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We investigated a singular multipoint boundary value problem for fractional differential equation
in Banach space. The nonlinear term f(t, x, y) is positive and singular at x = θ and (or) y = θ.
Employing regularization, sequential techniques, and diagonalization methods, we obtained some
new existence results of positive solution.

1. Introduction

Recently, fractional differential equations have been investigated extensively. The motivation
for those works rises from both the development of the theory of fractional calculus itself
and the applications of such constructions in various sciences such as physics, chemistry,
aerodynamics, and electrodynamics of the complex medium. For examples and details, see
[1–5] and the references therein.

Prompted by the application of multipoint boundary value problem (BVP for short)
to applied mathematics and physics, these problems have provoked a great deal of attention
by many authors. Here, for fractional differential equations, we refer the reader to [6–12].
Rehman and Khan [7] studied the problem

Dαy(t) + f
(
t, y(t), Dβy(t)

)
= 0, t ∈ (0, 1),

y(0) = 0, Dβy(1) −
m−2∑
i=1

biD
βy(ξi) = y0,

(1.1)
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where 1 < α ≤ 2, 0 < β ≤ α − 1, bi ≥ 0, 0 < ξi < 1, (i = 1, 2, . . . , m − 2)with γ =
∑m−2

i=1 biξ
α−β−1
i < 1,

and Dβ represents the standard Riemann-Liouville fractional derivative. The existence and
uniqueness of solutions were obtained, by means of Schauder fixed-point theorem and
Banach contraction principle. Importantly, they gave the Green function of the multipoint
BVP (1.1). But they have not proved the positivity of Green function, so the existence of
positive solution is unobtainable. However, only positive solutions are useful for many
applications, as some physicists pointed out.

The authors of [13–17] investigated singular problem for fractional differential
equations with bounded domain. In particular, Agarwal et al. [13] considered the following
Dirichlet problem:

Dαy(t) + f
(
t, y(t), Dμy(t)

)
= 0,

y(0) = y(1) = 0,
(1.2)

where 1 < α ≤ 2, 0 < μ ≤ α − 1. f(t, x, y) satisfies the Carathéodory conditions and is singular
at x = 0. In order to overcome the singularity, they used regularization and sequential
techniques for the existence of a positive solution.

When the domainwhere the problem is considered is unbounded, there are few papers
about BVP for fractional differential equations in literatures. This situation has changed
recently. One can find some works, for example, see [18–22].

In [21], the following BVP:

Dαy(t) + f
(
t, y(t)

)
= 0, t ∈ (0,+∞), α ∈ (1, 2),

y(0) = 0, lim
t→+∞

Dα−1y(t) = βy(ξ) (1.3)

was studied. Using the equicontinuity on any compact intervals and the equiconvergence at
infinity of a bounded set, the authors proved that the corresponding operator was completely
continuous, then the existence of solutions was obtained by the Leray-Schauder nonlinear
alternative theorem.

Let (E, ‖ · ‖) be a real Banach space. P is a cone in E which defines a partial ordering in
E by x ≤ y if and only if y − x ∈ P . P is said to be normal if there exists a positive constant
N such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖, where θ denotes the zero element of E, and the
smallest N is called the normal constant of P (it is clear that N ≥ 1). If x ≤ y and x /=y, we
write x < y. Let P+ = P \ {θ}. So, x ∈ P+ if and only if x > θ. For details on cone theory, see
[23].

In this paper, we are concerned with the existence of positive solution of a BVP for
fractional differential equation with bounded domain

Dαy(t) + f
(
t, y(t), Dβy(t)

)
= θ, a.e. t ∈ [0, T], (1.4)

y(0) = θ, Dβy(T) −
m−2∑
i=1

aiy(ξi) −
m−2∑
i=1

biD
βy(ξi) = y0, (1.5)
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or with unbounded domain

Dαy(t) + f
(
t, y(t), Dβy(t)

)
= θ, a.e. t ∈ [0,∞), (1.6)

y(0) = θ, lim
t→+∞

Dβy(t) −
m−2∑
i=1

aiy(ξi) −
m−2∑
i=1

biD
βy(ξi) = y0. (1.7)

Here, 1 < α ≤ 2, 0 < β ≤ α− 1, ξi > 0, ai, bi ≥ 0 (i = 1, 2, . . . , m− 2), y0 ≥ θ are real numbers, and
Dα is the standard Riemann-Liouville fractional derivative. And f : [0,+∞) × P+ × P+ → P+

is singular at x = θ and y = θ and satisfies other conditions which will be specified later. In
addition, f(t, x, y) is the Carathéodory function.

We say that f satisfies the Carathéodory conditions on [0,+∞) × B, B = P+ × P+(f ∈
Car([0,+∞) × B)) if

(i) f(·, x, y) : [0,+∞) → E is measurable for all (x, y) ∈ B,

(ii) f(t, ·, ·) : B → E is continuous for a.e. t ∈ [0,+∞),

(iii) for each compact set K ⊂ B, there is a function φK ∈ L1[0,+∞) such that

∥∥f(t, x, y)∥∥ ≤ φK(t), for a.e. t ∈ [0,+∞), ∀(x, y) ∈ K. (1.8)

No contribution exists, as far as we know, concerning the existence of positive solution
of the problems (1.4)-(1.5) and (1.6)-(1.7). In the present paper, we consider, firstly, the case
of bounded domain, that is, BVP (1.4)-(1.5), and give some existence results by means of
regularization process combined with fixed-point theorem due to Krasnosel’skii. Then we
investigate the BVP (1.6)-(1.7). As we know, [0,∞) is noncompact. In order to overcome
these difficulties, based on the results of BVP (1.4)-(1.5), we use diagonalization process
to establish the existence of positive solutions for BVP (1.6)-(1.7). Let us mention that this
method was widely used for integer-order differential equations, see, for instance, [5, 22].
Using diagonalization process, Agarwal et al. [20] have considered a class of boundary value
problems involving Riemann-Liouville fractional derivative on the half line. And Arara et al.
[19] continued this study by considering a BVP with the Caputo fractional derivative.

The remainder of this paper is organized as follows. In Section 2, we introduced some
notations, definitions, and preliminary facts about the fractional calculus, which are used in
the next two sections. In Section 3, the case with bounded domain is considered. In Section 4,
we discuss the existence of a positive solution for the BVP (1.6)-(1.7). We end this paper with
giving an example to demonstrate the application of our results in Section 5.

