎭, ∀n ∈ N,

(3.23b)

N2n+1
∼= 2
iπ

n∑
m=0

(−1)m22m(n +m)!
(2m + 1)!(n −m)!

B2m+1
(
Δ sinψi

)
Δ2m+1

− 1
iπ

⎛⎝ −1∑
μ=−μ−

−
μ+∑
μ=0

⎞⎠ n∑
m=0

[
(−1)m22m(n +m)!
(2m)!(n −m)!Δ2m+1

](
μ + Δ sinψi

)2m

− (−1)n

iπΔ

⎧⎨⎩ ∞∑
μ=μ++1

(
μ/2Δ

)2n +O
((

Δ/μ
)2
)

(
μ/Δ

)
+ sinψi − (1/2)

(
Δ/μ

)
+O

((
Δ/μ

)2
)

−
∞∑

μ=μ−+1

(
μ/2Δ

)2n +O
((

Δ/μ
)2
)

(
μ/Δ

) − sinψi − (1/2)
(
Δ/μ

)
+O

((
Δ/μ

)2
)
⎫⎬⎭, ∀n ∈ Z+.

(3.23c)

Remark 3.6 (special case when μ+ = μ− = 0). The physical problem under consideration
corresponds to the special case for which there is only one propagating mode and the
scattering of wavelengths is larger than the grating spacing, that is, (krd/2π)(1 ± sinψi) < 1.
Then the Bessel series for φ0 = π + ψi, which implies that the plane wave is incident onto the
grating in the first quadrant, for all n ∈ Z+, reduces to

J2n =
2 cos 2nφ0

krd cosφ0
− δn0,

J2n+1 = −2i sin(2n + 1)φ0

krd cosφ0
,

(3.24)

where δnm stands for the Kronecker delta function.
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Remark 3.7 (approximations for Neumann seriesN0, N2n, and N2n+1 in the limit of Δ � 1).
Inserting μ+ = μ− = 0 in (3.23a), (3.23b), and (3.23c), the expression for N0 in (3.23a) reduces
to

N0
∼= − 2

π
ln
γΔ
2

− 1
πΔ

∞∑
μ=1

⎧⎨⎩
(

1 + 2 sin2ψi
)
− (1/2)

(
Δ/μ

)2

(
μ/Δ

)3
[
1 −

(
1 + 2 sin2ψi

)(
Δ/μ

)2 + (1/4)
(
Δ/μ

)4
]
⎫⎬⎭.

(3.25a)

The approximation of the Neumann series N0, for φ0 = π + ψi, up to terms of the order (krd)
2

can be obtained from (3.25a) as

N0
∼= − 2

π
ln
γΔ
2

−

(
1 + 2 sin2ψi

)
Δ2

π
ζ(3) , (3.25b)

where ζ(s), for all s ∈ R, denotes the Riemann zeta function. In the same range, the Neumann
seriesNn reduces to

N2n =
1
nπ

+
1
π

n∑
m=1

(−1)m22m−1(n +m − 1)!
(2m − 1)!(n −m)!Δ2m

[
B2m

(
Δ sinψi

)
m

+
(
Δ sinψi

)2m−1

]
+ F2n, ∀n ∈ N,

N2n+1 =
1
iπ

n∑
m=0

(−1)m22m(n +m)!
(2m)!(n −m)!Δ2m+1

[
B2m+1

(
Δ sinψi

)
m + 1/2

+
(
Δ sinψi

)2m

]
+ F2n+1, ∀n ∈ Z+,

(3.26)

where F’s in (3.26) are given as

F2n
∼= (−1)n+1

πΔ

∞∑
μ=1

1
22n−1

(
Δ
μ

)2n+1

,

F2n+1
∼= i (−1)n+1

πΔ
sinψi

∞∑
μ=1

1
22n

(
Δ
μ

)2n+3

.

(3.27)

Remark 3.8 (approximations for Schlömilch series, Hn = Jn+iNn in the limit of Δ � 1). If krd
is small, that is to say if (krd/2π)(1 ± sinψi) < 1, then there is only one discrete propagating
mode. Employing the expansions for the Bessel and Neumann Series obtained in the previous
sections for φ0 = π + ψi; the Schlömilch Series in this range can be expressed as

H0
∼= 2
krd cosφ0

− 2i
π

ln
γkrd

4π
− 1 − i (krd)

2

2π3

(
1
2
+ sin2φ0

)
ζ(3) +O

(
(krd)

3
)
,

H1
∼= −2i sinφ0

krd cosφ0
+

2 sinφ0

π
+
(krd)

2 sinφ0

4π3
ζ(3) +O

(
(krd)

3
)
,

H2
∼= 4π

3i(krd)
2
+

2 cos 2φ0

krd cosφ0
+
i

π

(
1 − 2 sin2φ0

)
+ i

(krd)
2

(2π)3
ζ(3) +O

(
(krd)

