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Convex multiobjective programming problems and multiplicative programming problems have
important applications in areas such as finance, economics, bond portfolio optimization, engi-
neering, and other fields. This paper presents a quite easy algorithm for generating a number of
efficient outcome solutions for convex multiobjective programming problems. As an application,
we propose an outer approximation algorithm in the outcome space for solving the multiplicative
convex program. The computational results are provided on several test problems.

1. Introduction

The convex multiobjective programming problem involves the simultaneously minimize p ≥
2 noncomparable convex objective functions fj : R

n → R, j = 1, . . . , p, over nonempty convex
feasible region X in R

n and may be written by

Minf(x), s.t. x ∈ X, (VPX)

where f(x) = (f1(x), f2(x), . . . , fp(x))
T . When X ⊂ R

n is a polyhedral convex set and fj , j =
1, . . . , p are linear functions, problem (VPX) is said to be a linear multiobjective programming
problem (LPX).
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For a nonempty set Q ⊂ R
p, we denote by QE and QWE the sets of all efficient points

and weakly efficient points of Q, respectively, that are

QE :=
{
q∗ ∈ Q | �q ∈ Q such that q∗ ≥ q and q∗ /= q

}

=
{
q∗ ∈ Q |

(
q∗ − R

p
+

)
∩Q =

{
q∗
}}

,

QWE :=
{
q∗ ∈ Q | �q ∈ Q such that q∗ � q

}

=
{
q∗ ∈ Q |

(
q∗ − intRp

+

)
∩Q = ∅

}
.

(1.1)

Here for any two vectors a, b ∈ R
p, the notations a ≥ b and a � b mean a − b ∈ R

p
+

and a − b ∈ intRp
+, respectively, where R

p
+ is the nonnegative orthant of R

p, and intRp
+ is the

interior of R
p
+. By definition, QE ⊆ QWE.

The set

Y image = f(X) =
{
f(x) | x ∈ X

}
(1.2)

is called the outcome set (or image) of X under f . A point x0 ∈ X is said to be an efficient
solution for problem (VPX) if f(x0) ∈ Y

image
E . For simplicity of notation, let XE denote the set

of all efficient solutions for problem (VPX). When f(x0) ∈ YWE, x0 is called weakly efficient
solution for problem (VPX) and the set of all weakly efficient solutions is denoted by XWE, it
is clear that XE and XWE are the preimage of Y image

E and Y
image
WE under f , respectively. We will

refer to Y
image
E and Y

image
WE as the efficient outcome set and weakly efficient outcome set for problem

(VPX), respectively.
The goal of problem (VPX) is to generate the sets XE and XWE or at least their subsets.

However, it has been shown that, in practice, the decision maker prefers basing his or her
choice of the most preferred solution primarily on Y

image
E and Y

image
WE rather than XE and XWE.

Arguments to this effect are given in [1].
It is well known that the task of generating XE, XWE, Y

image
E , Y image

WE , or significant
portions of these sets for problem (VPX) is a difficult problem. This is because they are,
in general, nonconvex sets, even in the case of linear multiobjective programming problem
(LPX).

Problem (VPX) arises in a wide variety of applications in engineering, economics,
network planning, production planning, operations research, especially in multicriteria
design and in multicriteria decision making (see, for instance, [2, 3]). Many of the approaches
for analyzing convex multiobjective programming problems involve generating either the
sets XE, XWE, Y

image
E , and Y

image
WE or a subset thereof, without any input from decision maker

(see, e.g., [1, 2, 4–13] and references therein). For a survey of recent developments see [6].
This paper has two purposes:

(i) the first is to propose an algorithm for generating a number of efficient outcome
points for convex multiobjective programming problem (VPX) depending on
the requirements of decision makers (Algorithm 1 in Section 2). Computational
experiments show that this algorithm is quite efficient;

(ii) as an application, we present an outer approximation algorithm for solving the
convex multiplicative programming problem (CPX) associated with the problem
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(VPX) in outcome space R
p (Algorithm 2 in Section 3), where the problem (CPX)

can be formulated as

min
p∏

j=1

fj(x), s.t. x ∈ X. (CPX)

It is well known that problem (CPX) is a global optimization problem and is known to
be NP-hard, even special cases such as when p = 2,X is a polyhedron, and fj is linear for each
j = 1, 2 (see [14]). Because of the wide range of its applications, this problem attracts a lot of
attention from both researchers and practitioners. Many algorithms have been proposed for
globally solving the problem (CPX), (see, e.g., [10, 14–20] and references therein).

The paper is organized as follows. In Section 2, we present Algorithm 1 for generating
efficient outcome points for convex multiobjective programming problem (VPX) and its
theoretical basis. To illustrate the performance of Algorithm 1, we use it to generate
efficient points for a sample problem. The Algorithm 2 for solving the convex multiplicative
programming (CPX) associated with the problem (VPX), and numerical examples are
described in Section 3.

