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This paper begins with presenting a mathematical model for contaminant transport in the
fractured vuggy porous media of a species of contaminant (PCP). Two phases are numerically
simulated for a process of contaminant and clean water infiltrated in the fractured vuggy porous
media by coupling mixed finite element (MFE)method and finite volume method (FVM), both of
which are locally conservative, to approximate the model. A hybrid mixed finite element (HMFE)
method is applied to approximate the velocity field for the model. The convection and diffusion
terms are approached by FVM and the standard MFE, respectively. The pressure distribution
and temporary evolution of the concentration profiles are obtained for two phases. The average
effluent concentration on the outflow boundary is obtained at different time and shows some
different features from the matrix porous media. The temporal multiscale phenomena of the
effluent concentration on the outlet are observed. The results show how the different distribution
of the vugs and the fractures impacts on the contaminant transport and the effluent concentration
on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

1. Introduction

As is well known, Karst topography is characterized by subterranean limestone caverns,
which are carved by groundwater flow. A schematic presentation of a karstic area is showed
in Figure 1.

Karstic area is significantly rich in water resource, the percentage of which for human
drinking is up to about 25 and is to be increasing to 50 in the future in the world [1, 2].
Karst formations are cavernous and therefore have very high permeability, resulting in some
different features in comparison with non-karstic aquifers. The fluid flow and transport of
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Figure 1:A schematic presentation of water supply and waste disposal in a karstic area (1) ponor (swallow
hole), (2) water well, (3) disposal of municipal waste water into karst aquifer, (4) disposal of industrial
waste water into a ponor, (5) solid waste disposal into a karstic depression, (6) karst spring (with limited
watershed area), (7) base of karstification (impervious basement), (8) industrial waste water into karst
aquifers, (9) municipal waste water into karst aquifers.

pollutants occurring in a karstic region have some different features from those in non-
karstic areas. With rapid development of local economics and increasing population in the
Karst region, numerous pollutants are occurring in some Karst region mainly comprising the
following four aspects grouped as municipal, industrial, agricultural, and farraginous. The
groundwater in the karst area is seriously affected by human activities on the quality and
quantity. Consequently, transport of a contaminant in the Karst topography is an important
aspect to be investigated. Although groundwater flow in the Karst terrane has been studied
many years in some specific, there are still a number of topics to be researched because of its
importance and complexity. One of the most important aspects is the simulation of fluid flow
and the pollutant transport in the karstic field.

A large number of models have been created to predict water levels and spring
discharge, which can reflect some properties of the groundwater flow in the Karst aquifers.
Black box model is the simplest one in which no spatial information is included, but can
predict spring discharge or other aquifer properties. Time moment analysis is used to relate
a time series of inputs (recharge) to a series of outputs [3]. Zaltsberg applied the simple
regression models to predict water levels in Karst aquifers [4]. Lack of predictive power is
the obvious limitation of these types of models [5, 6].

Some deterministic models [5, 6] for groundwater flow are physically derived, and
both distributed and lumped parameters are contained therein. The spatial dimension is not
contained in lumpedmodels [7] so that they need to solve the only ordinary linear differential
equations. Therefore fewer data requirements for parameterization and calibration are
provided to simulate a given lumped system than that of distributed counterparts. Quinn
et al. [5] and Barrett and Charbeneau [6] ,for example, developed a system including lumped
parameters in groundwater applications generally with single-cell models. Yurtsever and
Payne [8] employed a series of linear reservoirs to model Karst aquifers. Normally many
researchers apply distributed parameter models to increase the accuracy of predictions or to
achieve a high degree of spatial resolution. Also some distributed parameter models using a
single equivalent porous medium have been created for the San Antonio portion of Edwards
[9] although none performs better than the nine-cell model developed by Wannakule and
Robert Anaya. One of the most sophisticated distributed parameter models was created
by Kuniansky and Holligan [10] at the US Geological Survey, which is a finite element
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model of the Edwards/Trinity aquifer system, in which over 7000 elements were included.
Though the high degree of spatial resolution is achieved, difficulties in generating input
parameters have limited its use.

Some researchers have also developed dual porosity distributed parameter models for
Karst system [11]. Conduit and diffuse flow were generally described as separate systems
linked by a transfer function in these models. They have the advantage of being able to
represent the fast transit and slow depletion often exhibited by Karst aquifers, but at the
cost of more than doubling the number of parameters required for calibration.

These models demonstrate the evolution in model complexity associated with
attempts to increase the accuracy of predictions. The general tendency of the research is
to increase the number of cells in the x − y plane while neglecting improvement of which
might be achieved by incorporating variation in the vertical direction. This approach has not
been consistently successful. The spatially detailed models have been difficult to calibrate
and verify. In addition, input data must be developed for each cell; consequently, these
models are not used to any great extent by regulatory agencies or other groups. A model
developed by Barrett and Charbeneau [12] is simple to calibrate and use and yet achieves
a high degree of accuracy. His modeling effort differs from preceding studies by retaining a
simple spatial description of the aquifer, but allowing vertical variations in aquifer properties
such as specific yield within cells.

Many other numerical models of groundwater flow use finite-difference methods to
discretize and solve the governing PDEs [13, 14]. These models often require a highly refined
finite-difference mesh to achieve accurate solutions in the areas of interest where gradients
vary rapidly in space. Use of a fine mesh over the entire domain can be computationally
intensive, and in some cases intractable, while using a variably spaced mesh can lead to cells
with a large aspect ratio and refinement in areas where such detail is not needed. In addition,
a fine discretization is often needed within models that have already been constructed, and
redesigning the entire grid is not feasible. One solution to these predicaments is to use local
grid refinement in which the mesh is only refined locally in the area of interest [15, 16]. Mehl
and Hill [15, 16] proposed a new method for locally refining block-centered finite-difference
grids using iteratively coupled shared nodes (a newmethod of interpolation) in the context of
groundwater flow modeling. His method couples the grids by sharing nodes and iteratively
updating the right-hand side of the matrix equations to ensure that heads and fluxes are
consistent between both grids. The iterative method presented in their work is a compromise
between the accuracy of a variably spaced grid [17, 18] and the speed of the traditional grid
refinement methods. In the methods presented in their work, they made use of the Darcy-
weighted interpolation to deal with the interface between parent grids and child grids. Two
years later [15, 16], they extended the methods to three dimensions mainly by proposing a
new 3D interpolation scheme.

