
Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2011, Article ID 453727, 18 pages
doi:10.1155/2011/453727

Research Article
Viscosity Solutions of Uniformly
Elliptic Equations without Boundary and
Growth Conditions at Infinity

G. Galise and A. Vitolo

Department of Mathematics, University of Salerno, 84084 Fisciano, Italy

Correspondence should be addressed to A. Vitolo, vitolo@unisa.it

Received 4 May 2011; Accepted 8 September 2011

Academic Editor: Julio Rossi

Copyright q 2011 G. Galise and A. Vitolo. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We deal with fully nonlinear second-order equations assuming a superlinear growth in u with the
aim to generalize previous existence and uniqueness results of viscosity solutions in the whole
space without conditions at infinity. We also consider the solvability of the Dirichlet problem in
bounded and unbounded domains and show a blow-up result.

1. Introduction and Statement of the Main Results

We are concerned with the well-posedness of the fully nonlinear second-order uniformly
elliptic problem

F
(
x, u,Du,D2u

)
= f(x) in R

n, (1.1)

with no limitation on the growth of f and no condition on the behaviour of u at infinity.
We will assume the following standard structure condition, which implies the uniform

ellipticity:

P−
λ,Λ(Y −X) − γ∣∣η − ξ∣∣ ≤ F

(
x, u, η, Y

) − F(x, u, ξ, X) ≤ P+
λ,Λ(Y −X) + γ

∣∣η − ξ∣∣ (1.2)

for x ∈ R
n and any u ∈ R, ξ, η ∈ R

n, X, Y ∈ Sn.
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As regards the monotonicity in the variable u, we ask something more than the usual
monotonicity assumption (δ = 0):

F(x, u, ξ, X) − F(x, v, ξ, X) ≤ −δ(u − v)s if v < u (1.3)

for s > 1 and δ > 0.
We also suppose, as generally with the formulation (1.1), that

F(x, 0, 0, 0) = 0. (1.4)

We collect the above assumptions in the structure condition

(SC) := (1.2) and (1.3) and (1.4), (1.5)

noting that

F
(
x, u,Du,D2u

)
= P+

λ,Λ

(
D2u

)
+ γ |Du| − |u|s−1u (1.6)

fits into our framework.
Hence, this paper is in the wake of Brezis [1], who proved the existence and

uniqueness of distributional solutions u ∈ Lsloc(Rn) for the semilinear equation

Δu − |u|s−1u = f(x) in R
n (1.7)

with f ∈ L1
loc(R

n) and of Esteban et al. [2] for the case of Ln-viscosity solutions of the fully
nonlinear second order uniformly elliptic equation

F
(
D2u

)
− |u|s−1u = f(x) (1.8)

with f ∈ Lnloc(Rn).
Our aim is to extend the result in different directions, including lower-order terms,

allowing the dependence on x and going below the exponent n.
Throughout the paper λ and Λ are positive constants such that Λ ≥ λ, called ellipticity

constants, and γ ≥ 0 will play the role of a Lipschitz constant.
Also, p0 = p0(n,Λ/λ) ∈ (n/2, n) is the exponent such that for p > p0 the generalized

maximum principle (GMP) holds true; see Escauriaza [3], Crandall and Swiech [4], and
Koike and Swiech [5]: if f ∈ Lp(Ω) with p > p0 and u ∈ W

2,p
loc (Ω) ∩ C(Ω) is an Lp-strong

solution of the maximal equation

P+
λ,Λ

(
D2u

)
+ γ |Du| ≥ f, (1.9)
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then

max
Ω

u ≤ max
∂Ω

u + Cd2−(n/p)∥∥f−∥∥
Lp(Ω) (1.10)

with d = diam(Ω) and C being a positive constant depending on n, λ,Λ, p, γd.
Here and in the sequel by Lp-strong solutions of the equation F(x, u,Du,D2u) = f(x)

we intend the W2,p
loc functions which are solutions almost everywhere with respect to the

Lebesgue measure (almost everywhere) as well as classical solutions to be C2 pointwise
solutions.

We also call Lp-strong (classical) subsolutions, respectively supersolutions, of F = f

the W
2,p
loc - (C2-) solutions of the inequalities F(x, u,Du,D2u) ≥ f(x), respectively F(x, u,

Du,D2u) ≤ f(x), almost everywhere (everywhere).
For the definition of C-viscosity and Lp-viscosity solutions, which are our main

concern, we refer to Section 2. Correspondingly subsolutions, respectively supersolutions,
in the viscosity sense will be referred to as solutions of the equation F ≥ f , respectively F ≤ f .

We establish a first result in the case of F independent of x.

Theorem 1.1. Let F : R
n × R × R

n × Sn → R be a continuous function satisfying the structure
condition (SC) such that

F(x, u, ξ, X) = F(u, ξ, X) (A1)

for all (x, u, ξ, X) ∈ R
n × R × R

n × Sn. If f ∈ C(Rn), there exists a unique C-viscosity solution of
equation

F
(
u,Du,D2u

)
= f(x) in R

n. (1.11)

To consider a dependence on x, we need to control the oscillations in the variable x,
and this also requires a uniform bound of the local Lp-norms of f .

