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A new method called the modification of step variational iteration method (MoSVIM) is
introduced and used to solve the fractional biochemical reactionmodel. TheMoSVIM uses general
Lagrange multipliers for construction of the correction functional for the problems, and it runs by
step approach, which is to divide the interval into subintervals with time step, and the solutions
are obtained at each subinterval as well adopting a nonzero auxiliary parameter � to control the
convergence region of series’ solutions. The MoSVIM yields an analytical solution of a rapidly
convergent infinite power series with easily computable terms and produces a good approximate
solution on enlarged intervals for solving the fractional biochemical reaction model. The accuracy
of the results obtained is in a excellent agreement with the Adam Bashforth Moulton method
(ABMM).

1. Introduction

The mathematical modelling of numerous phenomena in various areas of science and
engineering using fractional derivatives naturally leads, in most cases, to what is called
fractional differential equations (FDEs). Although the fractional calculus has a long history
and has been applied in various fields in real life, the interest in the study of FDEs and
their applications has attracted the attention of many researchers and scientific societies
beginning only in the last three decades [1, 2]. Since the exact solutions of most of the FDEs
cannot be found easily, thus analytical and numerical methods must be used. For example,
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the ABMM is one of the most used methods to solve fractional differential equations [3–
5]. Several of the other numerical analytical methods for solving fractional problems are
the Adomian decomposition method (ADM), the homotopy perturbation method (HPM)
and the homotopy analysis method (HAM). For example, Ray [6] and Abdulaziz et al. [7]
used ADM to solve fractional diffusion equations and solve linear and nonlinear fractional
differential equations, respectively. Hosseinnia et al. [8] presented an enhanced HPM to
obtain an approximate solution of FDEs, and Abdulaziz et al. [9] extended the application
of HPM to systems of FDEs. The HAM was applied to fractional KDV-Burgers-Kuromoto
equations [10], systems of nonlinear FDEs [11], and fractional Lorenz system [12].

Another powerful method which can also give explicit form for the solution is the
variational iteration method (VIM). It was proposed by He [13, 14], and other researchers
have applied VIM to solve various problems [15–17]. For example, Song et al. [18] used
VIM to obtain approximate solution of the fractional Sharma-Tasso-Olever equations. Yulita
Molliq et al. [19, 20] solved fractional Zhakanov-Kuznetsov and fractional heat-and wave-
like equations using VIM to obtain the approximate solution have shown the accuracy and
efficiently of VIM. Nevertheless, VIM is only valid for short-time interval for solving the
fractional system.

In this paper, we propose a modification of VIM to overcome this weakness of VIM.
In particular, motivated by the work of [12] the procedure of dividing the time interval of
solution in VIM to subintervals with the same step sizeΔt and the solution at each subinterval
must necessary to satisfy the initial condition at each of the subinterval has been considered.
Unfortunately, this idea does not give a good approximate solution when compared to the
ABMM. Therefore, to obtain a good approximate solution which has a good agreement
with ABMM, another idea is used: motivated by HAM, a nonzero auxiliary parameter � is
considered into the correction functional in VIM. This parameter � was inserted to adjust
and control the convergence region of the series solutions. In general, it is straightforward to
choose a proper value of � from the so-called �-curve.We call this modification involving time
step and auxiliary parameter � the MoSVIM. Strictly speaking MoSVIM is a modification of
our earlier proposed method—step variational iteration method—which is still under review
[21].

As an application, this paper investigates for the first time the applicability and
effectiveness of MoSVIM to obtain the approximate solutions of the fractional version of the
biochemical reaction model as studied in [22] for interval [0, T]. The fractional biochemical
reaction model (shortly called FBRM) is considered in the following form:

dθu

dt
= −u +

(
β − α

)
v + uv,

dθv

dt
=

1
μ

(
u − βv − uv

)
,

(1.1)

subject to initial conditions

u(0) = 1, v(0) = 0, (1.2)

where θ is a parameter describing the order of the fractional derivative (0 < θ ≤ 1), α, β, and
μ are dimensionless parameters.
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Our objective is to provide an alternative analytical method to achieve the solution
and also highlight the limitations of solutions using VIM, MoVIM, and SVIM for solving the
fractional biochemical reaction model when compared to ABMM.

2. Basic Definitions

Fractional calculus unifies and generalizes the notions of integer-order differentiation and n-
fold integration [1, 2]. We give some basic definitions and properties of fractional calculus
theory which will be used in this paper.