3
)
,
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H3
∼= −16π sinφ0

3(krd)
2

− i 2 sin 3φ0

krd cosφ0
+

2 sinφ0

π

(
1 − 4

3
sin2φ0

)
− sinφ0

2
(krd)

4

(2π)5
ζ(5) +O

(
(krd)

5
)
,

H4
∼= 25π3

15i(krd)
4
− i 16π

(krd)
2

(
1
6
− sin2φ0

)
+

2 cos 4φ0

krd cosφ0

+
i

2π

(
1 − 8 sin2φ0 + 8 sin4φ0

)
− i (krd)

4

4(2π)5
ζ(5) +O

(
(krd)

5
)
.

(3.28)

Remark 3.9 (leading terms of the Schlömilch series, Hn = Jn + iNn in the limit of Δ � 1). The
leading terms of H’s for large “n”, for all n ∈ N is given as

H2n
∼= 24n−1

[
(−1)nπ2n−1B2n(0)

(krd)
2n

]
i

n
,

H2n+1
∼= 24n+1

[
(−1)nπ2n−1B2n(0)

(krd)
2n

]
sinφ0,

(3.29)

where Bn(x) corresponds to the Bernoulli Polynomial. From (3.28) and (3.29), we can deter-
mine the leading terms of the Schlömilch series as

H0 ≈ h0

krd
, h0 ≡ 2 secφ0,

H1 ≈ h1

krd
, h1 ≡ −2i tanφ0,

H2 ≈ h2

(krd)
2
, h2 ≡ 4π

3i
,

H3 ≈ h3

(krd)
2
, h3 ≡ −16π sinφ0

3
,

H4 ≈ h4

(krd)
4
, h4 ≡ 25π3

15i
,

H5 ≈ h5

(krd)
4
, h5 ≡ −28π3 sinφ0

15
.

(3.30)

The leading terms of Hn for large “n” are given by

H2n ≈ h2n

(krd)
2n
,

H2n+1 ≈ h2n+1

(krd)
2n
,

(3.31)
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where h2n’s and h2n+1’s for large ”n” are given as

h2n −→ i

n
(−1)n24n−1π2n−1B2n(0), (3.32a)

h2n+1 −→ (−1)n24n+1π2n−1B2n(0) sinφ0 ≡ −4inh2n sinφ0. (3.32b)

In the above expressions, Bξ’s are the Bernoulli numbers, and the relationship between Bernoulli
polynomial and Bernoulli numbers is given as

B2ξ(0) ≡ (−1)ξ−1Bξ. (3.32c)

4. Asymptotic Expansions for the Scattering Coefficients of the Infinite
Grating at Oblique Incidence in the Limiting Case of “(a/d) � 1”

In order to find a solution for the set of equations given in (3.15) and (3.16), we have
introduced an “Ansatz” [36] for the scattering coefficients of the electric and magnetic fields
of the infinite grating assuming (kra) � 1, and (kra/krd) ≡ ξ < 1/2, as

A±(2n−1)
∼= A±(2n−1),0(kra)

2n, (4.1a)

AH
±(2n−1)

∼= AH
±(2n−1),0(kra)

2n (4.1b)

for all n ∈ N, for the odd multiple coefficients corresponding to the electric and magnetic field
intensities of the infinite grating associated with obliquely incident plane electromagnetic
waves, and

A±2n
∼= A±2n,0(kra)

2n+2 , (4.1c)

AH
±2n

∼= AH
±2n,0(kra)

2n+2 (4.1d)

for all n ∈ Z+ for the even multiple coefficients. In the above expressions, we have delineated
the wavelength-independent parts of the multiple scattering coefficients associated with the
exterior electric and magnetic field intensities as {A±m,0, AH

±m,0}
+∞
m=−∞.

Theorem 4.1 (asymptotic equations for the multiple scattering coefficients corresponding to
the exterior electric and magnetic field intensities associated with obliquely incident vertically
polarized plane electromagnetic waves). The multiple scattering coefficients corresponding to the
exterior electric and magnetic field intensities associated with obliquely incident vertically polarized
plane electromagnetic waves satisfy two infinite sets of asymptotic equations described by

[
A±(2n−1),0

AH
±(2n−1),0

]
=
δn1

D

⎡⎣ s
εμ

2n−1,0

s
η

±(2n−1),0

⎤⎦Ei±(2n−1),0 +
∞∑
m=1

(a
d

)2(m+n−1)
h±2(m+n−1)S±(2n−1),0

[
A∓(2m−1),0

AH
∓(2m−1),0

]
,

∀n ∈ N
(4.2a)
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for the odd multiple scattering coefficients, and[
A±2n,0

AH
±2n,0

]
=
δn1

D

[
s
εμ

2n,0

s
η

±2n,0

]
Ei±2n,0 +

∞∑
m=1

(a
d

)2(m+n−1)

× S
±2n,0

{
h±2(m+n−1)

[
A∓2(m−1),0

AH
∓2(m−1),0

]
+ h±(2m+2n−1)

[
A∓2(m−1),0

AH
∓2(m−1),0

]}
, ∀n ∈ N,

(4.2b)

for the even multiple scattering coefficients.

