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Using the Kato theorem for abstract differential equations, the local well-posedness of the solution
for a nonlinear dissipative Camassa-Holm equation is established in space C([0, T),Hs(R)) ∩
C1([0, T),Hs−1(R)) with s > 3/2. In addition, a sufficient condition for the existence of weak
solutions of the equation in lower order Sobolev space Hs(R) with 1 ≤ s ≤ 3/2 is developed.

1. Introduction

Camassa and Holm [1] used the Hamiltonian method to derive a completely integrable wave
equation

ut − uxxt + 2kux + 3uux = 2uxuxx + uuxxx, (1.1)

by retaining two terms that are usually neglected in the small amplitude, shallow water
limit. Its alternative derivation as a model for water waves can be found in Constantin and
Lannes [2] and Johnson [3]. Equation (1.1) also models wave current interaction [4], while
Dai [5] derived it as a model in elasticity (see Constantin and Strauss [6]). Moreover, it was
pointed out in Lakshmanan [7] that the Camassa-Holm equation (1.1) could be relevant to
the modeling of tsunami waves (see Constantin and Johnson [8]).

In fact, a huge amount of work has been carried out to investigate the dynamic
properties of (1.1). For k = 0, (1.1) has traveling wave solutions of the form c e−|x−ct|, called
peakons, which capture the main feature of the exact traveling wave solutions of greatest
height of the governing equations (see [9–11]). For k > 0, its solitary waves are stable
solitons [6, 11]. It was shown in [12–14] that the inverse spectral or scattering approach was
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a powerful tool to handle Camassa-Holm equation. Equation (1.1) is a completely integrable
infinite-dimensional Hamiltonian system (in the sense that for a large class of initial data,
the flow is equivalent to a linear flow at constant speed [15]). It should be emphasized that
(1.1) gives rise to geodesic flow of a certain invariant metric on the Bott-Virasoro group (see
[16, 17]), and this geometric illustration leads to a proof that the Least Action Principle holds.
It is worthwhile to mention that Xin and Zhang [18] proved that the global existence of the
weak solution in the energy space H1(R) without any sign conditions on the initial value,
and the uniqueness of this weak solution is obtained under some conditions on the solution
[19]. Coclite et al. [20] extended the analysis presented in [18, 19] and obtained many useful
dynamic properties to other equations (also see [21–24]). Li and Olver [25] established the
local well-posedness in the Sobolev spaceHs(R)with s > 3/2 for (1.1) and gave conditions on
the initial data that lead to finite time blowup of certain solutions. It was shown in Constantin
and Escher [26] that the blowup occurs in the form of breaking waves, namely, the solution
remains bounded but its slope becomes unbounded in finite time. After wave breaking, the
solution can be continued uniquely either as a global conservative weak solution [21] or a
global dissipative solution [22]. For peakons, these possibilities are explicitly illustrated in the
paper [27]. For other methods to handle the problems relating to various dynamic properties
of the Camassa-Holm equation and other shallow water models, the reader is referred to
[10, 28–32] and the references therein.

In this paper, motivated by the work in [25, 33], we study the following generalized
Camassa-Holm equation

ut − utxx + 2kux + aumux = 2uxuxx + uuxxx + β∂x
[
(ux)N

]
, (1.2)

where m ≥ 1 and N ≥ 1 are natural numbers, and a, k, and β are arbitrary constants.
Obviously, (1.2) reduces to (1.1) if we set a = 3, m = 1, and β = 0. Actually, Wu and Yin
[34] consider a nonlinearly dissipative Camassa-Holm equation which includes a nonlinearly
dissipative term L(u), where L is a differential operator or a quasidifferential operator.
Therefore, we can regard the term β∂x[(ux)

N] as a nonlinearly dissipative term for the
dissipative Camassa-Holm equation (1.2).