Definition 2.1. A real function f(x), x > 0, is said to be in the space Cμ, μ ∈ � if there exists a
real number p > μ, such that f(x) = xpf1(x), where f1(x) ∈ C[0,∞), and it is said to be in the
space Cq

μ if and only if f (q) ∈ Cμ, q ∈ N.

The Riemann-Liouville fractional integral operator is defined as follows.

Definition 2.2. The Riemann-Liouville fractional integral operator of order θ ≥ 0, of a function
f ∈ Cμ, μ ≥ −1, is defined as

Jθf(x) =
1

Γ(θ)

∫x

0
(x − t)θ−1f(t) dt, θ > 0, x > 0,

J0f(x) = f(x).

(2.1)

In this paper only real and positive values of θ will be considered.
Properties of the operator Jθ can be found in [2], and we mention only the following:
For f ∈ Cμ, μ ≥ −1, θ, η ≥ 0, and γ ≥ −1,

(1) JθJηf(x) = Jθ+ηf(x),

(2) JθJηf(x) = JηJθf(x),

(3) Jθxγ = (Γ(γ + 1)/Γ(θ + γ + 1))xθ+γ .

The Reimann-Liouville derivative has certain disadvantages when trying to model real-
world phenomena with FDEs. Therefore, we will introduce a modified fractional differential
operator Dθ

∗ proposed by Caputo in his work on the theory of viscoelasticity [23].

Definition 2.3. The fractional derivative of f(x) in Caputo sense is defined as

Dθ
∗f(x) = Jq−θDqf(x)

=
1

Γ
(
q − θ

)
∫x

0
(x − ξ)q−θ−1f (q)(ξ)dξ,

for q − 1 < θ ≤ q, q ∈ �, x > 0, f ∈ C
q

−1.

(2.2)
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In addition, we also need the following property.

Lemma 2.4. If q − 1 < θ ≤ q, q ∈ �, and f ∈ Cq
μ, μ ≥ −1, then

Dθ
∗J

θf(x) = f(x),

JθDθ
∗f(x) = f(x) −

q−1∑

i=0

f (i)(0+)
xi

i!
, x > 0.

(2.3)

The Caputo differential derivative is considered here because the initial and boundary
conditions can be included in the formulation of the problems [1]. The fractional derivative
is taken in the Caputo sense as follows.

Definition 2.5. Form to be the smallest integer that exceeds θ, the Caputo fractional derivative
operator of order θ > 0 is defined as

Dθ
t u(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
Γ
(
q − θ

)
∫ t

0
(t − ξ)q−θ−1

∂qu(ξ)
∂ξq

dξ, for q − 1 < θ < q,

∂qu(t)
∂tq

, for θ = q ∈ �.
(2.4)

For more information on the mathematical properties of fractional derivatives and
integrals, one can consult [1, 2].

3. Step Variational Iteration Method

The approximate solutions of fractional biochemical reaction model will be obtained in this
paper. A simple way of ensuring validity of the approximations is solving under arbitrary
initial conditions. In this case, [0, T] is regarded as interval. From idea of Alomari et al.
[12], the [0, T] interval is divided to subintervals with time step Δt, and the solution at
each subinterval was obtained. So it is necessary to satisfy the initial condition at each of
the subinterval. Thus the step technique can describe as the following formula:

ui,n+1(t) = ui,n(t) +
∫ t−t∗

0
λi(ξ)

[
Lui,n(ξ) +Nũi,n(ξ) − gi(ξ)

]
dξ, (3.1)

where λi, for i = 1, . . . , m, is a general Lagrange multiplier, L is linear operator,N is nonlinear
operator, and g is inhomogeneous term. As knowledge, the optimal general Lagrange
multiplier is obtained by constructing the correction functional as in VIM which is ũi,n is
considered as restricted variations, that is, δũi,n = 0.