Proof. We have defined the overall effect of the multiple scattering terms when the wave-
length is much larger than the grating spacing, that is, (krd) � 1, and (kra/krd) ≡ ξ < 1/2
as

G±n ≡
∞∑

m=−∞
H±n−mAm, (4.3a)

for the electric field coefficients, and

GH
±n ≡

∞∑
m=−∞

H±n−mAH
m, (4.3b)

for the magnetic field coefficients. Employing the approximations of Schlömilch series given in
(3.27) in the expressions (4.3a) and (4.3b), we can write the overall effect of the multiple
scattering terms when the wavelength is much larger than the grating spacing, that is,
(krd) � 1, and (kra/krd) ≡ ξ < 1/2 as

G±(2n−1),0 =
∞∑
m=1

(a
d

)2m
h±2(m+n−1)A∓(2m−1),0, (4.4a)

GH
±(2n−1),0 =

∞∑
m=1

(a
d

)2m
h±2(m+n−1)A

H
∓(2m−1),0 (4.4b)

for all n ∈ N, for the odd coefficients,

G±2n,0 =
∞∑
m=1

(a
d

)2m{
h±2(m+n−1)A∓(2m−2),0 + h±(2m+2n−1)A∓(2m−1),0

}
, (4.4c)

GH
±2n,0 =

∞∑
m=1

(a
d

)2m{
h±2(m+n−1)A

H
∓(2m−2),0 + h±(2m+2n−1)A

H
∓(2m−1),0

}
(4.4d)

for all n ∈ N, for the even coefficients; and the special case for n = 0 is given by

G0,0 =
1∑

m=−1

hmA−m,0,

GH
0,0 =

1∑
m=−1

hmA
H
−m,0.

(4.5)
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Defining the wavelength independent parts of the scattering matrices from (3.10) as

S
n

:= S
n,0
(kra)

2n
, (4.6a)

S
±n,0

:=
1
D

⎡⎣sεμn s
ξ
±n

s
η
±n s

με
n

⎤⎦, (4.6b)

S
±(2n−1),0

≡ 1
D

⎡⎣ s
εμ

2n−1,0 s
ξ
±(2n−1),0

s
η

±(2n−1),0 s
με

2n−1,0

⎤⎦ (4.6c)

for all n ∈ N, corresponding to the odd, and

S
±2n,0

≡ 1
D

⎡⎣ sεμ2n,0 s
ξ
±2n,0

s
η

±2n,0 s
με

2n,0

⎤⎦, ∀n ∈ N, (4.6d)

corresponding to the even part. Using the definitions in (4.6a)–(4.6d), and introducing
(4.4a)–(4.4d) into (3.7) and (3.8), we have obtained the following set of equations for the
approximations of the scattering coefficients:

[
A±(2n−1),0

AH
±(2n−1),0

]
= S

±(2n−1),0

⎡⎢⎢⎣δn1E
i
±(2n−1),0 +

(a
d

)2(n−1)
G±(2n−1),0(a

d

)2(n−1)
GH

±(2n−1),0

⎤⎥⎥⎦, ∀n ∈ N, (4.7a)

corresponding to the odd scattering coefficients, and

[
A±2n,0

AH
±2n,0

]
= S

±2n,0

⎡⎢⎢⎣δn1E
i
±2n,0 +

(a
d

)2(n−1)
G±2n,0(a

d

)2(n−1)
GH

±2n,0

⎤⎥⎥⎦, ∀n ∈ N, (4.7b)

corresponding to the even scattering coefficients. Splitting the matrices in (4.7a) and (4.7b)
into two parts, we have

[
A±(2n−1),0

AH
±(2n−1),0

]
=
δn1

D

⎡⎣ s
εμ

2n−1,0

s
η

±(2n−1),0

⎤⎦Ei±(2n−1),0 +
(a
d

)2(n−1)
S
±(2n−1),0

[
G±(2n−1),0

GH
±(2n−1),0

]
, ∀n ∈ N,

(4.8a)

for the odd scattering coefficients, and

[
A±2n,0

AH
±2n,0

]
=
δn1

D

[
s
εμ

2n,0

s
η

±2n,0

]
Ei±2n,0 +

(a
d

)2(n−1)
S
±2n,0

[
G±2n,0

GH
±2n,0

]
, ∀n ∈ N (4.8b)
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for even scattering coefficients. From (4.4a)–(4.4d), we have established the following terms:

(a
d

)2(n−1)
G±(2n−1),0 =

∞∑
m=1

(a
d

)2(m+n−1)
h±2(m+n−1)A∓(2m−1),0 (4.9a)

for the multiple interactions corresponding to the scattering coefficients of the electric field,
and

(a
d

)2(n−1)
GH

±(2n−1),0 =
∞∑
m=1

(a
d

)2(m+n−1)
h±2(m+n−1)A

H
∓(2m−1),0 (4.9b)

for the multiple interactions corresponding to the scattering coefficients of the magnetic field,
for all n ∈ N, for the odd scattering coefficients, and

(a
d

)2(n−1)
G±2n,0 =

∞∑
m=1

(a
d

)2(m+n−1){
h±2(m+n−1)A∓(2m−2),0 + h±(2m+2n−1)A∓(2m−1),0

}
(4.10a)

for the multiple interactions corresponding to the scattering coefficients of the electric field,

(a
d

)2(n−1)
GH

±2n,0 =
∞∑
m=1

(a
d

)2(m+n−1){
h±2(m+n−1)A

H
∓(2m−2),0 + h±(2m+2n−1)A

H
∓(2m−1),0

}
(4.10b)

for the multiple interactions corresponding to the scattering coefficients of the magnetic
field, for all n ∈ N, for the even scattering coefficients. Inserting (4.9a)-(4.9b) and (4.10a)-
(4.10b) into (4.8a)-(4.8b), we have finally obtained the infinite set of asymptotic equations
for the multiple scattering coefficients corresponding to the exterior electric and magnetic
field intensities of an infinite grating of dielectric circular cylinders associated with obliquely
incident and vertically polarized electromagnetic waves as it is proposed by the statement of
Theorem 4.1 introduced in (4.2a) and (4.2b). In addition, we have noticed that the scattering
coefficients of the electric and magnetic fields appeared as coupled to each others.

5. Discussion and Comparison of the Generalized Transverse
Magnetic Multiple Scattering Coefficients of the Infinite Grating
with Twersky’s Normal Incidence Case

Remark 5.1 (Twersky’s asymptotic solution for the multiple scattering coefficients at normal
incidence). The exact equations for the multiple scattering coefficients of the infinite grating
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associated with the vertically polarized normally incident waves [16] can be solved by trun-
cation as

A0 ≡ p0

qe
, A1 ≡ p1

qo
, A2 ≡ p2

qe
, A3 ≡ p3

qo
, (5.1a)

where, the numerator terms are given as

p0 = b0(1 + 2b2H2), (5.1b)

p1 = b1[1 + b3(H2 +H4)], (5.1c)

p2 = b2(1 + b0H2), (5.1d)

p3 = b3[1 + b1(H2 +H4)], (5.1e)

and the denominator terms are given as

qe = 1 − 2b0b2H2
2, (5.1f)

qo = 1 − b1b3(H2 +H4)2. (5.1g)

The bn’s, for all n ∈ N, are given by

b0 =
a0

(1 − a0H0)
,

bn =
an

[1 − an(H0 +H2n)]
.

(5.2)

Finally, an’s appearing in (5.2) represent the asymptotic forms of the single-scattering
coefficients associated with an isolated cylinder within the grating at normal incidence and
can be approximated for (kra) � 1 as

a0
∼= a0,0(kra)

2,

an ∼= an,0(kra)2n,
(5.3)

for all n ∈ N,where

a0,0 ≡ iπ

4
(εr − 1), (5.4a)

an,0 ≡ inπ

(2nn!)2

(
μr − 1
μr + 1

)
, (5.4b)
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for all n ∈ N. Inserting (5.3), (3.29), and (3.30) into (5.2), bn’s can be evaluated as

b0
∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a0,0

1 − a0,0

⎡⎢⎣ h0(a/d)(kra)︸ ︷︷ ︸
negligible for (kra)�1

⎤⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(kra)

2, (5.5a)

b1
∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a1,0

1 − a1,0

⎡⎢⎣h2(a/d)
2 + h0(a/d)(kra)︸ ︷︷ ︸

negligible for (kra)�1

⎤⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(kra)

2, (5.5b)

b2
∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a2,0

1 − a2,0

⎡⎢⎣h4(a/d)
4 + h0(a/d)(kra)

3︸ ︷︷ ︸
negligible for (kra)�1

⎤⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(kra)

4, (5.5c)

b3
∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a3,0

1 − a3,0

⎡⎢⎣h6(a/d)
6 + h0(a/d)(kra)

5︸ ︷︷ ︸
negligible for (kra)�1

⎤⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(kra)