Theorem 1.2. Let F ∈ C(Rn × R × R
n × Sn) satisfy the structure condition (SC). Suppose also that

for allR > 0 there exist a constantKR > 0 and a functionωR : R+ → R+ such that limt→ 0+ωR(t) = 0
and

∣∣F(y, u, ξ, X) − F(x, u, ξ, X)
∣∣ ≤ KR‖X‖ ∣∣y − x∣∣ +ωR

(
(1 + |ξ|)∣∣y − x∣∣) (A2.1)

as x, y ∈ R
n, u ∈ (−R,R) and (ξ, X) ∈ R

n × Sn. If p > p0, f ∈ C(Rn), and

∥∥f∥∥Mp := sup
x∈Rn

∥∥f∥∥Lp(B1(x))
< +∞, (A2.2)

then (1.1) has a unique C-viscosity solution.

As it can be seen in Section 4, the structure condition (SC) is sufficient by itself for
the existence. The uniqueness, as shown in Section 5, relies on a result of Da Lio and Sirakov
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[6] which is fundamental in our proof for the comparison between two solutions u and v.
By virtue of this result, conditions (A2.1) and (A2.2) imply that the difference w = u − v
satisfies a maximal equation with a constant first-order coefficient. In particular, (A2.1) and
(A2.2) are, respectively, stronger than the continuity of F in the x-variable and than the local
summability of |f |p. Later on we also refer to these conditions as to the assumption:

(A2) := (A2.1) and (A2.2). (1.12)

In order to deal with F merely measurable in x, we will suppose for every R > 0 there
exists cR > 0 such that

P−
λ,Λ(Y −X) − γ∣∣η − ξ∣∣ − cR|v − u|

≤ F(x, v, η, Y) − F(x, u, ξ, X) ≤ P+
λ,Λ(Y −X) + γ

∣∣η − ξ∣∣ + cR|v − u|
(1.13)

for x ∈ R
n and u, v ∈ (−R,R), ξ, η ∈ R

n, X, Y ∈ Sn. We put

(
SC
)
:= (1.13) and (1.3) and (1.4). (1.14)

Then, we say that F satisfies C1,1-estimates at x0 if for allw0 ∈ C0(∂Br0(x0)) there exists
a solution u ∈ C2(Br0(x0)) ∩ C0(Br0(x0)) of the Dirichlet problem

F
(
x0, 0, 0, D2w

)
= 0 in Br0(x0), w = w0 on ∂Br0(x0) (1.15)

such that

‖u‖C1,1(Br0/2(x0))
≤ Cr−20 ‖w‖L∞(∂Br0 (x0))

(1.16)

for some r0 > 0.
Finally, let

βF(x, x0) := sup
X∈Sn

X /= 0

|F(x, 0, 0, X) − F(x0, 0, 0, X)|
‖X‖ . (1.17)

In the case p > n, by Caffarelli [7], if βF(x, x0) is sufficiently “small” in a sense that will
be made precise below, then u ∈ W2,p

loc (Br0(x0)). Such result was generalized by Escauriaza to
the range p > p0 with p0 ∈ (n/2, n) introduced above.

As a consequence, the structure conditions (SC) can be used “pointwise” to compare
F(x, v(x), Dv(x), D2v(x)) with F(x, u(x), Du(x), D2u(x)) almost everywhere obtaining a
maximal equation for the difference u(x) − v(x) to which GMP is applicable.

By virtue of the results of Winter [8] (see also Swiech [9]), the argument can be
generalized to the case of F merely measurable in the variable x provided F is convex in
the matrix-variable X.
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Theorem 1.3. Let F : R
n × R × R

n × Sn → R be a function satisfying the structure condition (SC)
almost everywhere x ∈ R

n such that one of the following assumptions blocks holds true:

(A3) F is continuous and has C1,1-estimates for each x ∈ R
n with some r0 > 0;

(A3)′ F is measurable in x for all (u, ξ, X) ∈ R × R
n × Sn and convex in X.

Let f ∈ C(Rn) in the case (A3), f ∈ Lploc(Rn) in the case (A3)′ . If

sup
r∈(0,r0)

(
–
∫

Br(x)

∣∣βF
(
x, y
)∣∣n dy

)1/n

≤ θ, (1.18)

for every x ∈ R
n, with θ = θ(n, p, λ,Λ, r0), then (1.1) has a unique Lp-strong solution u ∈W2,p

loc (R
n),

provided that p > p0.

By our assumptions, the Lp-strong solution of Theorem 1.3 will be also the unique Lp-
viscosity solution.