2. Generating Efficient Outcome Points for Problem (VPX)

2.1. Theoretical Basis

Assume henceforth that X ⊂ R
n is a nonempty, compact convex set given by

X :=
{
x ∈ R

n | gi(x) ≤ 0, i = 1, . . . , m
}
, (2.1)

where all the g1, g2, . . . , gm are convex functions on R
n. Then the set

G0 = Y image + R
p
+ (2.2)

is nonempty full-dimensional convex set in R
p. Furthermore, from Yu [21, page 22,

Theorem 3.2], we know that Y image
E = G0

E.
For each k = 1, . . . , p, we consider the following problem:

minyk, s.t. y ∈ G0. (P 0(k))

We denote the optimal value for the problem (P 0(k)) by y
opt
k

and the optimal solution for this
problem by yk = (yk

1 , . . . , y
k
p) ∈ R

p.
Let ym = (ym

1 , y
m
2 , . . . , y

m
p ), where

ym
k = y

opt
k

∀k = 1, 2, . . . , p. (2.3)
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As usual, the point ym is said to be an ideal efficient point of G0. It is clear that if ym ∈ G0

then Y
image
E = G0

E = {ym}. Therefore, we suppose that ym /∈ G0. Obviously, by definition, if
(x∗, y∗) ∈ R

n+p is an optimal solution for the problem (P(k)) given by

min yk

s.t. fj(x) − yj ≤ 0, j = 1, . . . , p,

gi(x) ≤ 0, i = 1, . . . , m,

(P(k))

then yk = y∗ is an optimal solution for the problem (P 0(k)), and the optimal values of these
two problems are equal.

To generate various efficient outcome points in Y
image
E , the algorithm will rely upon

the point yM = (yM
1 , yM

2 , . . . , yM
p ), where for each j = 1, 2, . . . , p, yM

j = α, and α is any real
number satisfying

α > max
{
yk
j , k = 1, . . . , p, j = 1, . . . , p

}
. (2.4)

We consider the set G given by

G = G0 ∩
(
yM − R

p
+

)
. (2.5)

It is obvious that G is a nonempty, full-dimensional compact convex set in R
p. The set G is

instrumental in Algorithm 1 to be presented in Section 2.2 for generating efficient outcome
points for problem (VPX).

Remark 2.1. In 1998, Benson [1] presented the outer approximation algorithm for generating
all efficient extreme points in the outcome set of a multiobjective linear programming
problem. Here, the G seems to be analogous with the set Y considered by Benson [1].
However, note that Y ⊃ Y image and Y image is not necessarily a subset of G. The Figure 1
illustrates the set G in the case of p = 2.

Proposition 2.2. Y
image
E = GE.

Proof. This result is easy to show by using Yu [21, page 22, Theorem 3.2] and the definition
of the point yM. Therefore, the proof is omitted.

Let

B0 =
(
ym + R

p
+

)
∩
(
yM − R

p
+

)
. (2.6)

It is clear that G ⊂ B0. The following fact will play an important role in establishing the
validity of our algorithm.

Proposition 2.3. For each point y ∈ B0 \ G, let yw denote the unique point on the boundary of G
that belongs to the line segment connecting y and yM. Then yw ∈ GE.
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Proof. Let D = G − yw. Since G is the compact convex set and yw belongs to the boundary
of G, the set D is also the compact convex set containing the origin 0 of the outcome space
R

p and 0 belongs to the boundary of D. According to the separation theorem [22], there is a
nonzero vector q ∈ R

p such that

〈
q, u
〉 ≥ 0 ∀u ∈ D. (2.7)

Let S ⊂ R
p be a p-simplex with vertices 0, e1, e2, . . . , ep, where e1, e2, . . . , ep are the unit vectors

of R
p. By definition, we can choose the point yM such that (yw + S) ⊂ G. This implies that

S ⊂ D. From (2.7), by taking u to be e1, e2, . . . , ep to see that

q ≥ 0. (2.8)

Furthermore, the expression (2.7) can be written by

〈
q, y − yw〉 ≥ 0 ∀y ∈ G, (2.9)

that is,

〈
q, y
〉 ≥ 〈q, yw〉 ∀y ∈ G. (2.10)

According to [23, Chapter 4, Theorem 2.10], a point y∗ ∈ G is a weakly efficient point
of G if and only if there is a nonzero vector v ∈ R

p and v ≥ 0 such that y∗ is an optimal
solution to the convex programming problem

min
{〈
v, y
〉 | y ∈ G

}
. (2.11)
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Combining this fact, (2.8) and (2.10) give yw ∈ GWE. To complete the proof, it remains to
show that yw ∈ GE. Assume the contrary that

yw ∈ GWE \GE. (2.12)

By the definition, we have

GWE = GE ∪
(

p⋃

k=1

Fk

)

, (2.13)

where for each k = 1, . . . , p, Fk is the optimal solution set for the following problem:

minyk, s.t. y ∈ G. (PG(k))

It is easy to see that the optimal values of two problems (PG(k)) and (P 0(k)) are the same.
From this fact and the definition of the point ym, it follows that

Fk =
{
y ∈ G | yk = ym

k

}
. (2.14)

Therefore, if yw ∈ GWE \GE then there is i0 ∈ {1, 2, . . . , p} such that yw
i0
= ym

i0
. Since y ∈ B0 \G,

we always have y ≥ ym and yw = λyM + (1 − λ)y with 0 < λ < 1. By the choice of the point
yM, we have yM � ym. Hence,

ym
i0
= yw

i0
= λyM

i0
+ (1 − λ)yi0

> ym
i0
. (2.15)

This contradiction proves that yw must belong to the efficient outcome set GE.