6. (5.5d)

Expressions in (5.5a)–(5.5d) are valid for kra � 1, and krd � 1. In general, bn’s can be
expressed as

bn ∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
an,0

1 − an,0

⎡⎢⎣h2n(a/d)
2n + h0(a/d)(kra)

2n−1︸ ︷︷ ︸
negligible for (kra)�1

⎤⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(kra)

2n, ∀n ∈ N. (5.6)
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Obviously, (5.5a) and (5.6) will asymptotically be written as

b0
∼= b0,0(kra)

2,

bn ∼= bn,0(kra)2n,

(5.7)

for all n ∈ N, where

b0,0 ≡ a0,0, (5.8a)

bn,0 ≡ an,0

1 − an,0h2n(a/d)
2n (5.8b)

represent kra-independent parts of bn’s for wavelengths larger than the radii, that is, (kra) �
1. The numerator terms appearing in (5.1b)–(5.1e) can be approximated as

1 + 2b2H2
∼= 1 +

[
2b2,0h2

(a
d

)2
]
(kra)

2

︸ ︷︷ ︸
negligible for (kra)�1

,

1 + b0H2
∼= 1 + b0,0h2

(a
d

)2
,

1 + b3(H2 +H4) ∼= 1 + b3,0

(a
d

)2
[
h4

(a
d

)2
+ h2(kra)

2
]
(kra)

2

︸ ︷︷ ︸
negligible for (kra)�1

,

1 + b1(H2 +H4) ∼= 1 + b1,0

(a
d

)2
[
h2 +

h4

(krd)
2

]
.

(5.9)

The denominator terms appearing in (5.1c) can be approximated as

qe = 1 − 2b0b2H2
2
∼= 1 −

[
2b0,0b2,0h

2
2

(a
d

)4
]
(kra)

2

︸ ︷︷ ︸
negligible for (kra)�1

,

qo = 1 − b1b3(H2 +H4)2 ∼= 1 − b1,0b3,0

(a
d

)4

⎡⎢⎣h4

(a
d

)2
+ h2(kra)

2︸ ︷︷ ︸
negligible for (kra)�1

⎤⎥⎦
2

.

(5.10)
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Inserting (5.5a)–(5.5d) to (5.10) into (5.1a)–(5.1g), we have

A0
∼= 1+

negligible for (kra)�1︷ ︸︸ ︷
2b2,0h2(a/d)

2(kra)
2

1 −
[
2b0,0b2,0h

2
2(a/d)

4
]
(kra)

2︸ ︷︷ ︸
negligible for (kra)�1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a0,0

1 − a0,0

⎡⎢⎣ h0(a/d)(kra)︸ ︷︷ ︸
negligible for (kra)�1

⎤⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(kra)

2,

A1
∼=

1+

negligible for (kra)�1︷ ︸︸ ︷
b3,0(a/d)

2
[
h4(a/d)

2 + h2(kra)
2
]
(kra)

2

1 − b1,0b3,0(a/d)
4

⎡⎢⎣h4(a/d)
2 + h2(kra)

2︸ ︷︷ ︸
negligible for (kra)�1

⎤⎥⎦
2

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a1,0

1 − a1,0

⎡⎢⎣h2(a/d)
2 + h0(a/d)(kra)︸ ︷︷ ︸

negligible for (kra)�1

⎤⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(kra)

2,

A2
∼= 1 + b0,0h2(a/d)

2

1 −
[
2b0,0b2,0h

2
2(a/d)

4
]
(kra)

2︸ ︷︷ ︸
negligible for (kra)�1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a2,0

1 − a2,0

⎡⎢⎣h4(a/d)
4 + h0(a/d)(kra)

3︸ ︷︷ ︸
negligible for (kra)�1

⎤⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(kra)

4,

A3
∼=

1 + b1,0(a/d)
2

⎡⎢⎣h4/(krd)
2+

negligible for (krd)�1︷︸︸︷
h2

⎤⎥⎦

1 − b1,0b3,0(a/d)
4

⎡⎢⎣h4(a/d)
2 + h2(kra)

2︸ ︷︷ ︸
negligible for (kra)�1

⎤⎥⎦
2

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
a3,0

1 − a3,0

⎡⎢⎣h6(a/d)
6 + h0(a/d)(kra)

5︸ ︷︷ ︸
negligible for (kra)�1

⎤⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(kra)

6.