Theorem 1.3 can be used for instance in the case of Bellman-type equations

sup
α

{
Lαu − fα(x)

}
= 0, (1.19)

where Lα is a semilinear second-order operator

Lαu := aijα (x)Diju + biα(x)Diu + c(x)u + d(x)|u|s−1u (1.20)

with bounded measurable coefficients such that

λ ≤ sup
|ξ|≤1

〈
a
ij
α (x)ξ, ξ

〉
≤ Λ,

∣∣∣biα(x)biα(x)
∣∣∣
1/2 ≤ γ, c(x) ≤ 0, d(x) ≤ −δ < 0 (1.21)

for almost everywhere x ∈ R
n and every α, provided the aijα are uniformly continuous in R

n

with continuity modulus independent of α and infαfα ∈ Lploc(Rn).
Some cases of Isaacs-type equations can be treated with Theorem 1.3, as for instance

(see [10]), the minimum

min

{
inf
α

(
Lαu − fα(x)

)
, sup

β

(
Lβu − fβ(x)

)}
= 0 (1.22)

between concave and convex operators, which are realized as infimum and supremum,
respectively, of two families of semilinear operators, indexed by α and β, with the above
conditions.

Next, consider a regular domain Ω � R
n. If Ω is bounded, in the case of a continuous

F, condition (SC) is sufficient in order that the Dirichlet problem with continuous boundary
conditions has a C-viscosity solution by [11, Theorem 1.1]. If F is merely measurable, we will
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use the stronger condition (SC)′ of Section 4 needed for the existence of Ln-viscosity solution
in [11, Theorem 4.1].

The technique of the existence part of Theorem 1.3 allows to generalize such results
to any regular domain, even unbounded, of R

n. For other results in unbounded domains we
refer to [12], where the case s = 1 is considered limiting the growth of f .

Theorem 1.4. Let Ω � R
n be a domain satisfying a uniform exterior cone condition, and let

F(x, t, ξ, X) be measurable in x ∈ R
n for all (t, ξ, X) ∈ R × R

n × Sn such that the structure condition
(SC)′ holds almost everywhere x ∈ Ω. Then, for p > p0 the Dirichlet problem

F
(
x, u,Du,D2u

)
= f(x) in Ω, u(x) = ψ(x) on ∂Ω (1.23)

has an Lp-viscosity solution u ∈ C(Ω) for every f ∈ Lploc(Rn) and every ψ ∈ C(∂Ω).

Remark 1.5. The solution u ∈ C(Ω) of Theorem 1.4 is unique in the cases of Theorems
1.1, 1.2 and 1.3, where the structural and the additional conditions are to be intended
correspondingly to hold for x ∈ Ω instead of x ∈ R

n.

Finally, a monotonicity argument can instead be used when f is bounded from below
to obtain boundary blow-up Lp-viscosity solutions.

Theorem 1.6. Let Ω � R
n be a domain satisfying a uniform exterior cone condition, and suppose

that at least one of the assumption blocks of Theorems 1.1, 1.2 and 1.3 holds true for x ∈ Ω. Then, for
p > p0 the Dirichlet problem

F
(
x, u,Du,D2u

)
= f(x) in Ω, lim

x→ ∂Ω
u(x) = +∞ (1.24)

has an Lp-viscosity solution u ∈ C(Ω) for every f ∈ Lploc(Ω) such that ess inf f > −∞.

Remark 1.7. Generally the existence results for the BVP of Theorems 1.4 and 1.6 fail to hold if
the domain is not sufficiently regular. In fact, assuming F = F(X) uniformly elliptic such that

1 ≤ Λ
λ
< n − 1, s ≥ (n − 1)λ + Λ

(n − 1)λ −Λ
, (1.25)

Labutin [13] showed that the origin is a removable singularity for the equation

F
(
D2u

)
− |u|s−1u = 0, (1.26)

that is every Ln-viscosity solution in the punctured ball BR \ {0} can be continued to an Ln-
viscosity solution in BR.

The paper is organized as follows. In Section 2 we introduce the notations and recall
the main features of viscosity solutions which will be used. Then in Section 3 we prove
a locally uniform bound which is the basic tool to construct the solutions in unbounded
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domains. The proof of the existence results will be given in Section 4, while the issue of
uniqueness and blow-up is dealt with in Section 5.

2. Preliminaries

Wewill consider functions F : Ω×R×R
n×Sn → R whereΩ is a domain (open connected set)

of R
n and Sn the space of n × n real symmetric matrices. The identity matrix will be denoted

by I and the trace of X ∈ Sn with Tr(X), while ‖X‖ is one of the equivalent norms of X in Sn.
For X,Y ∈ Sn we put X ≤ Y if

〈Xξ, ξ〉 ≤ 〈Yξ, ξ〉 ∀ξ ∈ R
n. (2.1)

We say that F is uniformly elliptic with ellipticity constants λ > 0 and Λ ≥ λ if

P−
λ,Λ(Y −X) ≤ F(x, t, ξ, Y ) − F(x, t, ξ, X) ≤ P+

λ,Λ(Y −X) (2.2)

for all (x, t, ξ) ∈ Ω × R × R
n and X,Y ∈ Sn, where

P+
λ,Λ(Z) = sup

λI≤A≤ΛI
Tr(AZ), P−

λ,Λ(Z) = inf
λI≤A≤ΛI

Tr(AZ), Z ∈ Sn, (2.3)

are, respectively, the maximal and the minimal (Pucci) operators in the class of uniformly
elliptic operators with ellipticity constants λ and Λ.