Remark 2.4. This Proposition 2.3 can be viewed as an Benson’s extension in [1, Proposi-
tion 2.4]. Benson showed that the unique point on the boundary of Y (which is considered
in [1]) and corresponding segment belongs to the weakly efficient outcome set YWE, here we
prove that yw belongs to the efficient outcome set GE.

Remark 2.5. Let y be a given point in B0 \ G. From Propositions 2.3 and 2.2, the line segment
connecting y and yM contains a unique point yw ∈ Y

image
E which lies on the boundary ofG. To

determine this efficient outcome point yw, we have to find the unique value λ∗ of λ, 0 < λ < 1,
such that

yw = λ∗yM + (1 − λ∗)y = y + λ∗
(
yM − y

)
(2.16)

belongs to the boundary of G (see Figure 2). It means that λ∗ is the optimal value for the
problem
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min λ

s.t.y + λ
(
yM − y

)
∈ G,

0 ≤ λ ≤ 1.

(2.17)

By definition, it is easy to see that λ∗ is also the optimal value for the following convex
programming problem with linear objective function

min λ

s.t. f(x) − λ
(
yM − y

)
− y ≤ 0,

gi(x) ≤ 0, i = 1, . . . , m,

0 ≤ λ ≤ 1.

(T
(
y
)
)

Note that λ∗ exists because the feasible region of problem (T
(
y
)
) is a nonempty, compact

convex set. Furthermore, by the definition, it is easy to show that if (x∗, λ∗) ∈ R
n+1 is

an optimal solution for Problem (T
(
y
)
), then x∗ is an efficient solution for the convex

multiobjective programming problem (VPX), that is, x∗ ∈ XE. For the sake of convenience, x∗

is said to be an efficient solution associated with yw, and yw is said to be an efficient outcome point
generated by y. It is easily seen that by varying the choices of points y ∈ B0 \ G, the decision
maker can generate multiple points in Y

image
E . In theory, if y could vary over all of B0 \G, we

could generate all of the properly efficient points of Y (see [24]) in this way.
The following Proposition 2.6 shows that for each efficient outcome point yw

generated by a given point y, we can determine p new points which belong to B0 \ G and
differ y. This work is accomplished by a technique called cutting reverse polyblock.
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A set of the form B =
⋃

y∈V [y, y
M] ⊂ R

p, where [y, yM] := {y | y ≤ y ≤ yM},
V ⊂ B0 = [ym, yM], and |V | < +∞, is called a reverse polyblock in hyperrectangle B0 with vertex
set V . A vertex y ∈ V is said to be proper if there is no y′ ∈ V \{y} such that [y, yM] ⊂ [y′, yM].
It is clear that a reverse polyblock is completely determined by its proper vertices.

Proposition 2.6 (see, e.g., [20]). LetG = (Y image+R
p
+)∩(yM−R

p
+) be a nonempty compact convex

set contained in a reverse polyblock B =
⋃

y∈V [y, y
M] with vertex set V ⊂ B0. Let v ∈ V \G and yw

is the unique point on the boundary of G that belongs to the line segment connecting v and yM. Then,
B = B \ [v, yw] is a reverse polyblock with vertex set V = (V \ {v}) ∪ {v1, v2, . . . , vp}, where

vi = yw − (yw
i − vi

)
ei, i = 1, 2, . . . , p, (2.18)

where, as usual, ei denotes the ith unit vector of R
p, and

G ⊂ B ⊂ B, v ∈ B \ B. (2.19)

Remark 2.7. By Proposition 2.3, the point yw as described in Proposition 2.6 belongs to GE.
From (2.18), it is easy to see that vi /=v for all i = 1, . . . , p and for each i = 1, . . . , p, the
vertex vi ∈ B0 \ G because yw ≥ vi and yw /=vi. The points v1, . . . , vp are called new vertices
corresponding to yw.

2.2. The Algorithm

After the initialization step, the algorithm can execute the iteration step many times to
generate a number of efficient outcome points for problem (CMP) depending on the user’s
requirements. Note that the construction of the box B0 in Substep 1.1 of Algorithm 1 involves
solving p convex programming problems, each of which has a simple linear objective function
and the same feasible region. Let NumExpect be a positive integer number. The algorithm
for generating NumExpect efficient outcome points to the problem (VPX) and NumExpect
efficient solutions associated with them are described as follows.

Algorithm 1.

Step 1 (Initialization).

(1.1) Construct B0 = [ym, yM], where ym and yM are described in Section 2.1. Set B = B0.

(1.2) Set Y out
E = ∅ (the set of efficient outcome points),

Xout
E = ∅ (the set of efficient solutions),

Nef := NumExpect,

k := 0 (the number of elements of the set Y out
E ),

S = {ym}.

Step 2 (Iteration). See Steps 2.1 through 2.3 below.

(2.1) Set S = ∅.
(2.2) For each y ∈ S do
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begin

k := k + 1.

Find an optimal solution (x∗, λ∗) ∈ R
n+1 and the optimal value λ∗ to the problem

(T
(
y
)
).

Set wk = y + λ∗(yM − y),

Y out
E = Y out

E ∪ {wk} and Xout
E = Xout

E ∪ {x∗} (see Remark 2.5),

B = B \ [v, yw]with v = y and yw = wk.