The selection of the appropriate model to achieve the goals of simulating the
groundwater flow in a Karst system is a major task [19]. An appropriate conceptual model
should be sufficiently simple so as to be amenable to mathematical treatment, but it should
not be too simple so as to exclude those features which are of interest to the investigation at
hand. The information should be available for calibrating the model, and the model should
be the most economic one for solving the problem at hand.

Modeling a system requires a very detailed knowledge of the physical properties
and the processes governing water movement. The virtue of a model rests in its ability
to predict a general system from incomplete or partial data [20]. The parsimonious model
simplifies the representation of the physical structure or of the processes involved [6].
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This is especially appropriate in the light of the extraordinary heterogeneity exhibited by
Karst aquifers.

Recent studies on vuggy fractured porous media simulation are closer to our research.
Fard and Firoozabadi [21] did some comprehensive study of immiscible fluid flow in
fractured vuggy porous media. Hoteit and Firoozabadi [22] showed that multi-component
compressible flow in discrete fractured vuggy media can be modeled. Sonnenthal et al. [23]
made use of the TOUGHREACT reactive transport software to model the coupled heat
transfer and reactive transport processes in porous media. A Crank-Nicolson-Galerkin finite
element model is presented in Hossain’s research to simulate nonlinearly the macrophase
contaminant transport combined with microphase contaminant transport [24]. Alajmi and
Grader [25] gave the relationship between fractured vuggy matrix environment with
multiphase flow. Sun and Geiser [26] and Sun and Wheeler [27] employed multiscale dis-
continuous Galerkin and operator-splitting methods to model subsurface flow and transport
with anisotropic and dynamic mesh. Sun et al. [28–30] also used the compatible algorithms
for coupled flow and transport to simulate the groundwater flow and contaminant transport.
Among these approaches the researchers assumed the pressure in a fracture or vuggy
element was equal to the pressure in the ambient matrix elements, by using the cross-flow
equilibrium.

Vugs and fractures are the most important factors in the fluid flow and contaminant
transport in the karstic aquifers. We calculate the contaminant transport through the vuggy
fractured matrix by using a bulk material property by the distribution coefficient Kd, which
describes the distribution of contaminant between the liquid and solid phases. In this paper,
the adsorption term is considered to be linear with concentration of the contaminant in the
matrix media.

In this paper, a karstic aquifers of some size (0, 0.80) × (0, 0.80) are considered in
which the groundwater is clean at first. At some time, a species of contaminant (PCP, i.e.,
pentachlorophenol) is abruptly infiltrated into the inflow boundary, which lasted T1 hours,
and then the clean water is infiltrated into the aquifers again. Among the three phases,
the same models of fluid flow and contaminant transport are presented with different
boundary conditions and initial conditions which will be described in the sequent sections
in this paper. We apply a discrete-fracture model and a discrete-vug model to describe flow
and transport processes in fractured porous media and vuggy porous media, respectively.
Other than classical discrete fracture or discrete vug model where the cracks or large caves
are presented by (n − 1) dimensional elements, the discrete fracture or vug model in this
paper still uses physically sense n dimensional elements. An adaptive mesh is generated
based on this type of model. Then we employ the mixed finite element (MFE) method to
approach the second-order partial derivative terms of the flow and transport equations, and
an upwind finite volume method (FVM) is used to approximate the convection term in
the transport.

This paper is organized as follows. First, we mainly give the mathematical models
approximately describing the fluid flow and the contaminant diffusion and transport in
the fractured vuggy porous media for karst aquifers. Secondly, the numerical algorithms
for the mathematical models are discussed. We describe in detail the MFE method
for the flow equation, the MFE-FVM method for the reactive transport system in the
models together with the numerical discretization in time. Then we give some cases in
vuggy porous media with vug being differently distributed. For each case, we provide
and discuss simulated concentration profiles at different time, as well as velocity and
pressure fields. At last, we numerically give the different time scale for concentration in
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order to analyze the influence on the concentration, pressure, and velocity by vugs and
fractures.

2. Mathematical Model

Two coupled differential systems are made up of the model equations for the transport of
contaminant through the vuggy fractured porous media, that is, the flow equation of the
fluid and the transport equations of the contaminant.

2.1. Flow Equation

We here consider the flow in vuggy fractured porous media in two-dimension steady flow
of single phase, the flow equation of which is obtained from the conservation of total fluid
volume and Darcy’s law mathematically given by

u +K∇p = 0,

∇ · u = q,
x ∈ Ω. (2.1)

Here K denotes the hydraulic conductivity (i.e., the proportionality constant for the flow of
water through a porous media, m/s) as follows:

K =
κ · g
ν

=
κ · g · ρ

η
. (2.2)

In the two equations above, g is the gravity acceleration, ν and η are the kinematic
(s/m2) and dynamic viscosities of the fluid (kg/(m·s)), respectively; ρ and κ are the density
of the fluid (kg/m3) and the (absolute) permeability (m2) of the porous media, respectively.
The unknowns are p (the pressure head of the fluid mixture (N/m2) and u (the Darcy
velocity of the mixture, i.e., the discharge of fluid flowing per unit area, with units of length
per time, m/s). We assume that K is uniformly symmetric positive definite and bounded.
For simplicity of computation, the computational domain of interest Ω is assumed to be
polygonal and bounded in R2 with boundary Γ = ∂Ω = ΓD ∪ ΓN (ΓD, ΓN stand for the
Dirichlet boundary and Neumann boundary, resp.). We take the boundary conditions as
follows:

p = pB, x ∈ ΓD,

u · n = uB, x ∈ ΓN,
(2.3)

where pB and uB are the given pressure on ΓD and the normal velocity component on ΓN (pB
and uB can be measured in practice in some points on boundary), respectively, and n is the
outward norm vector towards u.
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2.2. Transport System

The concentration of a contaminant species of interest in the fluid and in the solid together
with their relation is described by the following system, which is obtained from the mass
conservation of the considered contaminant species:

∂
(
φcf
)

∂t
+∇ · (ucf −D(u)∇cf

)
= r
(
cf , cs

)
,

∂
(
φcs
)

∂t
= −r(cf , cs

)
, x ∈ Ω, t ∈ (0, T],

cs = Kdcf .