Due to the term β∂x[(ux)
N] in (1.2), the conservation laws in previous works [10, 25]

for (1.1) lose their powers to obtain some bounded estimates of the solution for (1.2). A new
conservation law different from those presented in [10, 25] will be established to prove the
local existence and uniqueness of the solution to (2.3) subject to initial value u0(x) ∈ Hs(R)
with s > 3/2. We should address that all the generalized versions of the Camassa-Holm
equation in previous works (see [17, 25, 34]) do not involve the nonlinear term ∂x[(ux)

N].
Lai and Wu [33] only studied a generalized Camassa-Holm equation in the case where β ≥ 0
and N is an odd number. Namely, (1.2) with β < 0 and arbitrary positive integer N was not
investigated in [33].

The main tasks of this paper are two-fold. Firstly, by using the Kato theorem for
abstract differential equations, we establish the local existence and uniqueness of solutions
for (1.2) with any β and arbitrary positive integer N in space C([0, T),Hs(R))

⋂
C1([0, T),

Hs−1(R)) with s > 3/2. Secondly, it is shown that the existence of weak solutions in lower
order Sobolev space Hs(R) with 1 ≤ s ≤ 3/2. The ideas of proving the second result come
from those presented in Li and Olver [25].
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2. Main Results

Firstly, we give some notation.
The space of all infinitely differentiable functions φ(t, x) with compact support in

[0,+∞)×R is denoted byC∞
0 . Lp = Lp(R) (1 ≤ p < +∞) is the space of all measurable functions

h such that ‖h‖pLp =
∫
R |h(t, x)|pdx < ∞. We define L∞ = L∞(R) with the standard norm

‖h‖L∞ = infm(e)=0supx∈R\e|h(t, x)|. For any real number s, Hs = Hs(R) denotes the Sobolev
space with the norm defined by

‖h‖Hs =
(∫

R

(
1 + |ξ|2

)s∣∣∣ĥ(t, ξ)
∣∣∣
2
dξ

)1/2

< ∞, (2.1)

where ĥ(t, ξ) =
∫
R e

−ixξh(t, x)dx.
For T > 0 and nonnegative number s, C([0, T);Hs(R)) denotes the Frechet space of all

continuous Hs-valued functions on [0, T). We set Λ = (1 − ∂2x)
1/2.

In order to study the existence of solutions for (1.2), we consider its Cauchy problem
in the form

ut − utxx = −2kux − a

m + 1

(
um+1

)
x
+ 2uxuxx + uuxxx + β∂x

[
(ux)N

]

= −kux − a

m + 1

(
um+1

)
x
+
1
2
∂3xu

2 − 1
2
∂x
(
u2
x

)
+ β∂x

[
(ux)N

]
,

u(0, x) = u0(x),

(2.2)

which is equivalent to

ut + uux = Λ−2
[
−ku − a

m + 1

(
um+1

)]

x

+ Λ−2(uux) − 1
2
Λ−2∂x

(
u2
x

)
+ βΛ−2∂x

[
(ux)N

]
,

u(0, x) = u0(x).

(2.3)

Now, we state our main results.

Theorem 2.1. Let u0(x) ∈ Hs(R) with s > 3/2. Then problem (2.2) or problem (2.3) has a unique
solution u(t, x) ∈ C([0, T);Hs(R))

⋂
C1([0, T);Hs−1(R)) where T > 0 depends on ‖u0‖Hs(R).

Theorem 2.2. Suppose that u0(x) ∈ Hs with 1 ≤ s ≤ 3/2 and ‖u0x‖L∞ < ∞. Then there exists a
T > 0 such that (1.2) subject to initial value u0(x) has a weak solution u(t, x) ∈ L2([0, T],Hs) in the
sense of distribution and ux ∈ L∞([0, T] × R).