2. Preliminaries

Now, we introduce the Riemann-Liouville fractional- (arbitrary)-order integral and deriva-
tive as follows.

Definition 2.1. The fractional- (arbitrary)-order integral of the function v(t) ∈ L1([0, b],R) of μ ∈
R

+ is defined by

Iμv(t) =
1

Γ
(
μ
)
∫ t

0
(t − s)μ−1v(s)ds, t > 0. (2.1)
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Definition 2.2. The Riemann-Liouville fractional derivative of order μ > 0 for a function v(t) given
in the interval [0,∞) is defined by

Dμv(t) =
1

Γ
(
n − μ

)
(

d

dt

)n ∫ t

0
(t − s)n−μ−1v(s)ds (2.2)

provided that the right hand side is point wise defined. Here, n = [μ] + 1 and [μ] means the integral
part of the number μ, and Γ is the Euler gamma function.

The following properties of the fractional calculus theory are well known, see, for
example, [2, 4]:

(i) DβIβv(t) = v(t) for a.e. t ∈ [0, T], where v(t) ∈ L1[0, T], β > 0,

(ii) Dβv(t) = 0 if and only if v(t) =
∑n

j=1 cjt
β−j , where cj (j = 1, 2, . . . , n) are arbitrary

constants, n = [β] + 1, β > 0,

(iii) Iβ : C([0, T]) → C([0, T]), Iβ : L1([0, T]) → L1([0, T]), β > 0,

(iv) DβIα = Iα−β and Dβtα = (Γ(β + 1)/Γ(β − α + 1))tβ−α for t ∈ [0, T], α − β > 0.

More details on fractional derivatives and their properties can be found in [2, 4].
For the sake of convenience, we introduce the following assumptions:

(H0)

Δ =
Γ(α)Tα−β−1

Γ
(
α − β

) −
m−2∑
i=1

aiξ
α−1
i −

m−2∑
i=1

biΓ(α)ξ
α−β−1
i

Γ
(
α − β

) > 0, (2.3)

(H1) f ∈ Car([0,+∞) × B), B = (0,+∞) × (0,+∞),

lim
‖x‖→ 0

∥∥f(t, x, y)∥∥ = +∞, for a.e. t ∈ [0,+∞) and all y ∈ P+,

lim
‖y‖→ 0

∥∥f(t, x, y)∥∥ = +∞, for a.e. t ∈ [0,+∞) and all x ∈ P+,
(2.4)

and there exists a positive constant � such that for all T0 ≥ T ,

∥∥f(t, x, y)∥∥ ≥ �

(
1 − t

T0

)2+β−α
for a.e. t ∈ [0, T0] and all

(
x, y

) ∈ B, (2.5)

(H2) f fulfills the estimate,

∥∥f(t, x, y)∥∥ ≤ γ(t)
(
γ0(t) + q1(‖x‖) + p1

(∥∥y∥∥) + q(‖x‖) + p
(∥∥y∥∥))

for a.e. t ∈ [0,+∞), and all
(
x, y

) ∈ B,
(2.6)
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where γ, γ0 ∈ L1[0,+∞), q1, p1, q, p ∈ C((0,+∞),R+), q1, p1 are nonincreasing, and,
for any T0 ≥ T ,

∫T0

0
γ(t)q1

⎛
⎜⎝

K1

(
tα−1(T0 − t)2

)

T0

⎞
⎟⎠dt < +∞, K1 =

�

2Γ(α)
,

∫T0

0
γ(t)p1

⎛
⎜⎝

K2

(
tα−β−1(T0 − t)2

)

T0

⎞
⎟⎠dt < +∞, K2 =

�

2Γ
(
α − β

) ,

(2.7)

while q, p are nondecreasing and

lim
‖x‖→+∞

q(‖x‖) + p(‖x‖)
‖x‖ = 0, (2.8)

(H3) for a.e. t ∈ [0,+∞), and for all D ⊂ P , f(t,D,D) is relatively compact.

Rmark 2.3. It follows from (2.4) that under condition (H2), lim‖x‖→ 0q1(‖x‖) = +∞ and
lim‖y‖→ 0p1(‖y‖) = +∞.

In the sequel, L1([0, T],R) denote the Banach space of functions y : [0, T] → R which
are Lebesgue integrable with the norm

∥∥y∥∥L1 =
∫T

0

∣∣y(t)∣∣dt. (2.9)

We give now some auxiliary lemmas in scalar space, which will take an important role
throughout the paper.

Lemma 2.4. Suppose that h(t) ∈ L1([0, T]) and that (H0) holds, then the unique solution of linear
BVP Dαy(t) + h(t) = 0, a.e. t ∈ [0, T] with the boundary condition (1.5) is given by

y(t) =
∫T

0
G(t, s)h(s)ds +

y0

Δ
tα−1, (2.10)

where

G(t, s)=
1
Δ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(T − s)α−β−1tα−1

Γ
(
α − β

) − tα−1

Γ(α)

m−2∑
j=i

aj

(
ξj − s

)α−1− tα−1

Γ
(
α − β

)
m−2∑
j=i

bj
(
ξj−s

)α−β−1−Δ(t − s)α−1

Γ(α)
,

t ≥ s, ξi−1 < s ≤ ξi, i = 1, 2, . . . , m−1,
(T − s)α−β−1tα−1

Γ
(
α − β

) − tα−1

Γ(α)

m−2∑
j=i

aj

(
ξj − s

)α−1− tα−1

Γ
(
α − β

)
m−2∑
j=i

bj
(
ξj−s

)α−β−1
,

t ≤ s, ξi−1 < s ≤ ξi, i = 1, 2, . . . , m−1.
(2.11)
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Proof. The proof is similar to that of [7, Lemma 2.2], so we omit it.

Lemma 2.5. Suppose that (H0) holds, then G(t, s) defined as (2.11) has the following properties:

(i) G(t, s) is uniformly continuous about t in [0, T],

(ii) G(t, s) ≥ 0 for all (t, s) ∈ [0, T] × [0, T] and G(t, s) ≤ E, where

E =
T2α−β−2

ΔΓ
(
α − β

) , (2.12)

(iii)
∫T
0 G(t, s)R(s)ds ≥ tα−1(T − t)2/2TΓ(α) if R(s) ≥ (1 − t/T)2+β−α.