(2.4)

In the system (2.4), φ and T stand for the effective porosity and the final simulation time,
respectively; φ is assumed to be time dependent and uniformly bounded above and below by
positive numbers. Kd represents a parameter of the distribution coefficient of the considered
contaminant species between the matrix and fluid. D(u), the dispersion-diffusion tensor,
contributes from molecular diffusion and mechanical dispersion, and it can be computed
by

D(u) = φ{dmI + |u|[dlE(u) + dt(I − E(u))]}, (2.5)

where E(u) denotes the projected tensor onto the u direction, which is calculated by

E(u) =
1

(
u2
1 + u2

2

)1/2

[
u2
1 u1u2

u2u1 u2
2

]

, (2.6)

where |u| = (u2
1 + u2

2)
1/2 represents the Euclidean norm of u = (u1, u2) ∈ R2; dm (strictly

positive) is the molecular diffusivity, dt and dl are the transverse dispersivity and the
longitudinal dispersivity, respectively, and both are nonnegative. The unknowns cf as
well as cs are the concentrations of the species considered within the fluid and solid,
respectively.

By summing of the first two equations using the third equation in (2.4), we can obtain

∂
(
φecf

)

∂t
+∇ · (ucf −D(u)∇cf

)
= 0, (2.7)

where φe = φ + ρKd is calculated for the matrix and for the vugs, respectively, as follows:
-in the vugs and/or fractures: φ = 1,Kd = 0, φe = φ = 1.0,
-in the matrix: φ = φm, φe = φ + ρKd.
The boundary conditions for transport system are given by

(
uc −D(u)∇cf

) · n = cBu · n, x ∈ Γinflow,

D(u)∇cf · n = 0, x ∈ Γoutflow,
(2.8)



Journal of Applied Mathematics 7

where cB is the prescribed given concentration on the boundary; Γinflow denotes the inflow
boundary, and Γoutflow denotes the outflow boundary, defined by

Γinflow = {x ∈ ∂Ω : u · n∂Ω ≤ 0},
Γoutflow = {x ∈ ∂Ω : u · n∂Ω > 0}.

(2.9)

The initial condition is taken as

cf(x, 0) = c0(x), x ∈ Ω, (2.10)

where c0(x) is a prescribed given function for the concentration at t = 0, which can be
measured for some points in the considered domain in practice.

3. Numerical Algorithms

In this paper, the system is made up of two parts: the flow equations including the Darcy
velocity and the pressure, and the contaminant species transport equations for presenting
the evolution of concentration. A triangular mesh for spatial partitioning is employed for
accurately approaching the velocity and the concentration around the vugs and fractures.
Vugs and fractures are initially characterized by ellipses of different sizes and rectangles
of different sizes, respectively. A mixed finite method (FEM) is used to solve the flow
equation, based on the triangular mesh; then we solve the transport system by combining
the finite volume method (FVM) and MFE method semi-implicitly (implicitly for diffusion
and adsorption and explicitly for convection) in time, getting ODEs for concentration over
time.

3.1. Triangular Mesh Generation for Vuggy Fractured Porous Media

Similar to any other numerical modeling, the first step of our algorithm is creating a mesh.
The vugs and fractures may be distributed randomly in the domain, so a triangular mesh
is required to fit the vuggy fractured porous media much better than a rectangular mesh
(though it is easier to generate). A large number of triangular mesh programs are available.
Three of them (including DISTMESH, MESHGEN, and TRIANGLE) have much higher
mesh quality than any other one in generating adaptive triangular mesh [31]. In this paper,
we apply the MESHGEN [32] to generate an adaptive triangular mesh. The fractures are
presented in rectangles distributed randomly in the domain considered, and the vugs are
described in ellipses distributed randomly.

3.2. Mixed Finite Element Method

We employ a mixed finite element (MFE)method for the treatment of the flow equation. MFE
method [33] is based on the variational principle that expresses an equilibrium that can be
satisfied locally on each finite element. The MFE formulation for the flow equation contains
solution for both the scalar variable (pressure) and flux vector (total velocity). Choosing MFE
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method to approach spaces can satisfy three important properties: local mass conservation,
flux continuity, and the same order of convergence (and in some cases super convergence)
for both the scalar variable and the flux [33]. MFE method can directly accommodate full
permeability tensors and it is more accurate in flux calculation than the conventional finite
volume and finite element methods.

We first give some symbol notations. Let (·, ·) represent the L2(Ω) inner product over a
domain Ω ∈ R2 for scalar functions, and (L2(Ω))2 denotes inner product for vector functions.
Some necessary spaces are given by

V = L2(Ω),

W = H(div;Ω) =
{
w ∈

(
L2(Ω)

)2
: ∇ ·w ∈ L2(Ω)

}
,

W0 = {w ∈ H(div;Ω) : w · n = 0 on ∂Ω},

W0
N = {w ∈ H(div;Ω) : w · n = 0 on ΓN}.

(3.1)

Based on these spaces, we give the weak formulations for flow equation and reactive
equation as follows, respectively.

3.3. MFE for Flow Equation

3.3.1. Weak Formulation

For the flow equation, the weak formulation is to find p ∈ V and u ∈ W0
N + E(uB) such that

(
K−1u,w

)
− (∇ ·w, p

)
= −
∫

Γ
pBw · nds, ∀w ∈ W0

N, t ∈ (0, T],

(∇ · u, v) = (q, v), ∀v ∈ V, t ∈ (0, T],

(3.2)

where E(uB) denotes the velocity extension which lets its component agrees with uB on ΓN .
There is the derivation of (3.2) in Appendix A.

3.3.2. MFE Scheme

We apply the RT (Raviart-Thomas) finite element space [34] to approximate the Darcy
velocity. As is well known, the rth order RT space for the two-dimensional triangular element
is given by

Vh(K) = Pr(K),Wh(K) = (x1, Pr(K)x2Pr(K)) ⊕ (Pr(K))2, (3.3)

where ⊕ represents the direct sum. We employ the case r = 0 in this paper. Therefore,Wh(K)
has the form

Wh(K) = {w : w = (aK + bKx1, cK + bKx2), aK, bK, cK ∈ R}. (3.4)
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Restricted to the element, Pr(K) is the polynomial space of degree less than or equal to r. We
apply RT0 space in our coming numerical examples. So our MFEmethod for approaching the
weak formulation for the flow equation is to find ph(·, ·) ∈ Vh and uh(·, ·) ∈ W0

N = W0 ∩Wh +
Eh(uB) such that

(
K−1uh,w

)
− (∇ ·w, ph

)
= −
∫

Γ
pBw · nds, ∀w ∈ Wh, t ∈ (0, T],

(∇ · uh, v) = (0, v), ∀v ∈ Vh, t ∈ (0, T].