3. Local Well-Posedness

We consider the abstract quasilinear evolution equation

dv

dt
+A(v)v = f(v), t ≥ 0, v(0) = v0. (3.1)
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Let X and Y be Hilbert spaces such that Y is continuously and densely embedded in X,
and let Q : Y → X be a topological isomorphism. Let L(Y,X) be the space of all bounded
linear operators from Y to X. If X = Y , we denote this space by L(X). We state the following
conditions in which ρ1, ρ2, ρ3, and ρ4 are constants depending on max{‖y‖Y , ‖z‖Y}.

(i) A(y) ∈ L(Y,X) for y ∈ X with

∥∥(A(y) −A(z))w
∥∥
X ≤ ρ1

∥∥y − z
∥∥
X‖w‖Y , y, z,w ∈ Y, (3.2)

and A(y) ∈ G(X, 1, β) (i.e., A(y) is quasi-m-accretive), uniformly on bounded sets
in Y .

(ii) QA(y)Q−1 = A(y) + B(y), where B(y) ∈ L(X) is bounded, uniformly on bounded
sets in Y . Moreover,

∥∥(B(y) − B(z)
)
w
∥∥
X ≤ ρ2

∥∥y − z
∥∥
Y‖w‖X, y, z ∈ Y, w ∈ X. (3.3)

(iii) f : Y → Y extends to a map from X into X is bounded on bounded sets in Y , and
satisfies

∥∥f(y) − f(z)
∥∥
Y ≤ ρ3

∥∥y − z
∥∥
Y , y, z ∈ Y,

∥∥f(y) − f(z)
∥∥
X ≤ ρ4

∥∥y − z
∥∥
X, y, z ∈ Y.

(3.4)

Kato Theorem (see [35])

Assume that (i), (ii), and (iii) hold. If v0 ∈ Y , there is a maximal T > 0 depending only on
‖v0‖Y , and a unique solution v to problem (3.1) such that

v = v(·, v0) ∈ C([0, T);Y )
⋂

C1([0, T);X). (3.5)

Moreover, the map v0 → v(·, v0) is a continuous map from Y to the space

C([0, T);Y )
⋂

C1([0, T);X). (3.6)

For problem (2.3), we set A(u) = u∂x, Y = Hs(R), X = Hs−1(R), Λ = (1 − ∂2x)
1/2,

f(u) = Λ−2
[
−ku − a

m + 1

(
um+1

)]

x

+ Λ−2(uux) − 1
2
Λ−2∂x

(
u2
x

)
+ βΛ−2∂x

[
(ux)N

]
, (3.7)

and Q = Λ. In order to prove Theorem 2.1, we only need to check that A(u) and f(u) satisfy
assumptions (i)–(iii).

Lemma 3.1. The operator A(u) = u∂x with u ∈ Hs(R), s > 3/2 belongs to G(Hs−1, 1, β).
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Lemma 3.2. Let A(u) = u∂x with u ∈ Hs and s > 3/2. Then A(u) ∈ L(Hs,Hs−1) for all u ∈ Hs.
Moreover,

‖(A(u) −A(z))w‖Hs−1 ≤ ρ1‖u − z‖Hs−1‖w‖Hs, u, z,w ∈ Hs(R). (3.8)

Lemma 3.3. For s > 3/2, u, z ∈ Hs and w ∈ Hs−1, it holds that B(u) = [Λ, u∂x]Λ−1 ∈ L(Hs−1)
for u ∈ Hs and

‖(B(u) − B(z))w‖Hs−1 ≤ ρ2‖u − z‖Hs‖w‖Hs−1 . (3.9)

Proofs of the above Lemmas 3.1–3.3 can be found in [29] or [31].

Lemma 3.4 (see [35]). Let r and q be real numbers such that −r < q ≤ r. Then

‖uv‖Hq ≤ c‖u‖Hr‖v‖Hq , if r >
1
2
,

‖uv‖Hr+q−1/2 ≤ c‖u‖Hr‖v‖Hq , if r <
1
2
.