For u ∈ C2(Ω) denote by Du and D2u the gradient and the Hessian matrix of u. We
wish to discuss the solvability of equation

F
(
x, u(x), Du(x), D2u(x)

)
= f(x) (2.4)

under the assumptions (1.2), (1.3) and (1.4), and we refer to u ∈ C2(Ω) satisfying (2.4) for all
x ∈ Ω as classical solutions of the equation F = f in Ω. If u ∈ W

2,p
loc (Ω) and the equation is

satisfied almost everywhere in Ω, we call it an Lp-strong solution.
We are interested in the weaker notion of solution in the viscosity sense.
Firstly suppose that F is continuous in Ω × R × R

n × Sn and f continuous in Ω. The
function u ∈ C(Ω) is a C-viscosity subsolution, respectively supersolution, of the equation
F(x, u,Du,D2u) = f in Ω if

F
(
x, u(x), Dϕ(x), D2ϕ(x)

)
≥ f(x), (2.5)

respectively

F
(
x, u(x), Dϕ(x), D2ϕ(x)

)
≤ f(x), (2.6)
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for each x ∈ Ω and ϕ ∈ C2(Br(x)) such that u − ϕ has a local maximum, respectively
minimum, in x. A function u ∈ C(Ω) that is both a subsolution and a supersolution in the
above sense is a C-viscosity solution.

Here and below we denote by Br(x) the ball of radius r centered at x, for short Br if
x = 0.

Remark 2.1. If u ∈ C2(Ω) is a classical subsolution (supersolution) of F(x, u,Du,D2u) = f ,
then u is a C-viscosity subsolution (supersolution) of F(x, u,Du,D2u) = f . Conversely, if
u ∈ C2(Ω) is a C-viscosity subsolution (supersolution), then u is a classical subsolution
(supersolution); see [14, Corollary 2.6].

In the sequel we will also use the fact that, if u ∈ C(Ω) is a C-viscosity subsolution,
respectively supersolution, of F = f and v ∈ C(Ω) is a C-viscosity subsolution, respectively
supersolution, of F = g in Ω, then the function w = max(u, v), respectively w = min(u, v), is
a C-viscosity subsolution, respectively supersolution, of the equation

F
(
x,w,Dw,D2w

)
= h (2.7)

in Ω, where h = min(f, g), respectively h = max(f, g).

Lemma 2.2. Let u, v ∈ C(Ω) be, respectively C-viscosity subsolution and supersolution of the
equations F(x, u,Du,D2u) = f and F(x, v,Dv,D2v) = g in Ω, and assume (1.2)-(1.3). If at least
one between u and v is in C2(Ω), then the difference w = u − v is a C-viscosity subsolution of the
maximal equation

P+
λ,Λ

(
D2w

)
+ γ |Dw| − δws = f − g (2.8)

in Ω ∩ {w > 0}.

Proof. Let us suppose, for instance, that v ∈ C2(Ω). Let ϕ be a C2-function such that w − ϕ
has a local maximum in x ∈ Ω ∩ {w > 0}, then v + ϕ is a test function for u, and by structure
conditions (1.2)-(1.3) we have

f(x) − g(x) ≤ F
(
x, u(x), D

(
v + ϕ

)
(x), D2(v + ϕ

)
(x)
)
− F
(
x, v(x), Dv(x), D2v(x)

)

≤ P+
λ,Λ

(
D2ϕ(x)

)
+ γ
∣∣Dϕ(x)∣∣ − δ(w(x))s

(2.9)

as claimed.

When F is merely measurable in x, we assume that the structure condition (SC) holds
for almost every x ∈ Ω. Note that, if F is continuous in x, then (1.2) implies the uniform
ellipticity.

Let f ∈ L
p

loc(Ω); then u ∈ C(Ω) is called an Lp-viscosity subsolution, respectively
supersolution, of the equation F(x, u,Du,D2u) = f in Ω if

ess lim sup
x→x

{
F
(
x, u(x), Dϕ(x), D2ϕ(x)

)
− f(x)

}
≥ 0, (2.10)
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respectively

ess lim inf
x→x

{
F
(
x, u(x), Dϕ(x), D2ϕ(x)

)
− f(x)

}
≤ 0, (2.11)

for each x ∈ Ω and ϕ ∈ W2,p(Br(x)) such that u − ϕ has a local maximum, respectively
minimum, in x. A function u ∈ C(Ω) that is both a subsolution and a supersolution is an
Lp-viscosity solution.

It is important that the generalized maximum principle (GMP) for Lp-strong solutions
of the maximal equation (see (1.10) at the beginning of the Introduction) continues to hold
for Lp-viscosity subsolutions as p > p0; see for instance [5, Theorem 3.2].

Note that Lp-viscosity solutions are C-viscosity solutions of F(x, u,Du,D2u) = f

because the spaceW2,p
loc (Ω) of test functions for Lp-viscosity solutions is larger than C2(Ω).