(3.5)

Because the MFE formulation leads to a saddle point problem for the elliptic equations, we
need to use the Mixed-Hybrid algorithms [32] for the pressure equation. Those algorithms
mainly use adding unknowns denoting the edge pressure averages, such that the reduced
linear system we will solve contains a positive and symmetric definite matrix, and therefore
we take the advantages in iterative linear solvers.

Based on the RT0 space, (3.5) can be expressed as an algebraic linear system with the
unknowns PE (the pressure edge averages)

ATPE = J. (3.6)

The derivation of (3.6) is presented in Appendix B.

3.4. FVM and FME for Reactive Transport System

3.4.1. Weak Formulation

The weak formulation for the reactive transport system is to find the concentration solution
c ∈ V and the diffusive flux solution w ∈ W0 such that

(
∂
(
φecf

)

∂t
, v

)

+ (∇ ·w, v) +
∑

K

∫

∂K

vuc∗f · nds −
∑

K

(
c∗fu,∇v

)
= 0, ∀v ∈ V, t ∈ (0, T],

(
−D−1w, ŵ

)
+
(
cf ,∇ ·w) = 0, ∀w ∈ W0, t ∈ (0, T],

(
cf , v

)
=
(
cf,0, v

)
, ∀v ∈ V, t = 0,

(3.7)

where c∗
f
represents the upwind value of the concentration on an edge. There is the derivation

of (3.7) in Appendix C.
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3.4.2. MFE Scheme

On the basis of the weak formulation (3.7), the continuous-in-time MFE method to approach
the reactive transport system is to find cfh ∈ Vh andwh ∈ W0

h
such that

(
∂
(
φecfh

)

∂t
, v

)

+ (∇ ·wh, v) +
∑

K

∫

∂K

vuc∗f · nds −
∑

K

(
c∗fhu,∇v

)
= 0, ∀v ∈ Vh, t ∈ (0, T],

(
−D−1wh, ŵ

)
+
(
cfh,∇ ·w) = 0, ∀ŵ ∈ W0

h, t ∈ (0, T],

(
cf , v

)
=
(
cf0, v

)
, v ∈ Vh, t = 0.

(3.8)

Then we specify a fully discretized algorithm for the transport. We discretize the simulation
time [0, T] into n subintervals: 0 = t0 < t1 < · · · < tn−1 < tn = T . LetΔtl = tl − tl−1, Δt = maxlΔtl.
Provided that there exists a constant C > 0 such that Δt ≤ CminlΔtl, and the transport
equation can be solved by semi-implicit Euler method in time together with the combined
FVM-MFE method in space.

Therefore the fully discretized approximation is to find cfh,l ∈ Vh, wh,k ∈ W0
h
(l =

0, 1, . . . , n) such that

(
φe
(
cfh,l − cfh,l−1

)

Δtl
, v

)

+ (∇ ·wh,l, v) +
∑

K

∫

∂K

vuc∗fh,l−1 · nds −
∑

K

(
c∗fh,l−1u,∇v

)

= 0, ∀v ∈ Vh,

(
−D−1wh,l, ŵ

)
+
(
cfh,l,∇ · ŵ) = 0, ∀w ∈ W0

h,

(
cfh,0, v

)
=
(
cf0, v

)
, ∀v ∈ Vh.

(3.9)

We employ the standard MFE algorithm to solve reactive transport equation (3.7). We here
also useRT0 on the reactive transport system, and thus the linear system (2.4) can be specified
as the following algebraic linear ordinary differential equation system

L
dX

dt
+
(

�

R + R̂

)
X = b. (3.10)

Ordinary differential equations (3.10) are solved by backward Euler method in this paper.
The derivation of (3.10) is presented in Appendix D.
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Table 1: Standard parameters for the mathematical model in practice.

Saturated hydraulic
conductivity, Ks (cm/s)

Saturated effective diffusion
coefficient,De (cm2/s) Effective porosity Distribution

coefficient Kd

1.0e−12 5.0e−11 0.184 0.395

4. Numerical Results

4.1. Simulation Cases

Wemainly simulate two sequential phases for an infiltration process with different initial and
boundary conditions: at first, the clean water infiltration process, with initial concentration
c1(x, 0) = 0 and boundary condition in the inflow boundary c1(x, t) = 0, x ∈ Γinflow. In the first
phase, the polluted water infiltration process, with initial concentration in the whole region
c2(x, 0) = 0.0 and boundary condition in the inflow boundaryc1(x, t) = 1.0, x ∈ Γinflow. In
the second phase, again the clean water infiltration process, with initial concentration in the
whole region c3(x, 0) = c1(x, T1) and boundary condition in the inflow boundary c3(x, t) = 0,
x ∈ Γinflow, where c1(x, T1) is the concentration distribution at T1 in the first phase. The domain
considered for all cases in this paper is a bounded rectangular domainΩ ⊂ R2 of (0, 0.80m)×
(0, 0.80m) with randomly generated vugs and fractures into an adaptive triangular mesh.
The mesh is fixed for all time during the simulation. The region around the fractures and/or
vugs is deeply refined because of dramatically changing of some parameters for the models.
For all cases in the paper, a series of standard parameters applied in practice are listed in
Table 1 as follows [1].

Case 0 as a base case describes the porous media without vugs and fractures to be
compared with the other cases, that is, the fractured vuggy porous media with vugs and
fractures distributed differently. In Case 1, in the fractured vuggy porous media, the vugs
are located on the inflow boundary connected with the fractures, and the fracture does not
elongate to the outflow boundary. In Case 2, the vugs are still located on the inflow boundary
connected with the fracture, but the fractures extend to the outflow boundary. In Case 3,
the vugs connected with fracture are located within the region, and both the vugs and the
fractures do not elongate to any boundary. In Cases 5 and 6, the vugs lie on the outflow
boundary connected with fracture, but in Case 5 the fractures are connected with the inflow
boundary and the fractures are not in Case 6. The vugs in Case 7 are connected with fractures,
and the fractures are connected with inflow boundary and outflow boundary. In the last case,
the fractures are locatedwithin the region connecting the vugs that lie on the inflow boundary
and the outflow boundary. The no-flow boundaries in all cases are taken as the top (y =
0.80m) and the bottom boundaries (y = 0.80m). The inflow boundary and outflow boundary
are taken as the left boundary (x = 0.0m) and the right boundary (x = 0.80m) of the domain,
respectively. A constant pressure of 0 (the gauge pressure against a reference pressure) is
specified on the outflow boundary (x = 0.80m). In the first phase of the simulation, the
polluted water is continuously injected on the left boundary (x = 0m), that is, the inflow
boundary, and the region is initially full of clean water. In the second phase of the simulation,
the clean water is continuously injected at the final of the first phase. We simulate up to
35,000 years and 35,000 for the first phase and the second phase for all cases, respectively.
The injection on the inflow boundary for the two phases is showed in Figure 2.
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Figure 2: Injection on the inflow boundary for the two phases of the simulation.