(3.10)

Lemma 3.5. Let u, z ∈ Hs with s > 3/2, then f(u) is bounded on bounded sets inHs and satisfies

∥∥f(u) − f(z)
∥∥
Hs ≤ ρ3‖u − z‖Hs, (3.11)

∥∥f(u) − f(z)
∥∥
Hs−1 ≤ ρ4‖u − z‖Hs−1 . (3.12)

Proof. Using the algebra property of the space Hs0 with s0 > 1/2, we have

∥∥f(u) − f(z)
∥∥
Hs

≤ c

[∥∥∥∥Λ−2
([

−ku − a

m + 1

(
um+1

)]

x

−
[
−kz − a

m + 1

(
zm+1

)]

x

)∥∥∥∥
Hs

+
∥∥∥Λ−2(uux − zzx)

∥∥∥
Hs

+
∥∥∥Λ−2∂x

(
u2
x − z2x

)∥∥∥
Hs

+
∥∥∥Λ−2∂x

[
(ux)N

]
−Λ−2∂x

[
(zx)N

] ∥∥∥
Hs

]

≤ c
[
‖u − z‖Hs−1 +

∥∥∥um+1 − zm+1
∥∥∥
Hs−1

+ ‖uux − zzx‖Hs−1 +
∥∥∥u2

x − z2x

∥∥∥
Hs−1

+
∥∥∥(ux)

N − (zx)
N
∥∥∥
Hs−1

]

≤ c‖u − z‖Hs

⎡
⎣1 +

m∑
j=0

‖u‖m−j
Hs ‖z‖jHs + ‖u‖Hs + ‖z‖Hs +

N−1∑
j=0

‖ux‖N−j
Hs−1‖zx‖jHs−1

⎤
⎦

≤ ρ3‖u − z‖Hs,

(3.13)

from which we obtain (3.11).
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Applying Lemma 3.4, uux = (1/2)(u2)x, s > 3/2, ‖u‖L∞ ≤ c‖u‖Hs−1 and ‖ux‖L∞ ≤
c‖u‖Hs , we get

∥∥f(u) − f(z)
∥∥
Hs−1

≤ c

⎡
⎣‖u − z‖

Hs−2

+
∥∥∥um+1 − zm+1

∥∥∥
Hs−2

+
∥∥∥u2 − z2

∥∥∥
Hs−2

+ ‖(ux − zx)(ux + zx)‖Hs−2 +

∥∥∥∥∥∥
(ux − zx)

N−1∑
j=0

u
N−1−j
x z

j
x

∥∥∥∥∥∥
Hs−2

⎤
⎦

≤ c‖u − z‖Hs−1

⎡
⎣1 +

m∑
j=0

‖u‖m−j
Hs−1‖z‖jHs−1 + ‖u‖Hs−1 + ‖z‖Hs−1

+ ‖u‖Hs + ‖z‖Hs +
N−1∑
j=0

‖ux‖N−j
Hs−1‖zx‖jHs−1

⎤
⎦

≤ ρ4‖u − z‖Hs−1 ,

(3.14)

which completes the proof of (3.12).

Proof of Theorem 2.1. Using the Kato Theorem, Lemmas 3.1–3.3, and 3.5, we know that system
(2.2) or problem (2.3) has a unique solution

u(t, x) ∈ C([0, T);Hs(R))
⋂

C1
(
[0, T);Hs−1(R)

)
. (3.15)

4. Existence of Weak Solutions

For s ≥ 2, using the first equation of system (2.2) derives

d

dt

∫

R

(
u2 + u2

x + 2β
∫ t

0
uN+1
x dτ

)
dx = 0, (4.1)

from which we have the conservation law

∫

R

(
u2 + u2

x + 2β
∫ t

0
uN+1
x dτ

)
dx =

∫

R

(
u2
0 + u2

0x

)
dx. (4.2)