Proof. From (2.3), it is easy to verify (i) and (ii). We now show that (iii) is true. Firstly, if t ≥ s,
then (2.11) gives

G(t, s) =
1
Δ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(T − s)α−β−1tα−1

Γ
(
α − β

) − tα−1

Γ(α)

m−2∑
j=i

aj

(
ξj − s

)α−1

− tα−1

Γ
(
α − β

)
m−2∑
j=i

bj
(
ξj − s

)α−β−1 − Δ(t − s)α−1

Γ(α)
,

(ξi−1 < s ≤ ξi, i = 1, 2, . . . , m − 1).

(2.13)

Then,

G(t, s) ≥ 1
Δ

⎧
⎨
⎩

(T − s)α−β−1tα−1

Γ
(
α − β

) − tα−1

Γ(α)

m−2∑
j=1

aj

(
ξj − s

)α−1

− tα−1

Γ
(
α − β

)
m−2∑
j=1

bj
(
ξj − s

)α−β−1 − Δ(t − s)α−1

Γ(α)

⎫
⎬
⎭

≥ tα−1

Δ

⎧
⎨
⎩

(T − s)α−β−1

Γ
(
α − β

) − 1
Γ(α)

m−2∑
j=1

ajξ
α−1
j

(
1 − s

ξj

)α−1

− 1
Γ
(
α − β

)
m−2∑
j=1

bjξ
α−β−1
j

(
1 − s

ξj

)α−β−1
− Δ(1 − s/t)α−1

Γ(α)

⎫
⎬
⎭

≥ tα−1(1 − s/T)α−β−1

Δ

⎧
⎨
⎩

Tα−β−1

Γ
(
α − β

) − 1
Γ
(
α − β

)
m−2∑
j=1

bjξ
α−β−1
j

− (1 − s/T)β

Γ(α)

⎛
⎝

m−2∑
j=1

ajξ
α−1
j + Δ

⎞
⎠

⎫
⎬
⎭.

(2.14)
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From (2.14) and (2.3), we deduce from the Lagrange mean value theorem that

G(t, s) ≥
tα−1(1 − s/T)α−β−1

(∑m−2
j=1 ajξ

α−1
j + Δ

)

ΔΓ(α)
×
(
1 −

(
1 − s

T

)β
)

≥
tα−1(1 − s/T)α−β−1

(∑m−2
j=1 ajξ

α−1
j + Δ

)

ΔΓ(α)
βξβ−1

s

T
.

(2.15)

In view of (1 − s/T) ≤ ξ ≤ 1 and β < 1, one can obtain for t ≥ s that

G(t, s) ≥
tα−1(1 − s/T)α−β−1

(∑m−2
j=1 ajξ

α−1
j + Δ

)

ΔΓ(α)T
βs. (2.16)

Analogously, if t ≤ s, one has

G(t, s) ≥ tα−1(1 − s/T)α−β−1

Γ(α)
. (2.17)

It follows from (2.16) and (2.17) that

∫T

0
G(t, s)R(s)ds =

∫ t

0
G(t, s)R(s)ds +

∫T

t

G(t, s)R(s)ds

≥
∫ t

0

tα−1
(∑m−2

j=1 ajξ
α−1
j + Δ

)

ΔΓ(α)T
βs

(
1 − s

T

)
ds +

∫T

t

tα−1

Γ(α)

(
1 − s

T

)
ds

≥ tα−1(T − t)2

2TΓ(α)
.

(2.18)

The proof is complete.

3. Existence Results for BVP (1.4)-(1.5)

In this section, we discuss the uniqueness, existence, and continuous dependence of
positive solution for problem (1.4)-(1.5). To this end, we introduce some auxiliary technical
lemmas.

Let E = {x ∈ C([0, T], E) : Dβx ∈ C([0, T], E)} equipped with the norm ‖x‖∗ =
max{‖x‖, ‖Dβx‖}, then E is a real Banach space (see [24]).
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Since the nonlinear term f(t, x, y) is singular at x = θ and y = θ, we use the following
regularization process. For each m ∈ N+, define fm by the formula

fm
(
t, x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f
(
t, x, y

)
if x ≥ c

m
, y ≥ c

m
,

f

(
t,

c

m
, y

)
if 0 ≤ x <

c

m
, y ≥ c

m
,

f

(
t, x,

c

m

)
if x ≥ 1

m
, 0 ≤ y <

1
m
,

f

(
t,

c

m
,
c

m

)
if 0 ≤ x <

c

m
, 0 ≤ y <

c

m
,

(3.1)

where c > θ is a given element of E and ‖c‖ = 1.

Rmark 3.1. The function fm defined by (3.1) satisfies fm ∈ Car([0, T] × B∗), B∗ = P × P . And
conditions (H1) and (H2) imply

∥∥fm
(
t, x, y

)∥∥ ≥ �

(
1 − t

T

)1+β−α
, for a.e. t ∈ [0, T] and all

(
x, y

) ∈ B∗, (3.2)

∥∥fm
(
t, x, y

)∥∥ ≤ γ(t)
(
γ0(t) + q1

(∥∥∥∥
1
m

∥∥∥∥
)
+ p1

(∥∥∥∥
1
m

∥∥∥∥
)
+ q(1) + p(1) + q(‖x‖) + p

(∥∥y∥∥)
)
,

for a.e. t ∈ [0, T] and all
(
x, y

) ∈ B∗,
(3.3)

∥∥fm
(
t, x, y

)∥∥ ≤ γ(t)
(
γ0(t) + q1(‖x‖) + p1

(∥∥y∥∥) + q(1) + p(1) + q(‖x‖) + p
(∥∥y∥∥)),

for a.e. t ∈ [0, T] and all
(
x, y

) ∈ B.
(3.4)

Rmark 3.2. The function fm defined by (3.1) satisfies limm→+∞fm = f .

Define operator Qm : P+ → P+ by the following:

(
Qmy

)
(t) =

∫T

0
G(t, s)fm

(
s, y(s), Dβy(s)

)
ds +

y0

Δ
t(α−1). (3.5)

Lemma 3.3. Suppose that (H0) holds, then

(
DβQmy

)
(t) =

∫T

0
DβG(t, s)fm

(
s, y(s), Dβy(s)

)
ds +

y0Γ(α)
ΔΓ

(
α − β

) t(α−β−1), (3.6)
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where

DβG(t, s) =
Γ(α)

ΔΓ
(
α − β

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(T − s)α−β−1tα−β−1

Γ
(
α − β

) − tα−β−1

Γ(α)

m−2∑
j=i

aj

(
ξj − s

)α−1

− tα−β−1

Γ
(
α − β

)
m−2∑
j=i

bj
(
ξj − s

)α−β−1 − Δ(t − s)α−β−1

Γ(α)
,

t ≥ s, ξi−1 < s ≤ ξi, i = 1, 2, . . . , m − 1,

(T − s)α−β−1tα−β−1

Γ
(
α − β

) − tα−β−1

Γ(α)

m−2∑
j=i

aj

(
ξj − s

)α−1

− tα−β−1

Γ
(
α − β

)
m−2∑
j=i

bj
(
ξj − s

)α−β−1
,

t ≤ s, ξi−1 < s ≤ ξi, i = 1, 2, . . . , m − 1.