Conversely, if p > p0, assuming that F and f are continuous, then C-viscosity solutions
are Lp-viscosity solutions; see [15, Proposition 2.9].

Remark 2.3. Suppose that p > p0, as before. If u ∈ W
2,p
loc (Ω) is an Lp-strong subsolution

(supersolution) of F(x, u,Du,D2u) = f , then u is also an Lp-viscosity subsolution (super-
solution); see [15, Lemma 2.6].

Conversely, if u ∈ W2,p
loc (Ω) is an Lp-viscosity subsolution (supersolution), then u is an

Lp-strong subsolution (supersolution); see [15, Corollary 3.7].
Also, Remark 2.1 for w = max(u, v), respectively w = min(u, v), continues to hold for

Lp-viscosity subsolutions, respectively supersolutions, u, v ∈ C(Ω).
Finally, assuming (1.2)-(1.3) almost everywhere in Ω, we infer that Lemma 2.2

continues to hold for Lp-viscosity solutions.

For an extensive treatment of viscosity solutions see [11, 15–17].
In the existence results we need some regularity of the domain Ω of R

n. We say that Ω
satisfies an exterior cone condition if for every point x ∈ ∂Ω there exists a finite right circular
cone Σx with vertex x such that Σx∩Ω = {x}. A uniform exterior cone conditionmeans that all
the cones Σx are congruent to a fixed cone Σ. For the use of these conditions see, for instance,
[18] about the Lp theory and [11] in the viscosity setting.

3. Uniform Estimates

In this section, following [2], we introduce Osserman’s barrier function

Φ(x) = CRR
μξ−μ(x), |x| < R, (3.1)

where ξ(x) = R2 − |x|2 and μ = 2/(s − 1) (recall that s > 1).

Lemma 3.1. Suppose for almost everywhere x ∈ BR that

F(x, v, ξ, X) ≤ P+
λ,Λ(X) + γ |ξ| − δvs (3.2)

for all (v, ξ, X) ∈ R+ × R
n × Sn, where δ > 0 and s > 1.
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If one takes

Cs−1
R = 2μδ−1

(
Λ
(
n + 2

(
1 + μ

))
+ γR

)
, (3.3)

then the function Φ ∈ C2(BR), defined in (3.1), is an Lp-strong solution of the equation

F
(
x,Φ, DΦ, D2Φ

)
≤ 0 in BR. (3.4)

Proof. By the assumptions, it is sufficient to show that

P+
λ,Λ

(
D2Φ

)
+ γ |DΦ| − δΦs ≤ 0. (3.5)

Since Φ(x) = ϕ(r) := CR R
μ(R2 − r2)−μ, where r = |x|, then

P+
λ,Λ

(
D2Φ

)
+ γ |DΦ| − δΦs = Λ

[
ϕ′′ +

n − 1
r

ϕ′
]
+ γϕ′ − δϕs, (3.6)

and the result follows by choosing CR > 0 as claimed.

In what follows p0 ∈ (n/2, n) is the exponent such that GMP holds for p > p0 (see
Sections 1 and 2) and u± = max(±u, 0).

Lemma 3.2. Let Ω be a domain of R
n such that ΩR := Ω ∩ BR /= ∅. Suppose that F satisfies structure

conditions (SC) almost everywhere x ∈ ΩR. If u ∈ C(ΩR) is an Lp-viscosity solution (p > p0) of the
equation

F
(
x, u,Du,D2u

)
≥ f(x) (3.7)

with f ∈ Lp(ΩR), then for each r ∈ (0, R) one has

sup
Ωr

u ≤ u+∂Ω +
C0(1 + R)μ/2Rμ

(R2 − r2)μ + C
∥∥f−∥∥

Lp(ΩR)
(3.8)

where μ = 2/(s − 1), and C0 = C0(n,Λ, γ, s, δ) and C = C(n, p, λ,Λ, γR) are positive constants.
Here,

u+∂Ω =

⎧
⎪⎨
⎪⎩

sup
BR∩∂Ω

u+ if BR ∩ ∂Ω/= ∅,

0 if BR ∩Ω.
(3.9)

Proof. By (SC)we have

F(x, v, ξ, X) = F(x, v, ξ, X) − F(x, v, 0, 0) + F(x, v, 0, 0)
≤ P+

λ,Λ(X) + γ |ξ| − δvs
(3.10)
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for all (v, ξ, X) ∈ R+ × R
n × Sn. Thus, from Lemma 3.1 we deduce that Φ is an Lp-strong

supersolution of the equation

F
(
x,Φ, DΦ, D2Φ

)
= 0 in ΩR. (3.11)

On the other hand u is an Lp-viscosity subsolution of the equation

F
(
x, u,Du,D2u

)
= f(x) in ΩR. (3.12)

Hence, by Lemma 2.2 (see Remark 2.3) the function w = u − Φ is an Lp-viscosity solution of
the equation

P+
λ,Λ

(
D2w

)
+ γ |Dw| ≥ P+

λ,Λ

(
D2w

)
+ γ |Dw| − δws ≥ f(x) (3.13)

in A = ΩR ∩ {u > Φ}.
Let r ∈ (0, R) be such that u+(x) ≤ Φ(x) as x ∈ Ω and r ≤ |x| < R; then A ⊂ Ωr and

w ≤ 0 on Ω ∩ ∂Br . Therefore, applying GMP (1.10), we get

sup
A

w ≤ sup
Br∩∂Ω

w + C
∥∥f−∥∥

Lp(ΩR)
(3.14)

from which

u(x) ≤ CRR
μ

(
R2 − |x|2

)μ + u+∂Ω + C
∥∥f−∥∥

Lp(ΩR)
(3.15)

for all x ∈ ΩR.