Lemma 4.1 (Kato and Ponce [36]). If r > 0, thenHr
⋂
L∞ is an algebra. Moreover,

‖uv‖r ≤ c(‖u‖L∞‖v‖r + ‖u‖r‖v‖L∞), (4.3)

where c is a constant depending only on r.
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Lemma 4.2 (Kato and Ponce [36]). Let r > 0. If u ∈ Hr
⋂
W1,∞ and v ∈ Hr−1⋂L∞, then

‖[Λr , u]v‖L2 ≤ c
(
‖∂xu‖L∞

∥∥∥Λr−1v
∥∥∥
L2

+ ‖Λru‖L2‖v‖L∞

)
. (4.4)

Lemma 4.3. Let s ≥ 2 and the function u(t, x) is a solution of problem (2.2) and the initial data
u0(x) ∈ Hs(R). Then the following inequality holds

‖u‖L∞ ≤ ‖u‖H1 ≤ ‖u0‖H1e|β|
∫ t
0 ‖ux‖N−1

L∞ dτ . (4.5)

For q ∈ (0, s − 1], there is a constant c, which only depends onm, N, k, a, and β, such that

∫

R

(
Λq+1u

)2
dx ≤

∫

R

(
Λq+1u0

)2
dx + c

∫ t

0
‖ux‖L∞‖u‖2Hq+1

(
1 + ‖u‖m−1

L∞

)
dτ

+ c

∫ t

0
‖u‖2Hq+1‖ux‖N−1

L∞ dτ.

(4.6)

For q ∈ [0, s − 1], there is a constant c, which only depends onm,N, k, a, and β, such that

‖ut‖Hq ≤ c‖u‖Hq+1

(
1 +

(
1 + ‖u‖m−1

L∞

)
‖u‖H1 + ‖ux‖N−1

L∞

)
. (4.7)

Proof. Using ‖u‖2
H1 =

∫
R(u

2 + u2
x)dx and (4.2) derives (4.5).

Using ∂2x = −Λ2 + 1 and the Parseval equality gives rise to

∫

R

ΛquΛq∂3x

(
u2
)
dx = −2

∫

R

(
Λq+1u

)
Λq+1(uux)dx + 2

∫

R

(Λqu)Λq(uux)dx. (4.8)

For q ∈ (0, s − 1], applying (Λqu)Λq to both sides of the first equation of system (2.3)
and integrating with respect to x by parts, we have the identity

1
2
d

dt

∫

R

(
(Λqu)2 + (Λqux)

2
)
dx = −a

∫

R

(Λqu)Λq(umux)dx

−
∫

R

(
Λq+1u

)
Λq+1(uux)dx +

1
2

∫

R

(Λqux)Λq
(
u2
x

)
dx

+
∫

R

(Λqu)Λq(uux)dx − β

∫

R

ΛquxΛq
[
(ux)N

]
dx.

(4.9)
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We will estimate the terms on the right-hand side of (4.9) separately. For the first term, by
using the Cauchy-Schwartz inequality and Lemmas 4.1 and 4.2, we have

∫

R

(Λqu)Λq(umux)dx =
∫

R

(Λqu)[Λq(umux) − umΛqux]dx +
∫

R

(Λqu)umΛquxdx

≤ c‖u‖Hq

(
m‖u‖m−1

L∞ ‖ux‖L∞‖u‖Hq + ‖ux‖L∞‖u‖m−1
L∞ ‖u‖Hq

)

+
1
2
‖u‖m−1

L∞ ‖ux‖L∞‖Λqu‖2L2

≤ c‖u‖2Hq‖u‖m−1
L∞ ‖ux‖L∞ .

(4.10)

Using the above estimate to the second term yields

∫

R

(
Λq+1u

)
Λq+1(uux)dx ≤ c‖u‖2Hq+1‖ux‖L∞ . (4.11)

For the third term, using the Cauchy-Schwartz inequality and Lemma 4.1, we obtain

∫

R

(Λqux)Λq
(
u2
x

)
dx ≤ ‖Λqux‖L2

∥∥∥Λq
(
u2
x

)∥∥∥
L2

≤ c‖u‖Hq+1(‖ux‖L∞‖ux‖Hq + ‖ux‖L∞‖ux‖Hq)

≤ c‖u‖2Hq+1‖ux‖L∞ .