(3.7)

Proof. The proof is similar to that of [7, Lemma 2.2], and we omit it.

Lemma 3.4. Suppose that (H0) holds, then DβG(t, s) defined as (3.7) has the following properties:

(i) DβG(t, s) is uniformly continuous about t in [0, T],

(ii) DβG(t, s) ≥ 0 for all (t, s) ∈ [0, T] × [0, T] and DβG(t, s) ≤ ED, where

ED =
Γ(α)T2α−2β−2

Δ
[
Γ
(
α − β

)]2 , (3.8)

(iii)
∫T
0 DβG(t, s)R(s)ds ≥ tα−β−1(T − t)2/2TΓ(α − β) if R(s) ≥ (1 − t/T)2+β−α.

Proof. The proof of this Lemma is similar to that of Lemma 2.5. Hence it is omitted.

Lemma 3.5. Suppose that (H0) and following condition (H4) hold:

(H4) there exist positive constants L, LD such that

∥∥∥f
(
s, x(s), Dβx(s)

)
− f

(
s, y(s), Dβy(s)

)∥∥∥ ≤ L
∥∥x − y

∥∥ + LD

∥∥∥Dβx −Dβy
∥∥∥ (3.9)

and τ = max{E(L + LD), ED(L + LD)} < 1, then Qm has a unique fixed point.

Proof. Obviously, fm defined by the formula (3.1) satisfy also the condition (H4). By (3.5) and
(3.6), it is easy to show that ‖Qmx −Qmy‖∗ < τ‖x − y‖∗, then Banach contraction principle
implies that the operator Qm has a unique fixed point, which completes this proof.

The following fixed-point result of cone compression type is due to Krasnosel’skii,
which is fundamental to establish another auxiliary existence result (Lemma 3.8).
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Lemma 3.6 (see, e.g., [23, 25]). Let Y be a Banach space, and let P ⊂ Y be a cone in Y . Let Ω1,Ω2

be bounded open balls of Y centered at the origin withΩ1 ⊂ Ω2. Suppose thatA : P ∩ (Ω2 \Ω1) → P

is a completely continuous operator such that

‖Ax‖ ≥ ‖x‖ for x ∈ P ∩ ∂Ω1, ‖Ax‖ ≤ ‖x‖ for x ∈ P ∩ ∂Ω2 (3.10)

hold, then A has a fixed point in P ∩ (Ω2 \Ω1).

Lemma 3.7. Let (H0)–(H3) hold, then Qm : P → P and Qm is a completely continuous operator.

Proof. Firstly, let y ∈ P , because fm ∈ Car([0, T] × B∗) is positive. It follows from Lemma 2.5
(i) and (ii) that Qmy ∈ C([0, T],E) and (Qmy)(t) ≥ θ for t ∈ [0, T]. Similarly, from Lemma 3.4
(i) and (ii) we can get that DβQmy ∈ C([0, T],E) and (DβQmy)(t) ≥ θ for t ∈ [0, T]. To
summarize, Qm : P → P .

Secondly, we prove that Qm is a continuous operator. Let {xk} ⊂ P be a convergent
sequence and limk→+∞‖xk − x‖∗ = 0, then x ⊂ P and ‖xk‖∗ ≤ S, where S is a positive constant.
In view of fm ∈ Car([0, T] × B∗), we have limk→+∞fm(t, xk(t), Dβxk(t)) = fm(t, x(t), Dβx(t)).
Since by (3.2), (3.3),

0 <
∥∥∥fm

(
t, xk(t), Dβxk(t)

)∥∥∥

≤ γ(t)
(
γ0(t) + q1

(
1
m

)
+ p1

(
1
m

)
+ q(1) + p(1) + q(S) + p(S)

)
,

(3.11)

the Lebesgue dominated convergence theorem gives

lim
k→+∞

∫T

0

∥∥∥fm
(
t, xk(t), Dβxk(t)

)
− fm

(
t, x(t), Dβx(t)

)∥∥∥dt = 0. (3.12)

Now, from (3.12), Lemma 2.5(ii), Lemma 3.4(ii) and from the inequalities (cf. (3.5), (3.6))

‖(Qmxk)(t) − (Qmx)(t)‖

≤ E

∫T

0

∥∥∥fm
(
t, xk(t), Dβxk(t)

)
− fm

(
t, x(t), Dβx(t)

)∥∥∥dt,
∥∥∥
(
DβQmxk

)
(t) −

(
DβQmx

)
(t)

∥∥∥

≤ ED

∫T

0

∥∥∥fm
(
t, xk(t), Dβxk(t)

)
− fm

(
t, x(t), Dβx(t)

)∥∥∥dt,

(3.13)

we have that limk→+∞‖Qmxk −Qmx‖∗ = 0, which proves that Qm is a continuous operator.
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Thirdly, let Ω ⊂ P be bounded in E and let ‖x‖∗ ≤ L for all x ∈ Ω, where L is a
positive constant. We are in position to prove that Qm(Ω) is bounded. Keeping in mind fm ∈
Car([0, T] × B∗), there exists φ ∈ L1([0, T]) such that

0 <
∥∥∥fm

(
t, xk(t), Dβxk(t)

)∥∥∥ ≤ φ(t) for a.e. t ∈ [0, T] and all x ∈ Ω, (3.14)

then (cf. (3.5))

‖(Qmx)(t)‖ ≤ E

∫T

0

∥∥∥fm
(
s, x(s), Dβx(s)

)∥∥∥ds + y0

Δ
t(α−1)

≤ E
∥∥φ∥∥L1 +

∥∥y0
∥∥

Δ
T (α−1),

(3.15)

and (cf. (3.6))

∥∥∥
(
DβQmx

)
(t)

∥∥∥ ≤ ED

∫T

0

∥∥∥fm
(
s, x(s), Dβx(s)