(5.11)



Journal of Applied Mathematics 23

From (5.11), we have deduced that when the grating spacing is much smaller than a
wavelength, that is, for the range of kra � 1 and krd � 1, the asymptotic form of the
transverse magnetic multiple scattering coefficients of the infinite grating associated with
the exterior electric field, An, can asymptotically be represented as

A0
∼= A0,0(kra)

2,

A1
∼= A1,0(kra)

2,

A2
∼= A2,0(kra)

4,

A3
∼= A3,0(kra)

4,

(5.12)

An,0’s represent the wavelength-independent parts of the multiple scattering coefficient An,
and the first four of them are given in terms of previously defined constants as

A0,0
∼= a0,0 ≡ s

εμ

0

∣∣∣
θi=π/2

=
(
iπ

4

)
(εr − 1), (5.13a)

A1,0
∼= b1,0

1 − b1,0b3,0

[
h4(a/d)

4
]2
, (5.13b)

A2,0
∼= b2,0

[
1 + b0,0h2

(a
d

)2
]
, (5.13c)

A3,0
∼= h4

(a
d

)4
b3,0A1,0 =

b1,0b3,0h4(a/d)
4

1 − b1,0b3,0

[
h4(a/d)

4
]2
. (5.13d)

In the expressions (5.13a)–(5.13d), an,0 denotes the wavelength-independent parts of the
scattering coefficients associated with an isolated cylinder within the grating at normal
incidence [16]. From the set of equations in (5.12), we have observed that they conform to
the “Ansatz” statement of (3.7) and (3.8). Inserting (5.8b) into (5.13b), we have obtained

A1,0
∼=

[
a1,0/

(
1 − a1,0h2(a/d)

2
)]

1 −
[
a1,0/

(
1 − a1,0h2(a/d)

2
)][

a3,0/
(

1 − a3,0h6(a/d)
6
)][

h4(a/d)
4
]2
, (5.14a)

A1,0
∼= a1,0 − a1,0a3,0h6(a/d)

6

1 − a1,0h2(a/d)
2 − a3,0h6(a/d)

6 + a1,0a3,0(h2h6 − h4)
2(a/d)8

. (5.14b)
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We can equivalently deduct the same result from the “asymptotic equations of the infinite
grating at oblique incidence” in (3.11) for the special case of normal incidence as

A1,0
∼=

s
εμ

1

[
1 − sεμ3 h6(a/d)

6
]

1 − sεμ1 h2(a/d)
2 − sεμ3 h6(a/d)

6 + sεμ1 s
εμ

3 (h2h6 − h4)
2(a/d)8

∣∣∣∣∣∣∣
θi=π/2

, (5.14c)

s
εμ
n ≡ inπ

(2nn!)2

(
sεμ

D

)∣∣∣∣∣
θi=π/2

=
inπ

(2nn!)2

(
μr − 1
μr + 1

)
. (5.14d)

Keeping those terms up to (a/d)6 in both numerator and denominator of (5.14b), we have
obtained

A1,0
∼=

a1,0 +O
(
(a/d)6

)
1 − a1,0h2(a/d)

2 +O
(
(a/d)6

) , (5.15a)

A1,0
∼=

s
εμ

1 +O
(
(a/d)6

)
1 − sεμ1 h2(a/d)

2 +O
(
(a/d)6

)
∣∣∣∣∣∣∣
θi=π/2

, (5.15b)

and expanding the denominator of (5.15a) in the form of a geometric series, that is, 1/(1−x) =
1 + x + x2 + x3 + · · · , |x| < 1 we have derived an asymptotic expansion for A1,0 as

A1,0
∼= a1,0 + a2

1,0h2

(a
d

)2
+ a3

1,0h
2
2

(a
d

)4
+O

((a
d

)6
)
, (5.16a)

a1,0
∼= s

εμ

1

∣∣∣
θi=π/2

=
(
iπ

4

)(
μr − 1
μr + 1

)
, (5.16b)

A1,0
∼=
(
iπ

4

)(
μr − 1
μr + 1

){
1 +

1
3

(πa
d

)2
(
μr − 1
μr + 1

)
+
[

1
3

(πa
d

)2
(
μr − 1
μr + 1

)]2

+O
((a

d

)6
)}

.

(5.16c)

Thereby, employing the definition of the first-order multiple scattering coefficient when the
radius of the cylinders is small compared to a wavelength, we have obtained Twersky’s
solution for the normal incidence. Similarly, inserting (5.8b) into (5.13c) for n = 2, we have

A2,0
∼=
[

a2,0

1 − a2,0h4(a/d)
4

][
1 + a0,0h2

(a
d

)2
]
, (5.17a)

A2,0
∼= a2,0

[
1 + a0,0h2(a/d)

2

1 − a2,0h4(a/d)
4

]
, (5.17b)

A2,0
∼=sεμ2

[
1 + sεμ0 h2(a/d)

2

1 − sεμ2 h4(a/d)
4

]∣∣∣∣∣
θi=π/2

. (5.17c)
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Expanding the denominator of (5.17b) in the form of a geometric series, we have obtained