4.2. Simulation Results

Case 0: Matrix Porous Media

In this situation, the area is matrix porous media as a base case to be compared with 8 other
cases. In the first phase the polluted water is constantly injected into the inflow boundary at
the time interval (0, T1]. The conductivity distribution is showed in Figure 3. An adaptive
triangular mesh for this domain is generated (Figure 3). We approximate the Darcy equation
and transport equation using RT0 − MFE and semi-implicit FVM-MFE presented before,
respectively, with a uniform time step of 350 years. The pressure field and the streamlines
field (Figure 4) are obtained. Figure 5 demonstrates the results of simulated profiles at
different time. The results show that the polluted water is uniformly diffusing from the inflow
boundary through the domain to the outflow boundary in the first phase. In the second
phase, the clean water is being injected on the inflow boundary. Figure 6 shows the results
of the simulated profiles at different time for the second phase. The results demonstrate
that the polluted water is uniformly ejected out from the outflow boundary. The effluent
concentration on the outlet is obtained for the two phases to be compared with the other
cases.

Case 1: Vugs on the Inflow Boundary Connected with Fractures inside the Domain

In this case, vugs are located on the inflow boundary of the considered domain connected
with fractures not touching the outflow boundary, which is depicted in Figure 7. The pressure
distribution and the streamlines field are shown in Figure 8. From Figure 8, it is obviously
demonstrated that the vugs and fractures affect the pressure distribution compared with the
base case. The vugs and fractures have corresponding locally irregular pressure, and the
pressure around vugs and fractures is higher than other regions in the domain. Therefore
the quantity of velocity in the vugs and fractures is much larger than that in the matrix media.
Furthermore, we can observe that the streamlines are inclined to converging into the vugs
and the fractures near the inflow part but diverge from the fractures on the right part, which
show that the vugs and fractures are the main pathways for contaminant transport by con-
vection. Results of simulated concentration sections are shown in Figure 9 at different time.
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Figure 3: Conductivity distribution and adaptive triangular mesh for Case 0.
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Figure 4: Pressure distribution and streamlines field for base case.

The results show that the contaminant transports essentially via convection in the domain of
vugs and fractures from the first year to the 3500th year. After the 14000th year, convection
and diffusion through the matrix area also begin to take obvious effect on the contaminant
transport behavior. During the second phase of the simulation, from the 35001th to 38500th
year the vuggy and fractured region is first getting much cleaner than that in the matrix,
which is showed in Figure 10. After the 49000th year, the clean water begins to infiltrate into
the matrix porous media displayed in Figure 10.

Case 2: Vugs on the Inflow Boundary Connected with Fractures Extending to
the Outflow Boundary

Compared with Case 1, the fractures in this case are extending to the outflow boundary, the
conductivity and the adaptive triangular mesh of which are shown in Figure 11. The pressure
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Figure 5: Concentration distribution at different time for the first phase for base case.

distribution and the streamlines field are shown in Figure 12. Similar to Case 1, the vugs
and fractures affect the pressure distribution compared with the base case, and the vugs and
fractures have corresponding locally irregular pressure. But different fromCase 1, the stream-
lines are inclined to converging into the vugs and the fractures from the inlet to the outlet,
which show that the vugs and fractures are still the main pathways for transporting con-
taminant by convection. Results of simulated concentration profiles are shown in Figure 13
at different time for the first phase. From the first year to the 14000th year, the contaminant
transports mainly through the vugs and the fractures because of the much faster velocity
in the vugs and the fractures than that in matrix. And the pollutant quickly passes through
fractures to the outflow boundary. From the 14001th year to the 35000th year, the matrix
begins to become a significant role in contaminant transport, as is shown in Figure 13. During
the second phase of the simulation, the clean water quickly passes through the vugs and
fractures to the outlet from the 35001th year to the 38500th year demonstrated in Figure 14,
and the matrix near the inflow boundary begins getting clean from the 38501th year, which is
shown in Figure 14.
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Figure 6: Concentration distribution at different time for the second phase for base case.
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Figure 7: Conductivity distribution and adaptive triangular mesh for Case 1.
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Figure 8: Pressure distribution, streamlines field, and average effluent concentration for Case 1.

Case 3: Vugs Connected with Fractures inside the Domain

In this case, none of the vugs and fractures touches the boundary, the conductivity and
adaptive triangular mesh of which are displayed in Figure 15. We can observe that the
vugs observably affect the pressure distribution from the pressure field in Figure 16. On the
contrary, the fractures do not affect the pressure distribution so obviously as the vugs. From
the streamlines field in Figure 16, we also find out that the streamlines converge into the vugs
and fractures for the inflow boundary and diverge from the endpoint of the fractures. For
the first phase of the simulation, the results of simulated concentration profiles are shown
in Figure 17. From the initial situation to 1400th year, the contaminant mainly transports in
the matrix porous media via convection and diffusion. From the 1401th year to the 3500th
year, the contaminant mainly infiltrates into the vugs and fractures (Figure 17). From the
3501th year, the matrix starts to significantly take effect on the transport through diffusion
and convection. When injecting clean water in the second phase, from the 35001th year the
porous matrix media are firstly getting cleaner than that in matrix, and from the 38500th year
the clean water quickly infiltrate into the vugs and fractures with the contaminant remained
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Figure 9: Concentration distribution at different time for the first phase for Case 1.

in the matrix media. From 49000th year the clean water starts to infiltrate the matrix
(Figure 18).

Case 4: Vugs on the Outflow Boundary Connected with Fractures inside the Domain

Now we consider the vugs on the outlet connected with fractures no touching the inlet. The
conductivity distribution and adaptive triangular mesh of the case are displayed in Figure 19.
It is observed that the pressure field (Figure 20) is not affected by vugs so significantly as
that in Case 3. This is because we take the pressure a 0 on the outflow boundary. From the
streamlines field (Figure 20), we can find out that the streamlines converge into the fractures
from the inflow boundary and diverge at the end of the fractures. From the results of the
simulated concentration sections (Figure 21). We can observe that fromfirst year to the 3500th
year, the contaminant transports mainly through the matrix via diffusion and convection.
From the 3501th year to the 5000th year, the fractures and vugs begin to influence the
transport of contaminant via convection (Figure 21). From the 5001th year to the 35000th year
the contaminant transports through the whole fractured vuggy porous media (Figure 21).
In the second phase of the simulation, the clean water almost uniformly flows through the
matrix from the 35001th year to the 38500th year (Figure 22), and from the 3900th year to
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Figure 10: Concentration distribution at different time for the second phase for Case 1.
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Figure 11: Conductivity distribution and adaptive triangular mesh for Case 2.
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Figure 12: Pressure distribution, streamlines field, and average effluent concentration for Case 2.

the 44000th year, the clean water mainly passes through the vugs and fractures (Figure 22).
From the 44001th year to 70000th year, clean water begins to pass the whole fractured vuggy
porous media (Figure 22).