)∥∥∥ds +
∥∥∥∥∥

y0Γ(α)
ΔΓ

(
α − β

) t(α−β−1)
∥∥∥∥∥

≤ ED

∥∥φ∥∥L1 +

∥∥y0
∥∥Γ(α)

ΔΓ
(
α − β

)T (α−β−1),

(3.16)

for t ∈ [0, T] and all x ∈ Ω. Therefore, Qm(Ω) is bounded in E.
Fourthly, by (H3) and (3.5), it is easy to show that Qm(Ω)(t) is relatively compact.
Finally, let 0 ≤ t1 < t2 ≤ T . From Lemma 2.5(i) and the functions tα−1, tα−β−1 being

uniformly continuous on [0, T], for any arbitrary ε > 0, there exists a positive number δ(ε),
such that when |t1 − t2| < δ(ε), one has |GT (t1, s) − GT (t2, s)| < ε and |tα−11 − tα−12 | < ε, then (cf.
(3.14)) the inequality

‖(Qmx)(t1) − (Qmx)(t2)‖ < ε
∥∥φ∥∥L1 +

∥∥y0
∥∥

Δ
ε (3.17)

holds. Hence the set of functions Qm(Ω) is equicontinuous on [0, T].
Therefore, by the Arzelá-Ascoli theorem, Qm(Ω) is relatively compact in E. We have

proved that Qm is a completely continuous operator.

Lemma 3.8. Suppose that (H0)–(H3) hold, then the operator Qm has at least a fixed point.

Proof. By Lemma 3.7, Qm : P → P is completely continuous. In order to apply Lemma 3.6,
we construct two bounded open ballsΩ1,Ω2 and prove that the conditions (3.10) are satisfied
with respect to Qm.

Firstly, let Ω1 = {y ∈ E : ‖y‖∗ < r}, where r = supt∈[0,T]K1(tα−1(T − t)2)/T and K1 is
defined as in (H2). It follows from Lemma 2.5, (H1), Remark 3.1 and from the definition of
Qm that ‖(Qmy)(t)‖ ≥ K1(tα−1(T − t)2/T). Then ‖Qmy‖ ≥ r. Immediately:

∥∥Qmy
∥∥
∗ ≥

∥∥y∥∥∗, for y ∈ P ∩ ∂Ω1. (3.18)
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Secondly, (3.3) and Lemma 2.5(ii) imply that, for x ∈ P ,

∥∥(Qmy
)
(t)

∥∥ ≤ E

∫T

0

∥∥∥fm
(
s, y(s), Dβy(s)

)∥∥∥ds +
∥∥y0

∥∥
Δ

T (α−1)

≤ E

∫T

0
γ(t)

[
γ0(t) + q1

(
1
m

)
+ p1

(
1
m

)
+ q(1) + p(1)

+ q
(
y(s)

)
+ p

(
Dβy(s)

)]
ds +

∥∥y0
∥∥

Δ
T (α−1)

≤ E

∫T

0
γ(t)

[
γ0(t) + q1

(
1
m

)
+ p1

(
1
m

)
+ q(1) + p(1)

+ q
(∥∥y∥∥) + p

(∥∥∥Dβy
∥∥∥
)]

ds +

∥∥y0
∥∥

Δ
T (α−1)

≤ E

{∥∥γγ0
∥∥
L1 +

[
q1

(
1
m

)
+ p1

(
1
m

)
+ q(1) + p(1)

+ q
(∥∥y∥∥) + p

(∥∥∥Dβy
∥∥∥
)]∥∥γ∥∥L1

}
+

∥∥y0
∥∥

Δ
T (α−1),

(3.19)

because q, p are nondecreasing as stated in (H2). Analogously, by (3.3) and Lemma 3.4(ii),
one can get that for x ∈ P

∥∥∥
(
DβQmy

)
(t)

∥∥∥ ≤ ED

{∥∥γγ0
∥∥
L1 +

[
q1

(
1
m

)
+ p1

(
1
m

)
+ q(1) + p(1) + q

(∥∥y∥∥) + p
(∥∥∥Dβy

∥∥∥
)]

×∥∥γ∥∥L1

}
+

∥∥y0
∥∥Γ(α)

ΔΓ
(
α − β

)T (α−β−1).

(3.20)

LetW1 = max{E, ED} andW2 = max{(‖y0‖/Δ)T (α−1), (‖y0‖Γ(α)/(ΔΓ(α−β)))T (α−β−1)}. Hence
for x ∈ P , we have the following inequality

∥∥Qmy
∥∥
∗ ≤ W1

{∥∥γγ0
∥∥
L1 +

[
q1

(
1
m

)
+ p1

(
1
m

)
+ q(1) + p(1) + q

(∥∥y∥∥∗
)
+ p

(∥∥y∥∥∗
)]

×∥∥γ∥∥L1

}
+W2.

(3.21)

Since lim‖x‖→∞(q(‖x‖) + p(‖x‖))/‖x‖ = 0 by (H2), there exists a sufficiently large number
R > r such that

W1

{∥∥γγ0
∥∥
L1 +

[
q1

(
1
m

)
+ p1

(
1
m

)
+ q(1) + p(1) + q(R) + p(R)

]∥∥γ∥∥L1

}
+W2 ≤ R. (3.22)
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Let Ω2 = {y ∈ E : ‖y‖∗ < R}, then (cf. (3.21) and (3.22))

∥∥Qmy
∥∥
∗ ≤

∥∥y∥∥∗, for y ∈ P ∩ ∂Ω2. (3.23)

Applying Lemma 3.6, we conclude from (3.18) and (3.23) that Qm has a fixed point in P ∩
(Ω2 \Ω1).

Lemma 3.9. Suppose that (H0)–(H3) hold, then the sequences {ym}∞m=1 and {Dβym}∞m=1 are relative-
ly compact in C([0, T]), where ym be a fixed point of operator Qm defined by (3.5).

Proof. Let ym be a fixed point of operator Qm, that is,

ym(t) =
∫T

0
G(t, s)fm

(
s, ym(s), Dβym(s)

)
ds

+
y0

Δ
t(α−1), t ∈ [0, T], m ∈ N.

(3.24)

And consider (cf. (3.6))

Dβym(t) =
∫T

0
DβG(t, s)fm

(
s, ym(s), Dβym(s)

)
ds

+
y0Γ(α)

ΔΓ
(
α − β

) t(α−β−1), t ∈ [0, T], m ∈ N.