Accordingly, the initial values u1,0, u2,0, . . . , um,0 will be changed for each subinterval,
that is, u1(t∗) = c∗1 = u1,0, u2(t∗) = c∗2 = u2,0, . . . , um(t∗) = c∗m = um,0, and it should be satisfied
through the initial conditions ui,n(t∗) = 0 for all n ≥ 1, so

ui(t) � ui,n(t − t∗), i = 0, 1, . . . , m, (3.2)
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where t∗ starting from t0 = 0 until tJ = T , J is number of subinterval. To carry out the solution
on every subinterval of equal length Δt, the values of the following initial conditions are
shown below:

c∗i = ui(t∗), i = 0, 1, . . . , m. (3.3)

In general, we do not have this information at our clearance except at the initial point
t∗ = t0 = 0, but these values can be obtained by assuming that the new initial condition is
the solution in previous interval (i.e., if the solution in interval [tj , tj+1] is necessary, then the
initial conditions of this interval will be as follows:

ci = ui(t) � ui,n

(
tj − tj−1

)
, (3.4)

where ci, i = 0, 1, . . . , m are the initial conditions in the interval [tj , tj+1]).

4. Modified Step Variational Iteration Method

Furthermore, to implement the modification of SVIM, we consider �/= 0, a nonzero auxiliary
parameter. Multiply � by correction functional in (3.1), yield

ui,n+1(t) = ui,n(t) + �
∫ t−t∗

0
λi(ξ)

[
Lui,n(ξ) +Nũi,n(ξ) − gi(ξ)

]
dξ, (4.1)

where i = 0, 1, 2, . . . , m, m ∈ � and � is the convergence-control parameter which ensures
that this assumption can be satisfied. The subscript n denotes the nth iteration.

Accordingly, the successive approximations un(t), n ≥ 0 of the solution u(t) will
be readily obtained by selecting initial approximation u0 that at least satisfies the initial
conditions. The computations and plotting of figures for the algorithm, has been done using
Maple package.

5. Application

In this section, we demonstrate the efficiency of MoSVIM od fractional biochemical reaction
model in (1.1). The correction functionals for the system (1.1) can be approximately
constructed as used by VIM and (2.4) to find the general Lagrangemultiplier in the following
forms:

un+1(t) = un(t) +
∫ t

0
λ1(ξ)

[
dqun

dξq
+ un −

(
β − α

)
ṽn −�unvn

]
dξ,

vn+1(t) = vn(t) +
∫ t

0
λ2(ξ)

[
dqvn

dξq
− 1
μ

(
ũn − βvn −�unvn

]
dξ,

(5.1)

where λ1 and λ2 are general Lagrange multipliers which can be identified optimally via
variational theory. n denotes the nth iteration. ũn, ṽn, and �unvn denote restricted variations,
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that is, δũn = 0, δṽn = 0, and δ�unvn = 0. In this case, the general Lagrange multiplier can be
easily determined by choosing the number of order q, that is, q = 1. Thus, the following sets
of stationary conditions was obtained as follows:

1 + λ1(t)|ξ=t = 0, λ1(ξ) − λ′
1(ξ) = 0,

1 + λ2(t)|ξ=t = 0, βλ2(ξ)μ − λ′
2(ξ) = 0.

(5.2)

Therefore, the general Lagrange multipliers can be easily identified as

λ1(ξ) = −e(ξ−t),

λ2(ξ) = −eβ(ξ−t)/μ.
(5.3)

Here, the general Lagrangemultiplier in (5.3) is expanded by Taylor series and is chosen only
one term in order to calculate, the general Lagrange multiplier can write as follows

λ1(ξ) = −1,

λ2(ξ) = −β
μ
.

(5.4)

Substituting the general Lagrange multipliers in (5.4) into the correction functional in (5.1)
results in the following iteration formula:

un+1(t) = un(t) −
∫ t−t∗

0

[
dθun

dξ
+ un −

(
β − α

)
vn − unvn

]

dξ,

vn+1(t) = vn(t) −
∫ t−t∗

0

β

μ

[
dθvn

dξ
− 1
μ

(
un − βvn − unvn

)
]

dξ.

(5.5)

Furthermore, we multiply the nonzero auxiliary parameter � by (5.5) which yields:

un+1(t) = un(t) − �
∫ t−t∗

0

[
dθun

dξ
+ un −

(
β − α

)
vn − unvn

]

dξ,

vn+1(t) = vn(t) − �
∫ t−t∗

0

β

μ

[
dθvn

dξ
− 1
μ

(
un − βvn − unvn

)
]

dξ.