Proposition 3.3. Let ΩR, F, and f be as in Lemma 3.2. If u ∈ C(ΩR) is an Lp-viscosity solution
(p > p0) of the equation

F
(
x, u,Du,D2u

)
= f(x), (3.16)

then for each r ∈ (0, R) one has

sup
Ωr

|u| ≤ |u|∂Ω +
C0(1 + R)μ/2Rμ

(R2 − r2)μ + C
∥∥f∥∥Lp(ΩR)

(3.17)

with C0, C and |u|∂Ω = max(u+
∂Ω, u

−
∂Ω) as defined in Lemma 3.2.
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Proof. From Lemma 3.2 we already know that

sup
Ωr

u+ ≤ u+∂Ω +
C0(1 + R)μ/2Rμ

(R2 − r2)μ + C
∥∥f−∥∥

Lp(ΩR)
. (3.18)

The assertion will be proved showing the same inequality for u−.
To this end firstly observe that the function v = −u satisfies the equation

G
(
x, v,Dv,D2v

)
= −f(x) in ΩR, (3.19)

where

G(x, v, ξ, X) = −F(x,−v,−ξ,−X), (3.20)

which turns out to satisfy (SC).
Therefore, u− = max(v, 0) is an Lp-viscosity solution of the equation

G
(
x, u−, Du−, D2u−

)
≥ −f(x). (3.21)

On the other hand, by virtue of Lemma 3.1, Φ is an Lp-strong supersolution of the
equation

P+
λ,Λ

(
D2Φ

)
+ γ |DΦ| − δΦs = 0. (3.22)

Hence, we finish the proof arguing as in Lemma 3.2 to obtain the estimate

u−(x) ≤ u−∂Ω +
CRR

μ

(
R2 − |x|2

)μ + C
∥∥f+∥∥

Lp(ΩR)
(3.23)

for all x ∈ ΩR.

4. Proof of the Existence Results

In this section, using the structure condition (SC), or the slightly stronger variant (SC)′

defined below, we construct an Lp-viscosity solution of the equation

F
(
x, u,Du,D2u

)
= f(x) (4.1)

in R
n under the assumption that f ∈ Lploc(Rn)with p > p0, where p0 ∈ (n/2, n) is the exponent

above which GMP holds true; see Sections 1 and 2.
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By the relationship between C-viscosity and Lp-viscosity solutions and between Lp-
viscosity and Lp-strong solutions (see Section 2) the existence part of each one of Theorems
1.1, 1.2, and 1.3 will follow at once from Proposition 4.1 in rather general assumptions.

We will suppose that for all R > 0 there exists a function ωR : R+ → R+ such that
ωR(t) → 0 as t → 0+ and

|F(x, v, ξ, X) − F(x, u, ξ, X)| ≤ ωR(|v − u|) (4.2)

almost everywhere in x for |u| + |v| + |ξ| + ‖X‖ ≤ R, observing that it is satisfied by default if
we assume that F is a continuous function of (x, u, ξ, X). Then, we put

(SC)′ := (SC) and (4.2). (4.3)

It is worth to recall that condition (SC)′ is equivalent to (SC) in the case that F is continuous.

Proposition 4.1. Let F : R
n × R × R

n × Sn → R be measurable in x and satisfy the structure
condition (SC)′ almost everywhere x ∈ R

n for all (u, ξ, X) ∈ R × R
n × Sn. If f ∈ L

p

loc(R
n), then

equation

F
(
x, u,Du,D2u

)
= f(x) (4.4)

has an Lp-viscosity solution in R
n for any p > p0.

Proof. Consider a smooth approximation fk ∈ C∞(Rn) of f such that

lim
k→∞

∥∥fk − f
∥∥
Lp(Ω) = 0 (4.5)

for every bounded domain Ω in R
n.

By [11, Theorem 4.1, Remark 4.8] we can solve in the Lp-viscosity sense any Dirichlet
problem for the equation F = fk in the ball B2k with continuous boundary condition.

Choose a solution uk for each k ∈ N. Using Proposition 3.3, for h > k we have

sup
B2k

|uh| ≤ C0 + C
∥∥f∥∥Lp(B2k+1 )

, (4.6)

where C0 = C0(n,Λ, γ, s, δ) and C = C(n, p, λ,Λ, γ2k+1) are positive constants as defined in
Lemma 3.2.