Determine p vertices v1, . . . , vp corresponding to yw via formula (2.18).

Set S = S ∪ {v1, . . . , vp} and B = B.

end

(2.3) If k ≥ Nef Then Terminate the algorithm

Else Set S = S and return the Step 2.

2.3. Example

To illustrate the Algorithm 1, we consider the convex multiobjective programming problem
(VPX) (see, Benson in [14]) with p = n = 2, where

f1(x) = (x1 − 2)2 + 1, f2(x) = (x2 − 4)2 + 1, (2.20)

and X ⊂ R
2 that satisfies the constraints

g1(x) = 25x2
1 + 4x2

2 − 100 ≤ 0, g2(x) = x1 + 2x2 − 4 ≤ 0. (2.21)

What follows is a brief summary of the results of executing Algorithm 1 for determin-
ingNumExpect = 7 different efficient outcome points for this sample problem, and 7 efficient
solutions associated with them.

Step 1. By solving the problem (P(1)), we obtain the optimal solution (1.0, 0.0, 1.0, 100.0) and
the optimal value y

opt
1 = 1.0. Then, y1 = (1.0, 100.0) is the optimal solution for the problem

(P 0(1)).
By solving problem (P(2)), we obtain the optimal value y

opt
2 = 2.380437 and the

optimal solution (−1.6501599, 2.8250799, 100.0, 2.380437). Hence, y2 = (100.0, 2.380437) is the
optimal solution for the problem (P 0(2)). From (2.4), we choose

α = 110.0 > max
{
y1
1 , y

1
2 , y

2
1 , y

2
2

}
= max{1.0, 100.0, 100.0, 2.380437}. (2.22)

Then ym = (yopt
1 , y

opt
2 ) = (1.0, 2.380437), and yM = (α, α) = (110.0, 110.0). Set B = B0 =

[ym, yM], Y out
E := ∅, Xout

E := ∅, Nef := NumExpect = 7; k := 0 and S := {ym}.
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Step 2 (The first time).

Substep 2.1. Set S = ∅.

Substep 2.2 (The set S has only one element (1.0, 2.380437)). Let y := (1.0, 2.380437)
and k = 1. By solving the problem (T

(
y
)
), we obtain the optimal solution (x∗, λ∗) =

(0.230078, 1.884961, 0.028740) and the optimal value λ∗ = 0.028740. Then,

w1 = y + λ∗
(
yM − y

)
= (4.132625, 5.473389) (2.23)

(the first efficient outcome point),

x1 = x∗ = (0.230078, 1.884961) (2.24)

(the first efficient solution).

Set

Y out
E := Y out

E ∪
{
w1
}
=
{
w1
}
,

Xout
E := Xout

E ∪
{
x1
}
=
{
x1
}
,

B = B \ [v, yw] with v = y,yw = w1.

(2.25)

Using formula (2.18), we obtain p = 2 new vertices v1 = (1.0, 5.473389) and v2 =
(4.132625, 2.380437) corresponding to yw.

Set S = S ∪ {v1, v2} = {(1.0, 5.473389), (4.132625, 2.380437)} and B = B.

Substep 2.3. Since k = 1 < Nef = 7, set S = S and return to the Step 2.

Step 2 (The second time).

Substep 2.1. S := ∅.

Substep 2.2. (The set S has 2 elements: s1 = (1.0, 5.473389), s2 = (4.132625, 2.380437))

(i) Let y = s1 = (1.0, 5.473389) and k = 2. The problem (T
(
y
)
) has the optimal solution

(x∗, λ∗) = (0.820117, 1.589942, 0.012772), and the optimal value λ∗ = 0.012772. We
have

w2 = (2.392125, 6.808381),
(
the second efficient outcome point

)
,

x2 = (0.820117, 1.589942), (the second efficient solution).
(2.26)
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Set

Y out
E = Y out

E ∪
{
w2
}
=
{
w1, w2

}
,

Xout
E = Xout

E ∪
{
x2
}
=
{
x1, x2

}
,

B = B \ [v, yw] with v = y, yw = w2.

(2.27)

Two new vertices corresponding to yw are v1 = (1.0, 6.808381), and v2 = (2.392125,
5.473389).

Set S = S ∪ {v1, v2} = {(1.0, 6.808381), (2.392125, 5.473389) and B = B.

(ii) Let y = s2 = (4.132625, 2.380437) and k = 3. Then, (x∗, λ∗) = (−0.276796, 2.138398,
0.019375), and λ∗ = 0.019375 are the optimal solution and the optimal value for the
problem (T

(
y
)
), respectively. Then,

w3 = (6.183801, 4.465562),
(
the third efficient outcome point

)
,

x3 = (−0.276796, 2.138398), (the third efficient solution).
(2.28)

Set

Y out
E = Y out

E ∪
{
w3
}
=
{
w1, w2, w3

}
,

Xout
E = Xout

E ∪
{
x3
}
=
{
x1, x2, x3

}
,

B = B \ [v, yw] with v = y, yw = w3.

(2.29)

Two new vertices corresponding to yw are v1 = (4.132625, 4.465562), and v2 =
(6.1838011, 2.380437).

Set S = S ∪ {v1, v2} = {(1.0, 6.808381), (2.392125, 5.473389), (4.132625, 4.465562),
(6.1838011, 2.380437)}, and B = B.