A2,0
∼= a2,0

[
1 + a0,0h2

(a
d

)2
]{

1 + a2,0h4

(a
d

)4
+O

((a
d

)8
)}

, (5.18a)

or neglecting terms of the order of (a/d)6, we have

A2,0
∼= a2,0

{
1 + a0,0h2

(a
d

)2
+ a2,0h4

(a
d

)4
+O

((a
d

)6
)}

, (5.18b)

a2,0
∼= s

εμ

2

∣∣∣
θi=π/2

=
(
iπ

32

)(
μr − 1
μr + 1

)
, (5.18c)

A2,0
∼=
(
iπ

32

)(
μr − 1
μr + 1

){
1 +

1
15

(πa
d

)4
(
μr − 1
μr + 1

)
+O

((a
d

)6
)}

. (5.18d)

This substantiates the validity of the second-order multiple scattering coefficients, which
reduces to Twersky’s form for normal incidence. For the asymptotic expansion of A3,0 in
powers of (a/d), we have inserted (5.8b) into (5.13d) for n = 3 and obtained

A3,0
∼=

[
a1,0/

(
1 − a1,0h2(a/d)

2
)][

a3,0/
(

1 − a3,0h6(a/d)
6
)]
h4(a/d)

4

1 −
[
a1,0/

(
1 − a1,0h2(a/d)

2
)][

a3,0/
(

1 − a3,0h6(a/d)
6
)][

h4(a/d)
4
] 2 , (5.19a)

A3,0
∼=
[

a3,0h4(a/d)
4

1 − a3,0h6(a/d)
6

]
A1,0, (5.19b)

A3,0
∼= A1,0

[
s
εμ

3 h4(a/d)
4

1 − sεμ3 h6(a/d)
6

]∣∣∣∣∣
θi=π/2

. (5.19c)

Employing (5.15a) in (5.19b), we have

A3,0
∼=
[

a3,0h4(a/d)
4

1 − a3,0h6(a/d)
6

]⎡⎢⎣ a1,0 +O
(
(a/d)6

)
1 − a1,0h2(a/d)

2 +O
(
(a/d)6

)
⎤⎥⎦, (5.20a)

A3,0
∼=
a1,0a3,0h4(a/d)

4 +O
(
(a/d)10

)
1 − a1,0h2(a/d)

2 +O
(
(a/d)6

) . (5.20b)

Equation (5.20b) can be deducted from the oblique coefficients as

A3,0
∼=
s
εμ

1 s
εμ

3 h4(a/d)
4 +O

(
(a/d)10

)
1 − sεμ1 h2(a/d)

2 +O
(
(a/d)6

)
∣∣∣∣∣∣∣
θi=π/2

. (5.20c)
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Expanding the denominator of (5.20b) in the form of a geometric series, we have obtained

A3,0
∼= a1,0a3,0h4

(a
d

)4
{

1 + a1,0h2

(a
d

)2
+ a2

1,0h
2
2

(a
d

)4
+O

((a
d

)6
)}

. (5.21a)

Keeping terms up to the order of (a/d)4, we have

A3,0
∼= a1,0a3,0h4

(a
d

)4
+O

((a
d

)6
)
. (5.21b)

Using the definition of the single-scattering coefficients sεμn in (3.13a) at oblique incidence,
an,0 at normal incidence [16] can be acquired as

a3,0
∼= sεμ3 |θi=π/2 =

(
iπ

768

)(
μr − 1
μr + 1

)
, (5.21c)

and the third-order scattering coefficient at normal incidence can then be acquired as

A3,0
∼=
(
iπ

96

)[
1

15

(πa
d

)4
(
μr − 1
μr + 1

)2

+O
((a

d

)6
)]

. (5.21d)

Lemma 5.2 (generalized asymptotic solution of the multiple scattering coefficients at oblique
incidence [11, 34, 35]). The generalized asymptotic solution for the multiple scattering coefficients
of an infinite grating of dielectric circular cylinders for obliquely incident vertically polarized waves
has already been acquired in [35] by solving the asymptotic matrix equations of the infinite grating at
oblique incidence as

A0,0
∼= sin θi

iπ

4
(εr − 1), (5.22a)

AH
0,0 ≡ 0, (5.22b)

A±1,0
∼= sin θi

(
iπ

4D

){
sεμe

∓iψi +
(a
d

)2
h2

(
s2
εμ − 4F2

)( iπ

4D

)
e±iψi

+
(a
d

)4
h2

2

[
sεμ
(
s2
εμ − 4F2

)
+ 8F2(εr − μr)(kr

k1

)2
]