By the structure condition (SC)′ we have

F(x, v, ξ, X) ≤ P+
λ,Λ(X) + γ |ξ| + F(x,−R, 0, 0) ≤ P+

λ,Λ(X) + γ |ξ| +ωR(R),

F(x, v, ξ, X) ≥ P−
λ,Λ(X) − γ |ξ| + F(x,R, 0, 0) ≥ P−

λ,Λ(X) − γ |ξ| −ωR(R),
(4.7)

almost everywhere x ∈ R
n for |v| ≤ R.
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Therefore for h > k we have

P−
λ,Λ

(
D2uh

)
− γ |Duh| −ωR(R) ≤ f ≤ P+

λ,Λ

(
D2uh

)
+ γ |Duh| +ωR(R) (4.8)

in B2k with R = C0 + C‖f‖Lp(B2k+1 ).
By Cα-estimates (see [14, Proposition 4.10] and [19, Theorem 2]) we deduce that

‖uh‖Cα(B2k )
≤ C1

(
1 +
∥∥f∥∥Lp(B2k+1 )

)
, (4.9)

for a positive constant C1 independent of h > k.
By a diagonal process, using Ascoli-Arzelà theorem we extract a subsequence hk ∈ N

such that uhk → u ∈ C(Rn) uniformly on every bounded domain.
From the stability results for Lp-viscosity solutions, see [15, Theorem 3.8], u is a

solution of the equation.

Proof of Theorem 1.4. In the case Ω � R
n we proceed along the same lines of the proof of

Proposition 4.1 constructing Lp-viscosity solutions uk ∈ C(Ω2k), k ∈ N, of the approximating
Dirichlet problems

F
(
x, uk,Duk,D

2uk
)
= fk(x) in Ω2k, uk(x) = ψk(x) on ∂Ω2k (4.10)

for a sequence fk ∈ C(Ω) such that ‖fk − f‖Lp(A) → 0 for all bounded subsets A ⊂ Ω.
Here, according to the notations of Proposition 3.3, Ω2k = Ω ∩ B2k , while ψk is a

continuous extension to R
n of ψ|∂Ω∩B2k

; see for instance [20, Section 1.2].

Let R = 2k. Since ΩR satisfies in turn a uniform exterior cone property, the existence of
such uk follows from the assumptions on F and the already mentioned [11, Theorem 4.1].

Furthermore, by Proposition 3.3, for h > k we get

sup
ΩR

|uh| ≤ max
∂Ω∩BR

∣∣ψ∣∣ + C0 + C
∥∥f∥∥Lp(Ω2R)

. (4.11)

The argument of the proof of Lemma 3.2 leads to inequality and therefore uh are equibounded
in ΩR.

As a consequence, by Cα-estimates they are equi-Hölder continuous in every subset

{x ∈ ΩR | dist(x, ∂Ω) > ε} (4.12)

with ε > 0. By [19, Theorem 2]

osc
ΩR∩Bρ(x)

uh ≤ C0

(
ραk + osc

∂ΩR∩B√
ρ(x)

ψh

)
(4.13)

for every x ∈ ∂Ω and ρ ≤ ρk, and therefore uh are also equicontinuous in ΩR.



International Journal of Differential Equations 15

Thus, using a diagonal procedure as in the proof of Proposition 4.1 we find an Lp-
viscosity solution u ∈ C(Ω) of the Dirichlet problem under consideration.

5. Uniqueness and Blow-Up

In this section we begin noticing that from Section 3 we get at once the following maximum
principle.

Proposition 5.1. Let δ > 0, s > 1, and let Ω be a domain of R
n.

Suppose for almost everywhere x ∈ Ω that

F(x, u, ξ, X) ≤ P+
λ,Λ(X) + γ |ξ| − δ|u|s−1u (5.1)

for all (u, ξ, X) ∈ R × R
n × Sn and u ∈ C(Ω) is an Lp-viscosity solution (p > p0) of the equation

F
(
x, u,Du,D2u

)
≥ 0 in Ω. (5.2)

(M1) If Ω = R
n, then u ≤ 0 in R

n.

(M2) If Ω � R
n and u ≤ 0 on ∂Ω, then u ≤ 0 in Ω.

Analogously, suppose for almost everywhere x ∈ Ω that

F(x, v, ξ, X) ≥ P−
λ,Λ(X) − γ |ξ| − δ|v|s−1v (5.3)

for all (v, ξ, X) ∈ R × R
n × Sn and v ∈ C(Ω) is an Lp-viscosity solution (p > p0) of the equation

F
(
x, v,Dv,D2v

)
≤ 0 in Ω. (5.4)

(m1) If Ω = R
n, then v ≥ 0 in R

n.

(m2) If Ω � R
n and v ≥ 0 on ∂Ω, then v ≥ 0 in Ω.

Proof. Let x ∈ R
n and r = |x|. Firstly consider the cases (M1) and (M2). Since

F(x, u, ξ, X) = P+
λ,Λ(X) + γ |ξ| − δ|u|s−1u (5.5)

satisfies (SC), we can apply Lemma 3.2. Letting R → +∞ in (3.8)with f = 0, we get u(x) ≤ 0
as asserted.