Case 5: Vugs on the Outflow Boundary Connected with Fractures Extending to
the Inflow Boundary

Similar to Case 4, but the fractures are now extending to the inflow boundary. The con-
ductivity distribution and adaptive triangular mesh of this situation are given in Figure 23.
The pressure and streamlines fields are displayed in Figure 24. The pressure field shows
that the fractures and vugs do not affect the pressure distribution. But the fractures
significantly affect the streamlines distribution (Figure 24). From the results of the simulated
concentration, different from Case 4, the contaminant transport mainly passes through
vugs and fractures via convection from year 1 to year 3500 in the first phase, and the
contaminant quickly passes through vugs and fractures to the outlet (Figure 25). From
the 3501th year the contaminant starts to infiltrate into the matrix media (Figure 25).
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Figure 13: Concentration distribution at different time for the first phase for Case 2.

In the second phase, the clean water firstly passes through the fractures and vugs
(Figure 26).

Case 6: Vugs inside the Domain Connected with Fractures Extending Both Inflow and
Outflow Boundaries

Now the vugs are located inside the domain connected with fractures extending to the
inlet and outlet. The conductivity distribution and adaptive triangular mesh are displayed
in Figure 27. The pressure field and streamlines field are demonstrated in Figure 28. The
pressure field suggests that the fractures near the inflow boundary and vugs significantly
affect the pressure distribution while the fractures near the outflow boundary not. The
streamlines field shows that the streamlines converge into the fractures and the vugs. The
results of the simulated concentration are showed in Figure 29. From Figure 29, we can
observe that the contaminant quickly passes through the vugs and fractures to the outlet
via convection during year 1 to year 3500, after that the contaminant starts to pass through
the matrix. In the second phase, the clean water behaves as the contaminant in the first
phase as shown in Figure 30.
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Figure 14: Concentration distribution at different time for the second phase for Case 2.
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Figure 15: Conductivity distribution and adaptive triangular mesh for Case 3.



22 Journal of Applied Mathematics

x (m)

y
(m

)

0 0.4 0.8
0

0.4

0.8 0.9836

0.6576

0.3316

0.005592
Max: 0.9836
Min: 0.005592

(a) Pressure distribution

x

y

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

(b) Streamlines field

0 1 2 3 4 5 6 7
×104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Matrix porous media
Fractured vuggy porous media

A
ve

ra
ge

eff
lu
en

tc
on

ce
nt
ra
ti
on

(c) Average effluent concentration

Figure 16: Pressure distribution, streamlines field, and average effluent concentration for Case 3.

Case 7: Vugs on the Inflow Boundary and Outflow Boundary Connected with Fractures
through the Domain

In this case, the vugs are located on the inlet and outlet connected with fractures, the
conductivity distribution and adaptive triangular mesh of which are displayed in Figure 31.
The pressure and streamlines fields are showed in Figure 32. From Figure 32 we can observe
that the vugs near the inflow boundary obviously affect the pressure distribution while the
fractures and the vugs near the outflow boundary not. From year 1 to year 3500, the con-
taminant transports mainly through the vugs and fractures via convection (Figure 33). From
the 3501th year, the contaminant starts to infiltrate into the matrix porous media (Figure 33).
In the second phase, the clean water quickly passes through the vugs and fractures to the
outlet during year 35001 and the 38500th year. After that the clean water starts to infiltrate
into the whole domain (Figure 34).
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Figure 17: Concentration distribution at different time for the first phase for Case 3.

4.3. Analysis of the Concentration on the Outflow Boundary at
Different Time

We get the effluent concentration on the outlet for every case at different time (Figures 8, 12,
16, 20, 24, 28, and 32). For Case 1 to Case 7, they have a common feature that the effluent
concentration quickly becomes higher in shorter time than that in the base case during the
first phase, and then the concentration increases gradually until it gets to the highest (1.0).
This suggests that there are time multiscale phenomena in the contaminant transport in
karstic aquifers. Amain reasonmay be that the vugs and fractures havemuch higher porosity
than that in matrix porous media, and the velocity in the vugs and fractures is also higher
than that in matrix porous media. Once the clean water is injected into the inlet, the fractured
vuggy porous media, the effluent concentration becomes lower in shorter time than that in
the base case except for the Case 4. It is easily to understand that the vugs and fractures are
the main pathways for contaminant transport. But it takes longer time for the vuggy fractured
porous media to get the lowest concentration than that in base case (Figures 8, 12, 16, 20, 24,
28, and 32). It may be becausewhen the cleanwater is injected into the inlet, it firstly infiltrates
into the vugs and fractures, but there remains much contaminant in the matrix porous media
by adsorption. So we can conclude that karst groundwater becomes polluted more easily and
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Figure 18: Concentration distribution at different time for the second phase for Case 3.
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Figure 19: Conductivity distribution and adaptive triangular mesh for Case 4.
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Figure 20: Pressure distribution, streamlines field, and average effluent concentration for Case 4.

in shorter time periods than that in non-karstic aquifers. Even though the aquifers are injected
clean water which has been polluted by some contaminants, it will take a much longer time
to render the groundwater to be clean again than that in non-karstic areas, because of the
significant difference of adsorption between the vugs, fractures, and matrix porous media.

5. Conclusions

This paper begins with presenting a mathematical model for some contaminant transport in
the fractured vuggy porous media. Two phases are numerically simulated for a process of
contaminant and clean water infiltrated in the fractured vuggy porous media by coupling
mixed finite element (MFE) method and finite volume method (FVM), both of which are
locally conservative, to approximate the model. A hybrid mixed finite element (HMFE)
method is applied to approximate the velocity field for the model. The convection and
diffusion terms are approached by FVM and the standard MFE, respectively. The pressure
distribution and temporary evolution of the concentration profiles are obtained for two
phases. The average effluent concentration on the outflow boundary is obtained at different
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Figure 21: Concentration distribution at different time for the first phase for Case 4.

time that shows some obviously different features from the matrix porous media, and the
time multi-scale of the effluent concentration on the outlet is observed. The results show how
the different distribution of the vugs and the fractures impact the contaminant transport and
the effluent concentration on the outlet.