(3.25)

By Lemma 2.5(iii), Lemma 3.4(iii), and Remark 3.1, we have also

∥∥ym(t)
∥∥ ≥ K1

tα−1(T − t)2

T
+

y0Γ(α)
ΔΓ

(
α − β

) t(α−β−1)

≥ K1
tα−1(T − t)2

T
, t ∈ [0, T], m ∈ N,

(3.26)

∥∥∥Dβym(t)
∥∥∥ ≥ K2

tα−β−1(T − t)2

T
, t ∈ [0, T], m ∈ N. (3.27)

Hence (cf. (3.4)),

∥∥∥fm
(
t, ym(t), Dβym(t)

)∥∥∥ ≤ γ(t)

{
γ0(t) + q1

(
K1

tα−1(T − t)2

T

)
+ p1

(
K2

tα−β−1(T − t)2

T

)

+ q(1) + p(1) + q
(
ym(t)

)
+ p

(
Dβym(t)

)}
,

(3.28)
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for a.e. t ∈ [0, T], and all m ∈ N. Therefore, by (3.26), (3.27), Lemma 2.5(ii), Lemma 3.4(ii),
and Remark 3.1,

∥∥ym(t)
∥∥ ≤ E

{∥∥γγ0
∥∥
L1 +U1 +U2 +

[
q(1) + p(1) + q

(∥∥ym

∥∥) + p
(∥∥∥Dβym

∥∥∥
)]∥∥γ∥∥L1

}

+
y0

Δ
T (α−1),

(3.29)

∥∥∥Dβym(t)
∥∥∥ ≤ ED

{∥∥γγ0
∥∥
L1 +U1 +U2 +

[
q(1) + p(1) + q

(∥∥ym

∥∥) + p
(∥∥∥Dβym

∥∥∥
)]∥∥γ∥∥L1

}

+
y0Γ(α)

ΔΓ
(
α − β

)T (α−β−1),

(3.30)

for t ∈ [0, T],m ∈ N, where

U1 =
∫T

0
γ(t)q1

(
K1

tα−1(T − t)2

T

)
dt < +∞, (3.31)

U2 =
∫T

0
γ(t)p1

(
K2

tα−β−1(T − t)2

T

)
dt < +∞. (3.32)

In particular,

∥∥ym

∥∥
∗ ≤ W1

{∥∥γγ0
∥∥
L1 +U1 +U2 +

[
q(1) + p(1) + q

(∥∥ym

∥∥
∗
)
+ p

(∥∥ym

∥∥
∗
)]∥∥γ∥∥L1

}
+W2,

∀m ∈ N,

(3.33)

where W1,W2 are defined in the proof of Lemma 3.8. Since limx→+∞(q(x) + p(x))/x = 0 by
(H2), there exists a constant W > 0 such that for each x > W ,

W1
{∥∥γγ0

∥∥
L1 +U1 +U2 +

[
q(1) + p(1) + q(x) + p(x)

]∥∥γ∥∥L1

}
+W2 < x. (3.34)

Immediately, (cf. (3.33))

∥∥ym

∥∥
∗ ≤ W, ∀m ∈ N. (3.35)

Hence, the sequences {ym}∞m=1 and {Dβym}∞m=1 are uniformly bounded.



Journal of Applied Mathematics 15

We will take similar discussions as in Lemma 3.7 to show that {ym}∞m=1 and {Dβym}∞m=1
are equicontinuous on [0, T]. Let 0 ≤ t1 < t2 ≤ T , then we have

∥∥(ym

)
(t1) −

(
ym

)
(t2)

∥∥

≤
∫T

0
|GT (t1, s) −GT (t2, s)|

∥∥∥fm
(
s, x(s), Dβx(s)

)∥∥∥ds +
∥∥y0

∥∥
Δ

∣∣∣tα−11 − tα−12

∣∣∣,
∥∥∥
(
Dβym

)
(t1) −

(
Dβym

)
(t2)

∥∥∥

≤
∫T

0

∣∣∣DβGT (t1, s) −DβGT (t2, s)
∣∣∣
∥∥∥fm

(
s, x(s), Dβx(s)

)∥∥∥ds

+

∥∥y0
∥∥Γ(α)

ΔΓ
(
α − β

)
∣∣∣tα−β−11 − t

α−β−1
2

∣∣∣.

(3.36)

Using (3.28), (3.35), one can get

0 <
∥∥∥fm

(
t, ym(t), Dβym(t)

)∥∥∥

≤ γ(t)

{
γ0(t) + q1

(
K1

tα−1(T − t)2

T

)
+ p1

(
K2

tα−β−1(T − t)2

T

)

+ q(1) + p(1) + q(W) + p(W)

}
.

(3.37)

From Lemma 2.5 (i), Lemma 3.4 (i), and the functions tα−1, tα−β−1 being uniformly continuous
on [0, T], choosing an arbitrary ε > 0, there exists a positive number δ(ε). When |t1−t2| < δ(ε),
we can get |GT (t1, s) − GT (t2, s)| < ε, |DβGT (t1, s) − DβGT (t2, s)| < ε, |tα−11 − tα−12 | < ε, and

|tα−β−11 − t
α−β−1
2 | < ε. Therefore (cf. (3.36) and (3.37)) the inequalities

∥∥(ym

)
(t1) −

(
ym

)
(t2)

∥∥

< ε
{∥∥γγ0

∥∥
L1 +U1 +U2 +

[
q(1) + p(1) + q(W) + p(W)

]∥∥γ∥∥L1

}
+

∥∥y0
∥∥

Δ
ε,

∥∥∥
(
Dβym

)
(t1) −

(
Dβym

)
(t2)

∥∥∥

< ε
{∥∥γγ0

∥∥
L1 +U1 +U2 +

[
q(1) + p(1) + q(W) + p(W)

]∥∥γ∥∥L1

}
+

∥∥y0
∥∥Γ(α)

ΔΓ
(
α − β

)ε,

(3.38)

hold, where U1, U2 are defined as (3.31) and (3.32), respectively. As a result, {ym}∞m=1 and
{Dβym}∞m=1 are equicontinuous on [0, T].