Substep 2.3. Since k = 3 < Nef = 7, set S := S and return to the Step 2.

Step 2 (The third time).

Substep 2.1. S := ∅.

Substep 2.2. (The set S has 4 elements: s1 = (1.0, 6.808381), s2 = (2.392125, 5.473389), s3 =
(4.132625, 4.465562), s4 = (6.1838011, 2.380437)).
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By a calculation analogous to above, we yield four next efficient outcome points w4,
w5,w6, andw7 generated by y = s1, y = s2, y = s3, y = s4, respectively, and four next efficient
solution x4, x5, x6, x7 associated with w4, w5, w6, w7, respectively. Namely,

w4 = (1.779439, 7.546285); x4 = (1.117142, 1.441430);

w5 = (3.109453, 6.170177); x5 = (0.547605, 1.726198);

w6 = (4.780944, 5.111841); x6 = (0.055535, 1.972232);

w7 = (7.668913, 3.919957); x7 = (−0.582424, 2.291212).

(2.30)

Since k = Nef = 7, the algorithm is terminated. Thus, after 3 iterations, we obtain Y out
E =

{w1, w2, . . . , w7}, and Xout
E = {x1, x2, . . . , x7}.

3. Application to Problem (CPX)

Consider convex multiplicative programming problem (CPX) associated with the convex
multiobjective programming problem (VPX)

min
p∏

j=1

fj(x) s.t. x ∈ X, (CPX)

where X ⊂ R
n is a nonempty compact convex set defined by (2.1) and fj : R

n → R is convex
on R

n and positive on X, j = 1, 2, . . . , p.
One of the direct reformulations of the problem (CPX) as an outcome-space problem

is given by

minh
(
y
)
=

p∏

j=1

yj s. t. y ∈ Y image, (OPY )

where Y image = {f(x) = (f1(x), . . . , fp(x))
T | x ∈ X} is the outcome set of X under f . By

assumption, we have Y image ⊂ intRp
+.

The following proposition tells us a link between the global solution to the problem
(OPY ) and the efficient outcome set Y image

E for the problem (VPX).

Proposition 3.1. Any global optimal solution to problem (OPY ) must belong to the efficient outcome
set Y image

E .

Proof. The proposition follows directly from the definition.

Remark 3.2. We invoke Propositions 3.1 and 2.2 to deduce that problem (OPY ) is equivalent
to the following problem:

minh
(
y
)
=

p∏

j=1

yj s.t. y ∈ GE. (OPGE)
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The relationship between two problems (CPX) and (OPY ) is described by the following
theorem and was given in [14, Theorem 2.2]. However, we give here a full proof for the
reader’s convenience.

Theorem 3.3. If y∗ is a global optimal solution to problem (OPY ), then any x∗ ∈ X such that
f(x∗) ≤ y∗ is a global optimal solution to problem (CPX). Furthermore, the global optimal values
of two problems (CPX) and (OPY ) are equal, that is,

h
(
y∗) =

p∏

j=1

y∗
j =

p∏

j=1

fj(x∗). (3.1)

Proof. Suppose that y∗ is a global optimal solution to problem (OPY ) and x∗ ∈ X satisfies

f(x∗) ≤ y∗. (3.2)

By Proposition 3.1, y∗ ∈ Y
image
E . Since f(x∗) ∈ Y image and y∗ ∈ Y

image
E , from (3.2), we have

f(x∗) = y∗. Thus, h(y∗) =
∏p

j=1y
∗
j =

∏p

j=1fj(x
∗). Now, we show that x∗ is a global optimal

solution of the problem (CPX). Indeed, assume the contrary that there is a point x ∈ X such
that

∏p

j=1fj(x) <
∏p

j=1fj(x
∗). Combining this fact and (3.2) gives

p∏

j=1

fj(x) <
p∏

j=1

fj(x∗) ≤
p∏

j=1

y∗
j . (3.3)

Since x ∈ X, we have y = f(x) ∈ Y image. Therefore,
∏p

j=1yj <
∏p

j=1y
∗
j . This contradicts the

hypothesis that y∗ is a global optimal solution to problem (OPY ) and proves that x∗ is a global
optimal solution to problem (CPX). This completes the proof.

By Theorem 3.3 and Proposition 3.1, solving the problem (CPX) can be carried out in
two stages:

(1) finding a global optimal solution y∗ to the problem (OPGE). Then y∗ is also a global
optimal solution to the problem (OPY ),

(2) finding a global optimal solution x∗ ∈ X to the problem (CPX) which satisfies
f(x∗) ≤ y∗.

In the next section, the outer approximation algorithm is developed for solving the
problem (OPGE).

3.1. Outer Approximation Algorithm for Solving Problem (OPGE)

Starting with the polyblock B0 = [ym, yM] (see Section 2.1), the algorithm will iteratively
generate a sequence of reverse polyblocks Bk, k = 1, 2, . . ., such that

B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ G ⊃ GE. (3.4)
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For each k = 0, 1, 2, . . ., the new reverse polyblock Bk+1 is constructed via the formula

Bk+1 := Bk \ [v, yw], (3.5)

where v = yk, yk is a global optimal solution to the problem min{h(y) | y ∈ Bk}, and yw is
the efficient outcome point generated by y = yk.