The other cases (m1) and (m2) can be treated by means of (M1) and (M2) considering
the function u(x) = −v(x) and the operator

G(x, u, ξ, X) = −F(x,−u,−ξ,−X) (5.6)

are as in the proof of Proposition 3.3.
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The above implies that, assuming (SC)′, the function u = 0 is the unique viscosity
solution of the problem F = 0 in R

n.
Concerning the uniqueness for the inhomogeneous equation F = f in R

n, since
solutions are considered in the viscosity sense, we need additional assumptions in order to
use “pointwise” the structure conditions and thus to use the above maximum principle.

Also, we cannot in general employ the usual comparison arguments for Dirichlet
problems (see for instance [16, Section 3]) not having in principle boundary conditions or
bounds at infinity.

Proof of Theorem 1.1 (uniqueness). Let u and v be solutions of the equation F = f . Set Ω = {x ∈
R
n | u > v}. We claim that Ω = ∅, so that u ≤ v in R

n.
Suppose on the contrary that Ω/= ∅. Since F is continuous, arguing as in [21] and

observing that u, v are in C1,α
loc , we can use the structure condition (SC) to have

P+
λ,Λ

(
D2w

)
+ γ |Dw| − δws ≥ 0 (5.7)

inΩ. Using the maximum principle of Proposition 5.1 (M2), we should havew = u− v ≤ 0 in
Ω, a contradiction which proves our claim.

Interchanging the role of u and v, we also get v ≤ u in R
n, and we are done.

Proof of Theorem 1.2 (uniqueness). Here we observe that, if f ∈ Lploc(Rn) and ‖f‖Mp < +∞, then
Proposition 3.3 implies that u is bounded. In fact, if x0 ∈ R

n and we consider balls centered at
x0, choosing r → 0+ and R = 1 in (3.17), we get

|u(x0)| ≤ 2μ/2C0 + C
(
n, p, λ,Λ, γ

)∥∥f∥∥Mp, (5.8)

which is finite and independent of x0, by (A2.2).
Thus, if u and v are solutions of the equation F = f , by (SC) and (A2.1) we can use of

[6, Proposition 2.1] so that the difference w = u − v satisfies a maximal equation

P+
λ,Λ

(
D2w

)
+ b|Dw| − δws ≥ 0 (5.9)

in Ω = {x ∈ R
n | u > v} for some positive constant b depending on n, p, λ, Λ, γ , and s.

Therefore, we can conclude as in the proof of Theorem 1.1 (uniqueness).

Proof of Theorem 1.3 (uniqueness). In this case we observe that both the assumptions (SC) and
(A3) or (A3)′ of the Theorem imply that Lp-viscosity solutions u, v of F = f are in W2,p

loc (R
n)

(see [14, Theorem 7.1], [3, Theorem 1], and [8, Theorem 4.2]). Hence u, v are Lp-strong
solutions (see Remark 2.3), and we can use the structure condition (SC) to get the maximal
equation (5.7) for the difference w = u − v in Ω = {x ∈ R

n | u > v}, from which we conclude
again using the maximum principle of Proposition 5.1 as in the proof Theorems 1.1 and 1.2
(uniqueness).

We insist on observing that the uniqueness of the solution of the Dirichlet problem
depends on the fact that the difference between two solutions is a solution of a homogeneous
maximal equation, and then we can invoke the maximum principle of Proposition 5.1. The
same method will be used to prove by monotonicity the existence of blow-up solutions.
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Proof of Theorem 1.6. Following [2] we consider a nondecreasing sequence of fk ∈ C(Ω) such
that

lim
k→∞

∥∥fk − f
∥∥
Lp(K) (5.10)

for all compact set K of Ω. Then by Theorem 1.4 we solve the problem

F
(
x, uk,Duk,D

2uk
)
= fk(x) in Ω, uk(x) = k on ∂Ω. (5.11)

As in the proof of Proposition 4.1, by a diagonal process, using (SC), respectively (SC)′, we
find an Lp-viscosity solution u ∈ C(Ω) of the equation

F
(
x, u,Du,D2u

)
= f(x) in Ω. (5.12)

To compare uk and uk+1, we use (SC) with the additional assumptions (A1) or (A2),
respectively (SC) with (A3) or (A3)′, to get a maximal equation for w = uk − uk+1. Since
fk is nondecreasing, then w satisfies the boundary value problem

P+
λ,Λ

(
D2w

)
+ b|Dw| ≥ 0 in Ω ∩ {uk > uk+1}, w ≤ 0 on ∂(Ω ∩ {uk > uk+1}). (5.13)

Hence, using the maximum principle of Proposition 5.1 we get w ≤ 0, that is uk ≤ uk+1.
Therefore uk is nondecreasing, and for x ∈ ∂Ω we have

lim
x→x

u(x) ≥ lim
x→x

uk(x) = k (5.14)

for all k ∈ N; whence the assertion follows.
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