Finally, we prove that {ym(t)}∞m=1 and {Dβym(t)}∞m=1 are relatively compact. Because E
is a Banach space, we need only to show that {ym(t)}∞m=1 and {Dβym(t)}∞m=1 are completely
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bounded. For all ε > 0, by the Remark 3.2, there exists a sufficiently large positive integer N,
such that if m > N,

∥∥∥fm
(
t, y(t), Dβy(t)

)
− f

(
t, y(t), Dβy(t)

)∥∥∥ <
ε

Ẽ
, a.e. t ∈ [0, T], (3.39)

where Ẽ = max{E, ED}.
Hence, by (3.5) and (3.6), we have ‖(Qmy)(t)−Q0‖ < ε and ‖Dβ(Qmy)(t)−DβQ0‖ < ε,

for m > N, where

Q0 =
∫T

0
G(t, s)f

(
s, y(s), Dβy(s)

)
ds +

y0

Δ
t(α−1),

DβQ0 =
∫T

0
DβG(t, s)f

(
s, y(s), Dβy(s)

)
ds +

y0Γ(α)
ΔΓ

(
α − β

) t(α−β−1).
(3.40)

This implies that {ym(t)}∞m=1 and {Dβym(t)}∞m=1 have an ε-net constituted by finite elements
({y1(t), y2(t), yN(t), Q0} and {Dβy1(t), Dβy2(t), DβyN(t), DβQ0}, resp.) of E, that is, com-
pletely bounded.

Therefore, {ym}∞m=1 and {Dβym}∞m=1 are relatively compact in C([0, T]) by the Arzelá-
Ascoli theorem.

Using above results, we now give the existence of positive solution of singular problem
(1.4)-(1.5).

Theorem 3.10. Suppose that (H0)–(H3) hold, then problem (1.4)-(1.5) has a positive solution y
and

∥∥y(t)∥∥ ≥ K1
tα−1(T − t)2

T
,

∥∥∥Dβy(t)
∥∥∥ ≥ K2

tα−β−1(T − t)2

T
, t ∈ [0, T].

(3.41)

Moreover, y is continuous and ‖y‖∗ ≤ W , whereW is a constant as in (3.35).

Proof. From Lemmas 3.8 and 3.9, the operatorQm has a fixed point ym satisfying (3.26), (3.27),
(3.35). And {ym}∞m=1 and {Dβym}∞m=1 are relatively compact inC([0, T]). Hence, {ym}∞m=1 is rel-
atively compact in E. And therefore, there exist y ∈ E and a subsequence ymk of {ym}∞m=1 such
that limk→∞ymk = y in E. Consequently, y is positive and continuous. Moreover y satisfies
(3.47), ‖y‖∗ ≤ W . And

lim
k→∞

fmk

(
t, ymk(t), D

βymk(t)
)
= f

(
t, y(t), Dβy(t)

)
, for a.e. t ∈ [0, T]. (3.42)
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Keeping in mind (3.35) holding, where W is a positive constant, it follows from inequalities
(3.4) and (3.26) and from Lemma 2.5(ii) that

0 ≤
∥∥∥G(t, s)fm

(
s, ym(s), Dβym(s)

)∥∥∥

≤ Eγ(s)

{
γ0(s) + q1

(
K1

sα−1(T − s)2

T

)
+ p1

(
K2

sα−β−1(T − s)2

T

)

+ q(1) + p(1) + q(W) + p(W)

}
,

(3.43)

for a.e. s ∈ [0, T] and all t ∈ [0, T], m ∈ N. Hence, by the Lebesgue dominated convergence
theorem, we have

lim
k→+∞

∫T

0
G(t, s)fm

(
s, ym(s), Dβym(s)

)
ds =

∫T

0
G(t, s)f

(
s, y(s), Dβy(s)

)
ds, (3.44)

for t ∈ [0, T]. Now, passing to the limit as k → +∞ in

ymk(t) =
∫T

0
G(t, s)fmk

(
s, ymk(s), D

βymk(s)
)
ds +

y0

Δ
t(α−1), (3.45)

we have

y(t) =
∫T

0
G(t, s)f

(
s, y(s), Dβy(s)

)
ds +

y0

Δ
t(α−1), for t ∈ [0, T]. (3.46)

Consequently, y is a positive solution of BVP (1.4)-(1.5) by Lemma 2.4.

By Lemmas 3.5 and 3.9, and Theorem 3.10, we give the following unique result without
proof.

Theorem 3.11. Suppose that (H0)–(H4) hold, then problem (1.4)-(1.5) has a unique positive solution
y and

∥∥y(t)∥∥ ≥ K1
tα−1(T − t)2

T
,

∥∥∥Dβy(t)
∥∥∥ ≥ K2

tα−β−1(T − t)2

T
, t ∈ [0, T].

(3.47)

Moreover, y is continuous and ‖y‖∗ ≤ W , whereW is a constant as in (3.35).

4. Existence Results for BVP (1.6)-(1.7)

We now give the existence of positive solution of BVP (1.6)-(1.7) by using diagonalization
process.
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Theorem 4.1. Suppose that (H0)–(H3) hold, then BVP (1.6)-(1.7) has a positive solution y, and
Dβy is also positive.

Proof. Firstly, choose

{Tn}∞n=1 ∈ N∗ to be a subsequence of numbers,

such that T ≤ T1 < T2 < · · · < Tn < · · · ↑ ∞,
(4.1)

then consider the BVP,

Dαy(t) + f
(
t, y(t), Dβy(t)

)
= θ, a.e. t ∈ [0, Tn], (4.2)

subject to

y(0) = θ, Dβy(Tn) −
m−2∑
i=1

aiy(ξi) −
m−2∑
i=1

biD
βy(ξi) = y0. (4.3)

Theorem 3.10 guarantees that BVP (4.2)-(4.3) has a positive continuous solution yn.
And for any n ∈ N,

∥∥yn

∥∥
∗ ≤ Wn, for t ∈ [0, Tn], (4.4)

where Wn is a constant defined similarly toW .
Secondly, we apply the following diagonalization process. For n ∈ N, let

un(t) =

⎧
⎨
⎩
yn(t), t ∈ [0, Tn],

yn(Tn), t ∈ [Tn,+∞).
(4.5)

Here, {Tn}∞n=1 is defined in (4.1). Notice that un(t) ∈ C[0,+∞)with

0 ≤ ‖un(t)‖ ≤ W1, 0 ≤
∥∥∥Dβun(t)

∥∥∥ ≤ W1, for t ∈ [0, T1]. (4.6)

Also for n ∈ N and t ∈ [0, T1], we get

un(t) =
∫T1

0
GT1(t, s)f

(
s, un(t), Dβun(t)

)
ds +

y0

Δ
tα−1, (4.7)
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where GTn(t, s) are similarly defined as in (2.11), but all of T should be replaced by Tn. Then
for t1, t2 ∈ [0, T1], we have