Appendices

A. Weak Formulation of Flow Equation

We represent the derivation of the weak formulation of the flow equation here.
We at first denote the inner product notation by the following formulation

(u, v) =
∫

Ω
uvdΩ, (A.1)

where Ω is a plane area, u and v are scalar functions or vector functions, which depends
on the physical meaning of the quantities u and v. And the boundary of Ω is denoted by



Journal of Applied Mathematics 27

x (m)

y
(m

)

0 0.4 0.8
0

0.4

0.8 1

0.6667

0.3333

6.237e−007
Max: 1
Min: 6.237e−007

(a) The 38500th year

x (m)

y
(m

)

0 0.4 0.8
0

0.4

0.8 1

0.6669

0.3334

2.551e−013
Max: 1
Min: 2.551e−013

(b) The 49000th year

x (m)

y
(m

)

0 0.4 0.8
0

0.4

0.8 0.8137

0.5424

0.2712

0
Max: 0.8137
Min: 0

(c) The 70000th year

Figure 22: Concentration distribution at different time for the second phase for Case 4.
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Figure 23: Conductivity distribution and adaptive triangular mesh for Case 5.
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Figure 24: Pressure distribution, streamlines field, and average effluent concentration for Case 5.

Γ = ΓD∪ΓN , ΓD representing the Dirichlet boundary, ΓN representing the Neumann boundary.
And the divergence theorem is given by

∫

Ω
∇ ·wdΩ =

∫

Γ
w · nds, (A.2)

where n is the outward unit normal vector towards Γ.
The flow equation considered in this paper here is the same

u +K∇p = 0,
∇ · u = q,

(A.3)

where u ∈ W0
N + E(uB), p ∈ V , W0

N = {w ∈ H(div;Ω) : w · n = 0 on ΓN}, V = L2(Ω) and
E(uB) is the velocity extension that make the normal component of u agreeing with uB on ΓN ,
where uB is the prescribed given normal component on ΓN .
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Figure 25: Concentration distribution at different time for the first phase for Case 5.

We begin with rewriting the first equation in (A.2) as the following one:

K−1u = −∇p. (A.4)

Multiplying (A.3) by ∀w ∈ W0
N and integrating over Ω, we have

∫

Ω
K−1uwdΩ = −

∫

Ω
∇pwdΩ. (A.5)

For (A.5), by the divergence theorem and the definition of w, we can obtain

∫

Ω
K−1uwdΩ = −

∫

Ω
∇pwdΩ. (A.6)
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Figure 26: Concentration distribution at different time for the second phase for Case 5.
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Figure 27: Conductivity distribution and adaptive triangular mesh for Case 6.
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Figure 28: Pressure distribution, streamlines field, and average effluent concentration for Case 6.

By the definition of inner product, we can get

∫

Ω
K−1uwdΩ = −

∫

Γ
pBw · nds +

∫

Ω
∇ ·wp dΩ, (A.7)

where pB is the value of p on Γ.
We rewrite (A.7) with the notation of inner product as follows:

(
K−1u,w

)
=
(∇ ·w, p

) −
∫

Γ
pBw · nds. (A.8)

Becausew ∈ W0
N , we can get

(
K−1u,w

)
=
(∇ ·w, p

) −
∫

ΓD
pBw · nds. (A.9)
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Figure 29: Concentration distribution at different time for the first phase for Case 6.

Multiplying the second one in the flow equation by v ∈ V , similarly, we can obtain

(∇ · u, v) = (q, v). (A.10)

Combining (A.9) and (A.10), we get the weak formulation of the flow equation

(
K−1u,w

)
=
(∇ ·w, p

) −
∫

ΓD
pBw · nds,

(∇ · u, v) = (q, v).
(A.11)
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Figure 30: Concentration distribution at different time for the second phase for Case 6.
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Figure 31: Conductivity distribution and adaptive triangular mesh for Case 7.
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Figure 32: Pressure distribution, streamlines field, and Average effluent concentration for Case 7.

B. Matrix Formulation of Flow Equation

We derive the matrix formulation of the flow equation. We begin with a single triangular
element K. By RT0 space, uh in (3.5) can be written as

uh =
∑

E∈∂K
uK,EwK,E , (B.1)

where wK,E is a shape function of the RT0 space and uK,E represents the total flux across an
edge E of element K. Taking wK,E as the test function w, the total flux is given by

AKUK = pKe − PKE. (B.2)
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Figure 33: Concentration distribution at different time for the first phase for Case 7.

By (B.2), we have

UK = A−1
K

(
pKe − PKE

)
, (B.3)

where AK = [(AK)E,E′∈∂K], (AK)E,E′ =
∫
K wK,EK−1wK,E′dK, UK = [(UK)E∈∂K], e = [1]E∈∂K,

PK,E = [pK,E]E∈∂K. As a result, the flow uK,E in (B.2) passing through each edge is given by
a function of the cell pressure average pK and edge pressure average pK,E. For simplicity, we
rewrite the equation as

uK,E = aK,EpK −
∑

E∈∂K
bK,E,E′pK,E, (B.4)

where aK,E =
∑

E∈∂K (A−1
K )

E,E′ , bK,E,E′ = (A−1
K )

E,E′ .
For the second one in (3.5), v ∈ Vh(K) = P0(K) combining (B.1), we can obtain

BKUK = 0, (B.5)

where BK = (BK)K,E, (BK)K,E =
∫
K(∇ ·wK,E)dK (wK = 1).
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Figure 34: Concentration distribution at different time for the second phase for Case 7.

Substituting (B.3) into (B.5) we can get

BKA
−1
K pKe − BKA

−1
K PKE = 0. (B.6)

Hence

pK =
(
BKA

−1
K e
)−1

BKA
−1
K PKE, (B.7)

by the continuity of the flux across the interelement boundaries, then uK,E is given by

uK,E =

⎧
⎪⎨

⎪⎩

uN
E , E = K ∩K′,

−uK,E′ , E ∈ ΓN.