For each k, let V k denote the vertex set of the reverse polyblock Bk. The following
Proposition 3.4 shows that the function h(y) achieves a minimum over the reverse polyblock
Bk at a proper vertex.

Proposition 3.4. Let h(y) =
∏p

j=1yj , and let Bk be a reverse polyblock. Consider the problem to

minimize h(y) subject to y ∈ Bk. An optimal solution yk to the problem then exists, where yk is a
proper vertex of Bk.

Proof. By definition, note that the objective function h(y) is a continuous function on R
p,

and Bk is a compact, and the problem min{h(y) | y ∈ Bk} has an optimal solution yk ∈
Bk. For each y ∈ Bk, there is a proper vertex v of Bk such that y ∈ [v, yM]. That means
v ≤ y. By definition of the function h(y), we have h(v) ≤ h(y). This shows that h(yk) =
min{h(y) | y ∈ V k}, where V k is the vertex set of Bk, and the proof is completed.

Remark 3.5. By Proposition 3.4, instead of solving problemmin{h(y) | y ∈ Bk}, we solve the
simple problem min{h(y) | y ∈ V k}. From (3.4), it is clear that for each k = 0, 1, 2 . . ., the
optimal value

βk = min

⎧
⎨

⎩
h
(
y
)
=

p∏

j=1

yj

∣∣∣ y ∈ Bk

⎫
⎬

⎭
(3.6)

is a lower bound for the problem (OPGE), and {βk} is an increasing sequence, that is, βk+1 > βk
for all k = 0, 1, 2, . . ..

Let ε be a given sufficient small real number. Let y∗ ∈ GE. Then h(y∗) is an upper
bound for the problem (OPGE). A point y∗ is said to be an ε-optimal solution to problem (OPGE)
if there is a lower bound β∗ for this problem such that h(y∗) − β∗ < ε.

Below, we will present an algorithm for finding ε-optimal solution to problem (OPGE).
At the beginning of a typical iteration k ≥ 0 of the algorithm, we have from the

previous iteration an available nonempty reverse polyblock Bk ⊂ R
p that contains G and an

upper bound θk for the problem (OPGE). In iteration k, firstly problem min{h(y) | y ∈ Vk}
is solved to obtain the optimal solution set Topt

k . By the construction, Topt
k ⊂ (B0 \ G). Take

any yk ∈ T
opt
k . The optimal value βk = h(yk) is the best currently lower bound. Then, we

solve the convex programming problem (T
(
y
)
) with y := yk to receive the optimal value

λ∗. By Proposition 2.3, the feasible solution ωk = y + λ∗(yM − y) ∈ GE is an outcome
efficient point generated by y = yk (see Remark 2.5). Now, the best currently upper bound
is θk = min{θk, h(ωk)} and the feasible solution ybest satisfying h(ybest) = θk is said to be
a currently best feasible solution. If θk − βk < ε, then the algorithm terminates, and ybest is
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an ε-optimal solution for the problem (OPGE). Otherwise, set Bk+1 := Bk \ [v, yw], where v := yk

and yω = ωk. According to Proposition 2.6, the vertex set V k+1 of the reverse polyblock Bk+1

is

V k+1 =
(
V k \ {v}

)
∪
{
v1, v2, . . . , vp

}
, (3.7)

where v1, . . . , vp are determined by formula (2.18). Figure 3 illustrates two beginning steps of
the algorithm in the case of p = 2.

By the construction, it is easy to see that {θk} (the sequence of upper bounds for the
problem (OPGE) is the nonincreasing sequence, that is, θk+1 ≤ θk for all k = 0, 1, 2, . . .

Now, the outer approximation algorithm for solving (OPGE) is stated as follows.

Algorithm 2 (Outer approximation algorithm).

Initialization Step

Construct B0 = [ym, yM], where ym and yM are described in Section 2.1. Choose ε > 0 (ε > 0
is a sufficient small number). Set V 0 = {ym} and θ0 := Numlarge (Numlarge is a sufficient
large number. This number can be viewed as an initialization the upper bound). Set k = 0 and
go to Iteration step k.

Iteration Step k [k = 0, 1, 2, . . .]. See Steps k.1 through k.5 below.

k.1 Determine the optimal solution set Topt
k := Argmin{h(y) | y ∈ V k}. Choose an

arbitrary yk ∈ T
opt
k and set βk := h(yk) ( currently best lower bound).

k.2 Let y = yk. Find the optimal value λ∗ to the problem (T
(
y
)
). And set ωk = y +

λ∗(yM − y) ∈ GE.

k.3 (Update the upper bound)

If h(ωk) < θk Then θk = h(ωk) (currently best upper bound)

and ybest = ωk (currently best feasible point).
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k.4 If θk − βk ≤ ε

Then Terminate the algorithm: ybest is an ε-optimal solution

Else Set Bk+1 := Bk \ [v, yw] where v := yk and yω = ωk

and determine the set V k+1 by formula (2.18).

k.5 Set θk+1 := θk; k := k + 1 and go to iteration step k.

Theorem 3.6. The algorithm terminates after finitely many steps and yields an ε-optimal solution to
problem (OPGE).