‖un(t1) − un(t2)‖ ≤
∫T1

0
|GT1(t1, s) −GT1(t2, s)|

∥∥∥f
(
s, unk(t), D

βunk(t)
)∥∥∥ds

+
y0

Δ

∣∣∣tα−11 − tα−12

∣∣∣,

∥∥∥Dβun(t1) −Dβun(t2)
∥∥∥ ≤

∫T1

0

∣∣∣DβGT1(t1, s) −DβGT1(t2, s)
∣∣∣ ×

∥∥∥f
(
s, unk(t), D

βunk(t)
)∥∥∥ds

+

∥∥y0
∥∥Γ(α)

ΔΓ
(
α − β

)
∣∣∣tα−β−11 − t

α−β−1
2

∣∣∣.
(4.8)

Thus, when |t1 − t2| < δ(ε, 1), similarly to (3.38),

‖un(t1) − un(t2)‖

< ε
{∥∥γγ0

∥∥
L1 +U1

1 +U1
2 +

[
q(1) + p(1) + q

(
W1

)
+ p

(
W1

)]∥∥γ∥∥L1

}
+

∥∥y0
∥∥

Δ
ε,

∥∥∥Dβun(t1) −Dβun(t2)
∥∥∥

< ε
{∥∥γγ0

∥∥
L1 +U1

1 +U1
2 +

[
q(1) + p(1) + q

(
W1

)
+ p

(
W1

)]∥∥γ∥∥L1

}
+

∥∥y0
∥∥Γ(α)

ΔΓ
(
α − β

)ε
(4.9)

hold for an arbitrary ε > 0, where δ(ε, 1) is a suitable positive number andU1
1, U

1
2 are defined

similarly to U1, U2 as in (3.31) and (3.32), respectively. By using (H3), we know that, for
a.e. t ∈ [0,+∞), f(t,DW1 , DW1) is relatively compact, where DW1 = {u ∈ C([0, T1] : ‖u‖∗ ≤
W1} ∩ P . Therefore, {un(t)}∞n=1 and {Dβun(t)}∞n=1 are relatively compact. The Arzelá-Ascoli
theorem guarantees that there is a subsequenceN∗

1 ofN and a function z1 ∈ C([0, T1], E)with
unk → z1 inC([0, T1], E) as k → +∞ throughN∗

1 . Obviously, z1 is positive. LetN1 = N∗
1 \{1},

noticing that

0 ≤ ‖un(t)‖ ≤ W2, 0 ≤
∥∥∥Dβun(t)

∥∥∥ ≤ W2, for t ∈ [0, T2]. (4.10)

Similarly to above argumentation, we have that there is a subsequence N∗
2 of N1 and a

function z2 ∈ C([0, T2], E) with unk → z2 in C([0, T2], E) as k → +∞ through N∗
2. Obviously,

z2 is positive. Note that z1 = z2 on [0, T1] since N∗
2 ⊂ N1. Let N2 = N∗

2 \ {2}. Proceed
inductively to obtain for m = {2, 3, . . .} a subsequence N∗

m of Nm−1 and a function zm ∈
C([0, Tm], E) with unk → zm in C([0, Tm], E) as k → +∞ through N∗

m. Also, zm is positive.
Let Nm = N∗

m \ {m}.
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Define a function y as follows. Fix t ∈ (0,+∞), and Letm ∈ N with s ≤ Tm, then define
y(t) = zm(t). Hence y ∈ C([0,+∞),R).

Again fix t ∈ [0,+∞) and Let m ∈ N with s ≤ Tm. Then for n ∈ Nm we get

unk(t) =
∫Tm

0
GTm(t, s)f

(
s, unk(s), D

βunk(s)
)
ds +

y0

Δ
t(α−1). (4.11)

Let nk → +∞ through Nm to obtain

zm(t) =
∫Tm

0
GTm(t, s)f

(
s, zm(s), Dβzm(s)

)
ds +

y0

Δ
t(α−1), (4.12)

that is,

y(t) =
∫Tm

0
GTm(t, s)f

(
s, y(s), Dβy(s)

)
ds +

y0

Δ
t(α−1). (4.13)

We can use this method for each s ∈ [0, Tm] and for each m ∈ N. Hence,

Dαy(t) + f
(
t, y(t), Dβy(t)

)
= θ, a.e. t ∈ [0, Tm], (4.14)

for each m ∈ N. Consequently, the constructed function y is a solution of (1.6)-(1.7). This
completes the proof of the theorem.

Rmark 4.2. In [21], the authors considered the BVP (1.3). Under some suitable conditions,
they obtained the existence result of unbounded solution. In nature, BVP (1.3) is a special
form of BVP (1.6)-(1.7). In that scalar situation, α − β = 1, bi = 0 (i = 1, 2, . . . , m − 2), b1 > 0,
bi = 0 (i = 2, 3, . . . , m − 2), y0 = 0, and f = f(t, y(t)) are not singular, then our Theorem 4.1
includes the result from [21]. But our approach is different from those of [21].

Proceeding the similar arguments above, we list the following unique result for BVP
(1.6)-(1.7), and the proof will be omitted.

Theorem 4.3. Suppose that (H0)–(H4) hold, then BVP (1.6)-(1.7) has a unique positive solution y,
and Dβy is also positive.

5. Application

We end this paper with giving an example to demonstrate the application of our existence
result.

Example 5.1. Consider the following BVP in scalar space:

Dαy(t) +
(
2 − sin

1
3t − 1

)(
e−t +

1
yη1

+
1(

Dβy
)κ1

+ yη +
(
Dβy

)κ
)

= 0,

y(0) = 0, lim
t→+∞

Dβy(t) − 1
4
y(4) − 2y(5) −Dβy(6) = 1,

(5.1)
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where 1 < α ≤ 2, 0 < β < α−1. We will apply Theorem 4.1 with� = 1, γ(t) = 2−sin(1/(3t−1)),
γ0(t) = e−t, q1(x) = 1/xη1 , p1(x) = 1/(x)κ1 , q(x) = xη, p(t) = (x)κ. Clearly (H1) holds because
f(t, x, y) ≥ 1 for t ∈ [0,+∞) \ {1/3}, (x, y) ∈ (0,+∞) × (0,+∞). And also (H2) holds for
η, κ ∈ (0, 1), η1 ∈ (0, 1/2), and κ1 ∈ (0, 1/2). Hence, Theorem 4.1 guarantees the existence of
positive solution of (5.1).
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