(B.8)
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Thus by (B.2), (B.7), and (B.8), we can obtain the algebraic linear system of PE (the pressure
average) as follows:

ATPE = J, (B.9)

where AT = DTF − G, D = [aK,E]NK,NE
, E ∈ ∂K, F = [(BKA

−1
K e)

−1
BKA

−1
K ]NK

, G =
[
∑

E,E⊂∂K bK,E,E′]
NE,NE′

, E /∈ ΓD.NK andNE stand for the number of elements and the number
of edges not belonging to ΓD in the mesh, respectively. J represents a vector of size NE

denoting the boundary conditions.

C. Weak Formulation of the Transport Equation

We derive the weak formulation of the transport equation in this appendix. We let

w = −D(u)∇c, (C.1)

by MFE method in (2.7), and we rewrite (C.1) to get

∇c = −D−1(u)w. (C.2)

Now we can get

∂
(
φecf

)

∂t
+∇ · (ucf +w

)
= 0,

∇c = −D−1(u)w,

(uc +w) · n = cBu · n, x ∈ Γinflow,

−w · n = 0, x ∈ Γoutflow,

cf(x, 0) = c0(x), x ∈ Ω.

(C.3)

Multiplying the first equation in (C.3) byw, the second by v̂, and the last byw, we can obtain

(
∂
(
φecf

)

∂t
, v

)

+
(∇ · (ucf +w

)
, v
)
= (0, v), v ∈ V, t ∈ (0, T],

(∇c, ŵ) =
(−D−1(u)w, ŵ

)
, w ∈ W0,

(
cf(x, 0), v

)
= (c0(x), v), v ∈ V, t = 0,

(uc +w) · n = cBu · n, x ∈ Γinflow,

−w · n = 0, x ∈ Γoutflow.

(C.4)
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Using the upwind value of the concentration, the boundary condition, and the initial condi-
tion, we now get the weak formulation

⎛

⎜
⎝

∂
(
φec∗

f

)

∂t
, v

⎞

⎟
⎠ + (∇ ·w, v) +

∑

K

∫

∂K

vuc∗f · nds −
∑

K

(
c∗fu,∇v

)
= 0, ∀v ∈ V, t ∈ (0, T],

(
−D−1w, ŵ

)
+
(
cf ,∇ ·w) = 0, ∀w ∈ W0, t ∈ (0, T],

(
cf , v

)
=
(
cf,0, v

)
, ∀v ∈ V, t = 0.

(C.5)

D. MFE Method to Solve the Transport System

We apply the standardMFEmethod to solve the transport system (3.8). We handle the second
one in the system similarly to handling flow equation. Based on RT0 space, thewh in (3.8) can
written as

wh =
∑

E∈∂K

�
WK,EŵK,E, (D.1)

where ŵK,E is a basis function of RT0 space, ŵK,E is the total diffusive flux across the edge E.
We take the test function ŵ as ŵK,E and integrate over Ω, using the Green formulation, and
therefore the total diffusive flux is given by

Acon
K

�

WK = cKB
con
K , (D.2)

where Acon
K = [

∫
K ŵK,ED−1wK,E]E,E′∈∂K,

�

WK = [
�

WK,E]E∈∂K, and Acon
K = [

∫
K(∇ ·

ŵK,E)wKdK]E,E′∈∂K = [
∫
K(∇ · ŵK,E)dK]E,E′∈∂K(wK = 1). So the diffusion term in the first

equation in (3.8)

(
∂
(
φech

)

∂t
, v

)

+ (∇ ·wh, v) = 0 (D.3)

and we can get

Mcon
K

dcK
dt

+
(
Bcon
K

)T �

WK = 0, (D.4)

where Mcon
K = [

∫
K φevK · vK] = [

∫
K φedK](vK = 1).
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By (D.2) and (D.4), we have the ordinary differential equations of the concentration

cell averages C and the diffusive flux
�
WK as follows:

(
0 0

0 diag
(
Mcon

K

)
NK

)

⎛

⎜⎜⎜
⎜⎜
⎝

d
�
W

dt

dC

dt

⎞

⎟⎟⎟
⎟⎟
⎠

+

(
diag

(
Acon

K

)
NK

−(Bcon
K

)
NK(

Bcon
K

)
NK

0

)⎛

⎝
�

W

C

⎞

⎠ = 0. (D.5)

For the advection component in system (3.8),

(
∂φec

∂t
, v

)
+
∑

K

∫

∂K

vuc∗ · ndl −
∑

K

(c∗u,∇v) = 0. (D.6)

Because v is a function of RT0 space,∇v = 0. The given equation above is written as

(
∂φec

∂t
, v

)
+
∑

K

∫

∂K

vuc∗ · ndl = 0. (D.7)

Denote the velocity across each edge by ui, and then give

u⊥
iE = ui · ni, i = 1, 2, . . . ,NE, (D.8)

where ni is the outward unit normal vector to each edge. Denote the edge-element signed
adjacency matrices by F+ the entry of which equals to 1 if u⊥

iE > 0 for each edge, and the entry
of F− equals to −1 if u⊥

iE < 0. And therefore the upwind concentration is given by F+C or F−C.
Let u⊥ = [u⊥

iE]NE
, u⊥

+ = max(0,u⊥), and u⊥
− = min(0,u⊥), using the boundary condition, and

then we can obtain the flux across the edges as follows:

q = diag
(
u⊥
+

)
F+C + diag

(
u⊥
−
)(

F−C + BCB

)
, (D.9)

where B and CB represent the edge-boundary adjacency matrix and the concentration on the
inflow boundary, respectively. We denote edge-adjacency matrix by F = F+ + F−. And then
the total divergence amount is given by

Q = FTq = FT
(
diag

(
u⊥
+

)
F+ + diag

(
u⊥
−
)
F−
)
C + FT diag

(
u⊥
−
)
BCB. (D.10)

Equation (D.10) gives an ordinary differential equations as follows:

[
diag

(
Mcon

K

)
NK

]dC
dt

+
[
FT
(
diag

(
u⊥
+

)
F+ + diag

(
u⊥
−
)
F−
)]

C = −FT diag
(
u⊥
−
)
BCB.

(D.11)
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Now we finally can obtain the ordinary differential equations by (D.4) and (D.11) for the
transport system

L
dX

dt
+
(
R̂ +

�

R

)
X = b, (D.12)

where L =
(

0 0
0 diag (Mcon

K )
NK

)
, R̂ =

(
0 0
0 FT (diag(u⊥

+)F++diag(u⊥
−)F−)

)
,
�

R =
(

diag (Acon
K )

NK
−[Bcon

K ]
NK

([Bcon
K ]

NK
)T 0

)
, b =

(
0

−FT diag(u⊥
−)BCB

)
.
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