(5.6)

Then, the interval [0, 2] is divided into subintervals with time stepΔt, and we get the solution
at each subinterval. In this case, the initial condition is regarded as initial approximation,
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which is necessary satisfied at each of the subinterval, that is, u(t∗) = c∗1 = u0, v(t∗) = c∗2 = v0,
and the initial conditions should be satisfied un(t∗) = 0, vn(t∗) = 0 for all n ≥ 1, so

u1 = c1 − �
[
c1 − 5

8
c2 − c1c2

]
(t − t∗),

v1 = c2 − 100�[−c1 + c2 + c1c2](t − t∗),

u2 = c1 − �
[
c1(t − t∗) − 5

8
c2(t − t∗) − c1c2(t − t∗)

]

− �
[
−30553
37952

�c1(t − t∗)7/5 +
9897
19670

�c2(t − t∗)7/5 + c1(t − t∗)

− 127
4
�c1(t − t∗)2 +

505
16
�c2(t − t∗)2 +

329
4
�c1(t − t∗)2c2

+
30553
37952

�c1c2(t − t∗)7/5 − 5
8
c2(t − t∗) +

100
3
�2(t − t∗)3c21

− 200
3
�2(t − t∗)3c21c2 +

125
6
�2(t − t∗)3c22 +

325
6
�2(t − t∗)3c1c22

+
100
3
�2(t − t∗)3c21c

2
2 − 50(t − t∗)2�c21 + 50(t − t∗)2�c21c2

−1
2
(t − t∗)2�c1c22 − c1c2(t − t∗)

]
,

v2 = c2 − �[−100c1(t − t∗) + 100c2(t − t∗) + 100c1c2(t − t∗)]

− �
[
1583520
1967

�c1(t − t∗)7/5 − 1583520
1967

�c2(t − t∗)7/5 − 100c1(t − t∗)

− 1583520
1967

�c1c2(t − t∗)7/5 + 5050�c1(t − t∗)2 − 20125
4
�c2(t − t∗)2

− 10100�c1(t − t∗)2c2 − 10000
3
�
2(t − t∗)3c21 +

16250
3
�
2(t − t∗)3c1c2

+
20000
3
�2(t − t∗)3c21c2 −

6250
3
�2(t − t∗)3c22 −

16250
3
�2(t − t∗)3c1c22

− 10000
3
�2(t − t∗)3c21c

2
2 + 5000(t − t∗)2�c22 − 5000(t − t∗)2�c21c2

+
125
4

(t − t∗)2�c22 + 50(t − t∗)2�c1c22 + 100c1c2(t − t∗)

+100c2(t − t∗)
]
.

(5.7)
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Figure 1: �-curve for fractional biochemical reactionmodel using the third iterationMoSVIMwith different
value of θ, that is, (0.7, 0.8).

Here, the iteration was chosen from previously research by Goh et al. [24]. Thus, the solution
will be as follows:

u(t) � u5(t − t∗),

v(t) � v5(t − t∗),
(5.8)

where t∗ start from t0 = 0 until tJ = T = 2. To carry out the solution on every subinterval of
equal length Δt, the values of the following initial conditions is presented below:

c1 = u(t∗), c2 = v(t∗). (5.9)

In general, we do not have this information at our clearance except at the initial point
t∗ = t0 = 0, but we can obtain these values by assuming that the new initial condition is
the solution in the previous interval (i.e., If we need the solution in interval 	tj , tj+1
 then the
initial conditions of this interval will be as

c1 = u(t) � u5
(
tj − tj−1

)
,

c2 = v(t) � v5
(
tj − tj−1

)
,

(5.10)

where c1, c2 are the initial conditions in the interval [tj , tj+1]).

6. Result and Discussion

To investigate the influence of � on convergence of the solution series, we plot the �-curves
of u4(0.01) and v4(0.01) using the fifth iteration of MoSVIM when θ = 0.7, and θ = 0.8 as
shown in Figure 1. We found that the range of values for � is between 0.1 and 0.7. Because
the accuracy and efficiency,Δt = 0.001was chosen as the benchmark for comparison between
MoSVIM and ABMM. The constants μ = 0.1, β = 1, τ = 0.375 were fixed, as was chosen
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Figure 2: Approximate solution of fractional biochemical reaction model via the fifth iterate MoSVIM,
SVIM and ABMMwith different value of � = 0.25; (a) θ = 0.7, (b) θ = 0.8.

by Hashim et al. [25]. In this case, the computational algorithms for the system in (1.1) are
written using the Maple software. A good solutions of fractional biochemical reaction model
when � = 0.25 and θ = 0.7 and θ = 0.8 was presented in Tables 1 and 2, respectively. From
the tables, MoSVIM is more accurate than SVIM in different value of θ, that is, θ = 0.7 and
θ = 0.8. Figure 2 shows comparison ofMoSVIM and SVIM. From the figure,MoSVIM solution
is more closer to ABMM solution if it compare to SVIM solution. The comparison of MoSVIM,
VIM and MoVIM is shown to exhibit the accuracy of MoSVIM, see Figure 3. From the figure,
MoSVIM solutions is more accurate than the VIM and MoVIM solutions, and also is in good
agreement with that of ABMMwith Δt = 0.001.