×
(
iπ

4D

)2

e∓iψi +O
((a

d

)6
)}

,

(5.23a)
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AH
±1,0

∼= ∓2iη0F sin θi
(
iπ

4D

){
e∓iψi +

(a
d

)2
h22

(
μr − εr

)(kr
k1

)2( iπ

4D

)
e±iψi

+
(a
d

)4
h2

2

[(
s2
με − 4F2

)
+ 2
(
μr − εr

)(kr
k1

)2

sεμ

]

×
(
iπ

4D

)2

e∓iψi +O
((a

d

)6
)}

,

(5.23b)

A±2,0
∼= sin θi

(
iπ

32D

){
sεμe

∓2iψi +
(a
d

)2
(
h2s

εμ

0 sεμ ± h3

(
s2
εμ − 4F2

)( iπ

4D

)
e±iψi

)

+
(a
d

)4
[
h4

(
iπ

32D

)(
s2
εμ − 4F2

)
e±2iψi ± h5h2

(
iπ

4D

)2

×
(
sεμ
(
s2
εμ − 4F2

)

+8F2(εr − μr)(kr
k1

)2
)
e∓iψi

]
+O

((a
d

)6
)}

,

(5.24a)

AH
±2,0

∼= ∓2iη0F sin θi
(

iπ

32D

)

·
{
e∓2iψi +

(a
d

)2
(
h2s

εμ

0 ± h3

(
iπ

4D

)
2
(
μr − εr

)(kr
k1

)2

e±iψi
)

+
(a
d

)4
[
h4

(
iπ

32D

)
2
(
μr − εr

)(kr
k1

)2

e±2iψi ± h5h2

(
iπ

4D

)2

×
((

s2
εμ − 4F2

)
+ 2
(
εr − μr

)(kr
k1

)2

sμε

)
e∓iψi

]
+O

(( a
d

)6
)}

,

(5.24b)

A±3,0
∼= sin θi

(
iπ

3.28D

)[(a
d

)4
h4

(
s2
εμ − 4F2

)( iπ

4D

)
e±iψi +O

(( a
d

)6
)]

, (5.25a)

AH
±3,0

∼= ∓2iη0F sin θi
(

iπ

3.28D

)[(a
d

)4
h42

(
μr − εr

)(kr
k1

)2( iπ

4D

)
e±iψi +O

(( a
d

)6
)]

.

(5.25b)
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Twersky’s asymptotic solution for the transverse magnetic multiple scattering
coefficients of the infinite grating at normal incidence can then be acquired by exploiting the
generalized asymptotic equations at oblique incidence derived in this investigation, thereby
verifying the validity of the proposed “Ansatz” in Section 4.

Remark 5.3 (reduction of the generalized asymptotic solution at oblique incidence to
Twersky’s asymptotic solution for the multiple scattering coefficients at normal incidence).
In order to reduce Twersky’s results at normal incidence from the generalized multiple
scattering coefficients at oblique incidence given in (5.22a)–(5.25b), we have used ψi = 0,
θi = π/2, sin θi = 1, and F = 0 in (5.22a)–(5.25b) and acquired the following results: (a)
a comparison of (5.22a), which determines the generalized scattering coefficient for n = 0,
with (5.4a) and (5.13a) proves that the generalized multiple scattering coefficient at oblique
incidence reduces to the Twersky’s coefficient for the normal incidence case; (b) the following
term, namely, (inπ/(2nn!)2)(sεμ/D), which represents the wavelength-independent part of
the (1,1) element of the scattering matrix in (3.10), reduces to the Twersky’s an,0 for the normal
incidence case as

inπ

(2nn!)2

sεμ

D

∣∣∣∣∣
θi=π/2

−→ an,0. (5.26)

With this identification, the generalized scattering coefficient of (5.23a) reduces to Twersky’s
A1,0 normal incidence case as given in (5.16c). Similarly, the generalized scattering coefficient
of (5.24a) becomes identical with the Twersky’s A2,0 scattering coefficient of the normal
incidence case as it is given in (5.18d); and finally, the generalized scattering coefficient of
(5.25a) conforms to Twersky’s A3,0 as it is given by (5.21d).

6. Conclusion

In this investigation, we have presented a rigorous derivation of the asymptotic equations
associated with the multiple scattering coefficients of an infinite grating of dielectric circular
cylinders for obliquely incident vertically polarized plane electromagnetic waves. We have
predicted the asymptotic behavior of the multiple scattering coefficients of the infinite grating
at oblique incidence when the wavelength of the incident radiation is much larger than the
distance between the constituent cylinders of the grating, that is, (d sin θi)(1 ± sinψi) � λ0 ≡
2π/k0. Furthermore, we have predicated that our results are nothing but the generalizations
of those acquired by [16] for the nonoblique incidence case. We have inferred that these
equations can be solved by a technique described by Kavaklıoğlu and Schneider [35], which
reduces to Twersky’s asymptotic solution at normal incidence, as well.
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