Proof. Let ε be a given positive number. Since the function h(y) is uniformly continuous on
the compact set B0, we can choose an enough small number δ > 0 such that if y, y′ ∈ B0 and
‖y − y′‖ < δ, then |h(y) − h(y′)| < ε. Then, to prove the termination of the algorithm, we need
to show only that

lim
k→∞

∥∥∥wk − yk
∥∥∥ = 0. (3.8)

Observe first that the positive series
∑∞

k=1 Vol[y
k,wk] is convergent, since the open

boxes int [yk,wk] are disjoint, and all of them are contained in the closure of B0 \G. It follows
that

lim
k→∞

Vol
[
yk,wk

]
= 0. (3.9)

Now, by the construction of wk and yk, we have

wk − yk = λk
(
yM − yk

)
, (3.10)

Vol
[
yk,wk

]
= λ

p

kVol
[
yk, yM

]
, (3.11)

for λk ∈ (0, 1). Note that all of the points yk are contained in the set B0 \ G. Furthermore, by
the choice of yM (see (2.4)), the closure of B0 \ G is a compact subset of the interior of the
cone yM − R

p
+. This observation implies that Vol[yk, yM] has a lower bound far from zero.

Combining this fact, (3.9) and (3.11) imply that limk→∞λk = 0. Also, the observation implies
that ‖yM − yk‖ is bounded. Finally, by (3.10), we have limk→∞‖wk − yk‖ = 0.

3.2. Computational Results

First, the Algorithm 2 has been applied for solving the test example given by Benson in [14]
(see the example in Section 2.3)

min
{
f1(x)f2(x) | g1(x) ≤ 0, g2(x) ≤ 0

}
, (3.12)

where f1(x) = (x1 − 2)2+1, f2(x) = (x2 − 4)2+1, and g1(x) = 25x2
1+4x

2
2−100, g2(x) = x1+2x2−4.

The calculation process for solving this example is described as follows.
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Initialization.

Similarly, the example in Section 2.3, we have B0 = [ym, yM] with ym = (1.00000, 2.380437),
and yM = (110.000000, 110.000000). We choose ε = 0.025 and set V 0 = {ym = (1.00000,
2.380437)}, θ0 = 10000 (the initialization upper bound), k = 0 and go to iteration step
k = 0.

Iteration (k = 0).

Step 1. We have T
opt
0 := argmin{h(y) | y ∈ V 0} = {ym}. Choose y0 := ym ∈ T

opt
0 , and set

β0 := h(y0) = 2.380437 (currently best lower bound).

Step 2. Let y = y0. Solving the problem (T
(
y
)
), we obtain the optimal solution (x∗, λ∗) =

(0.230078, 1.884961, 0.028740)) and the optimal value λ∗ = 0.028740. Then, w0 = y + λ∗(yM −
y) = (4.132625, 5.473389) ∈ GE.

Step 3. Since h(w0) = 22.619464 < θ0, we have θ0 = h(w0) = 22.619464 (currently best upper
bound), and ybest = w0 (currently best feasible point).

Step 4. Since θ0 − β0 = 20.239027 > ε, we set B1 := B0 \ [v, yw], where v := y0, yw = w0 and
determine the set

V 1 = {(1.000000, 5.473389), (4.132625, 2.380437)}. (3.13)

Step 5. Set θ1 := θ0 = 22.619464; k := 0 + 1 = 1, and go to iteration step k = 1.

Iteration (k = 1).

Step 1. We have T
opt
1 := argmin{h(y) | y ∈ V 1} = {y1 = (1.000000, 5.473389)}. Choose y1 ∈

T
opt
1 and set β1 := h(y1) = 5.473389 (the currently lower bound).

Step 2. Let y = y1. The convex programming (T
(
y
)
) has the optimal solution (x∗, λ∗) =

(0.82011, 1.589942, 0.012772)), and the optimal value λ∗ = 0.012772. Then, we have w1 =
(2.392125, 6.808381) ∈ GE.

Step 3. Since h(w1) = 16.286498 < θ1, we set θ1 = h(w1) (the currently best upper bound),
and ybest = w1 (the currently best feasible point).

Step 4. Now, θ1 − β1 = 10.813109 > ε. Therefore, B2 := B1 \ [v, yw], where v := y1, yw = w1,
and V 2 = {(4.132625, 2.380437), (1.000000, 6.808381), (2.392125, 5.473389)}.

Step 5. Set θ2 = θ1 = 16.286498; k := 1 + 1 = 2, and go to iteration step k = 2.

Iteration (k = 2).

Step 1. We have T
opt
2 = argmin{h(y) | y ∈ V 2} = {y2 = (1.000000, 6.808381)}, choose y2 :=

(1.000000, 6.808381) ∈ T
opt
2 , and set β2 := h(y2) = 6.808381.
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Step 2. Let y = y2. The problem (T
(
y
)
) has the optimal solution (x∗, λ∗) = (1.117142,

1.441429, 0.007151)), and the optimal value λ∗ = 0.007151. Then w2 = (1.779439, 7.546285) ∈
GE.

Step 3. Since h(w2) = 13.428154 < θ2, the currently best upper bound θ2 := h(w2) and the
currently best feasible point ybest = w2 = (1.779439, 7.546285).

Step 4. Since θ2 − β2 = 6.619773 > ε, we set B3 := B2 \ [v, yw], where v := y2, yw = w2,
and determine the set V 3 = {(4.132625, 2.380437), (2.392125, 5.473389), (1.000000, 7.546285),
(1.779439, 6.808381)}.