7. Conclusions

In this paper, an algorithm of fractional biochemical reaction model (FBRM) using step
modified variational iteration method (MoSVIM) was developed. For computations and
plots, the Maple package were used. We found that MoSVIM is a suitable technique to
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Figure 3:Approximate solution of fractional biochemical reactionmodel via the fifth iterateMoSVIM, VIM,
MOVIM and ABMM with different value � = 0.25; (a) θ = 0.7, (b) θ = 0.8.

Table 1: Approximate solution of fractional biochemical reaction model for θ = 0.7, � = 0.25 using fifth
iterate of SVIM and MoSVIM, respectively, and ABMM in comparison withΔt = 0.001.

u(t) v(t)

t SVIM MoSVIM ABMM SVIM MoSVIM ABMM
� = 0.25 � = 0.25

0.2 0.8386059622 0.94971579713 0.8997902940 0.4573898218 0.4875079322 0.4460892838

0.4 0.7085282553 0.90710678781 0.8613048034 0.4161477755 0.4760660497 0.4472272725

0.6 0.5912666037 0.86552788930 0.8298424157 0.3731707422 0.4643967818 0.4425233401

0.8 0.4871830355 0.82499870384 0.8023145667 0.3293135117 0.4525101582 0.4366487301

1.0 0.3963375974 0.78553782917 0.7774913063 0.28564459059 0.4404180963 0.4304899916

1.2 0.3184413078 0.74716268585 0.7547144581 0.2433500553 0.4281344807 0.4243110704

1.4 0.2528478376 0.70988933887 0.7335763272 0.2035911835 0.4156752212 0.4182067957

1.6 0.1985917817 0.67373231562 0.7138006533 0.1673493331 0.4030582851 0.4122134576

1.8 0.1544686371 0.63870442274 0.6951883968 0.1353025692 0.3903036993 0.4063440765

2.0 0.1191395751 0.60481656498 0.6775895839 0.1077686026 0.3774335172 0.4006016629



International Journal of Differential Equations 11

Table 2: Approximate solution of fractional biochemical reaction model for θ = 0.8, � = 0.25 using fifth
iterate of SVIM and MoSVIM, respectively, and ABMM in comparison withΔt = 0.001.

u(t) v(t)

t SVIM MoSVIM ABMM SVIM MoSVIM ABMM
� = 0.25 � = 0.25

0.2 0.8774940768 0.9483122837 0.9097501570 0.4679040865 0.4873856458 0.4527160444

0.4 0.7705371139 0.9082752827 0.8712461769 0.4357928339 0.4766431773 0.4544461158

0.6 0.6714218302 0.8691504634 0.83806131857 0.4023638935 0.4657006445 0.4488806205

0.8 0.5804145345 0.8309540052 0.80798209220 0.3679711022 0.4545663318 0.4419163408

1.0 0.4976827145 0.7937012985 0.78014908465 0.3330695561 0.4432499550 0.4345614413

1.2 0.4232727663 0.7574068186 0.75409601514 0.2982002140 0.4317049001 0.4271103147

1.4 0.3570935610 0.7220839956 0.72952829585 0.2639592227 0.4201174892 0.4196723265

1.6 0.2989092929 0.6877450824 0.70624217621 0.2309539383 0.4083285633 0.4122937832

1.8 0.2483439988 0.6544010212 0.68408785674 0.1997517207 0.3964119332 0.4049957868

2.0 0.2048982187 0.6220613114 0.66295019827 0.1708306193 0.3843851419 0.3977883047

solve the fractional problem. This modified method yields an analytical solution in iterations
of a rapid convergent infinite power series with enlarged intervals. Comparison between
MoSVIM, MoVIM and ABMM were made; the MoSVIM was found to be more accurate
than the MoVIM. MoSVIM is easier in calculation yet powerful method and also is readily
applicable to the more complex cases of fractional problems which arise in various fields of
pure and applied sciences.
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