Step 5. Set θ3 := θ2 = 13.428154, k := 2 + 1 = 3, and go to iteration step k = 3.

After 42 iterations, the algorithm terminates with θ42 = 9.770252094 and β42 =
9.745596873, where θ42 = h(w20). Then, the ε-optimal solution for the problem (OPY ) and
for the problem (CPX) are given by

y∗ = ybest = w20 = (1.023846379, 9.542693410), (3.14)

and x∗ = (1.845577271, 1.077211364). The approximate optimal value of problem (3.12) is
9.770252094.

Below, we present the results of computational experiment for two types of problem.
We take ε = 0.025 in the numerical experiments. We tested our algorithm for each problem
with random data for several times. Then, we took results in average. Numerical results are
summarized in Tables 1 and 2.

Type 1.

min
p∏

j=1

fj(x),

s.t. Ax ≤ b,

x ≥ 0,

(3.15)

where fj(x) = 〈αj , x〉 + μj , αj ∈ R
n, μj ∈ R, j = 1, . . . , p, A is an (m × n)-matrix, and b ∈ R

m.

Type 2.

min
p∏

j=1

fj(x),

s.t. Ax ≤ b,

x ≥ 0,

(3.16)

where fj(x) = (αj

1x1 + β
j

1)
2 + · · · + (αj

nxn + β
j
n)

2 + νj , with αj , βj ∈ R
n, νj ∈ R, j = 1, . . . , p, A is

an (m × n)-matrix, and b ∈ R
m.
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Table 1: Computational results on the problem of Type 1.

Problem no. p m n Average number of iterations Average CPU time (sec)
1 3 10 10 11 0.83
2 3 20 20 9.9 2.08
3 3 30 50 19.2 19.4
4 3 40 60 17.5 24.42
5 3 60 100 26.2 109.6
6 4 20 20 23.1 4.3
7 4 20 30 14.1 4.87
8 4 30 50 26.2 20
9 4 40 60 59.6 61.64
10 4 60 100 36.6 142.32

Table 2: Computational results on the problem of Type 2.

Problem no. p m n Average number of iterations Average CPU time (sec)
1 3 20 20 14 5.18
2 3 20 30 26.9 14.64
3 3 30 50 40 51.35
4 3 40 60 42.6 77.38
5 3 60 100 59.5 316.79
6 4 20 20 34.8 7.57
7 4 20 30 89.8 35.27
8 4 30 50 80.7 86.83
9 4 40 60 78.4 112.23
10 4 60 100 85.5 372.59

Our program was coded in Matlab R2007a and was executed on our own PC with the
configuration, CPU Intel Core 2 T5300 1.73GHz, 1G Ram. On the two above problems, the
parameters are defined as follows:

(i) A = (aij) ∈ R
m×n is a randomly generated matrix with elements in [−1, 1];

(ii) b = (b1, . . . , bm)
T is a random vector satisfying the formula

bi =
n∑

j=1

aij + b0i (3.17)

with b0i being a random number in [0, 2] for i = 1, . . . , m;

(iii) αj = (αj

1, . . . , α
j
n) and βj = (βj1, . . . , β

j
n), j = 1, . . . , p are vectors with elements

randomly distributed on [0, 1];

(iv) the coefficients μj , νj , j = 1, . . . , p are uniformly distributed on [0, 1].

4. Conclusion

In this paper, we have presented Algorithm 1 for generating a finite set Y out
E of efficient

outcome points for the convex multiobjective programming problem (VPX). The number of
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such points depends on the requirement of the decision makers. When the selected number
is large enough, the convex set conv(Y out

E + R
p
+), where conv(Y out

E + R
p
+) is convex hull of the

set (Y out
E + R

p
+), may be viewed as an inner approximation of G0 = Y + R

p
+ and the efficient

set (conv(Y out
E + R

p
+))E may be viewed as an inner approximation of the efficient outcome set

Y
image
E for the problem (VPX). For each efficient outcome point yw ∈ Y

image
E to be generated by

a given y ∈ B0 \G, the algorithm calls for solving a convex programming problemwith linear
objective function (T

(
y
)
). Note that by solving problem (T

(
y
)
), we also obtain the efficient

solution x∗ associated with yw, where (x∗, λ∗) is the optimal solution for the problem (T
(
y
)
).

In [7], Ehrgott et al. have proposed an outer approximation algorithm for representing
an inner approximation of G0. This algorithm is the combination of an extension of
Benson’s outer approximation algorithm [1] for multiobjective linear programming problems
and linearization technique. In each iteration step of these algorithms, a polyhedron is
obtained from the previous one by adding a new hyperplane to it. The vertices of the new
polyhedron can be calculated from those of the previous polyhedron by some available global
optimization methods. Unlike those algorithms, our algorithm constructs a reverse polyblock
at each iteration step from the previous one by cutting out a box, and its vertices can be easily
determined by the formula (2.18).

As an application, we have proposed the outer approximation algorithm
(Algorithm 2) for solving the convex multiplicative programming problem (CPX) associated
with the problem (VPX) in outcome space. Since the number of terms p in the objective
function of problem (VPX) is, in practice, often much smaller than the number of variables
n, we hope that the algorithms help to reduce considerably the size of the problems.
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