(4.12)

For the last term in (4.9), using Lemma 4.1 repeatedly results in

∣∣∣∣
∫

R

(Λqux)Λq(ux)Ndx

∣∣∣∣ ≤ ‖ux‖Hq

∥∥∥uN
x

∥∥∥
Hq

≤ c‖u‖2Hq+1‖ux‖N−1
L∞ .

(4.13)

It follows from (4.9) to (4.13) that there exists a constant c depending only on m,N and the
coefficients of (1.2) such that

1
2
d

dt

∫

R

[
(Λqu)2 + (Λqux)

2
]
dx ≤ c‖ux‖L∞‖u‖2Hq+1

(
1 + ‖u‖m−1

L∞

)
+ c‖u‖2Hq+1‖ux‖N−1

L∞ . (4.14)

Integrating both sides of the above inequality with respect to t results in inequality (4.6).
To estimate the norm of ut, we apply the operator (1 − ∂2x)

−1 to both sides of the first
equation of system (2.3) to obtain the equation

ut =
(
1 − ∂2x

)−1[−2kux + ∂x

(
− a

m + 1
um+1 +

1
2
∂2x

(
u2
)
− 1
2
u2
x

)
+ β∂x

[
(ux)N

]]
. (4.15)
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Applying (Λqut)Λq to both sides of (4.15) for q ∈ (0, s − 1] gives rise to

∫

R

(Λqut)
2dx =

∫

R

(Λqut)Λq−2
[
∂x

(
−2ku − a

m + 1
um+1 +

1
2
∂2x

(
u2
)
− 1
2
u2
x

)
+ β∂x

[
(ux)N

]]
dτ.

(4.16)

For the right-hand side of (4.16), we have

∫

R

(Λqut)Λq−2(−2kux)dx ≤ c‖ut‖Hq‖u‖Hq ,

∫

R

(Λqut)
(
1 − ∂2x

)−1
Λq∂x

(
− a

m + 1
um+1 − 1

2
u2
x

)
dx

≤ c‖ut‖Hq

(∫

R

(
1 + ξ2

)q−1 ×
[∫

R

[
− a

m + 1
ûm
(
ξ − η

)
û
(
η
) − 1

2
ûx

(
ξ − η

)
ûx

(
η
)]
dη

]2)1/2

≤ c‖ut‖Hq‖u‖H1‖u‖Hq+1

(
1 + ‖u‖m−1

L∞

)
.

(4.17)

Since

∫
(Λqut)

(
1 − ∂2x

)−1
Λq∂2x(uux)dx = −

∫
(Λqut)Λq(uux)dx +

∫
(Λqut)

(
1 − ∂2x

)−1
Λq(uux)dx,

(4.18)

using Lemma 4.1, ‖uux‖Hq ≤ c‖(u2)x‖Hq ≤ c‖u‖L∞‖u‖Hq+1 and ‖u‖L∞ ≤ ‖u‖H1 , we have

∫
(Λqut)Λq(uux)dx ≤ c‖ut‖Hq‖uux‖Hq

≤ c‖ut‖Hq‖u‖H1‖u‖Hq+1 ,

∫
(Λqut)

(
1 − ∂2x

)−1
Λq(uux)dx ≤ c‖ut‖Hq‖u‖H1‖u‖Hq+1 .

(4.19)

Using the Cauchy-Schwartz inequality and Lemma 4.1 yields

∣∣∣∣
∫

R

(Λqut)
(
1 − ∂2x

)−1
Λq∂x

(
uN
x

)
dx

∣∣∣∣ ≤ c‖ut‖Hq‖ux‖N−1
L∞ ‖u‖Hq+1 . (4.20)

Applying (4.17)–(4.20) into (4.16) yields the inequality

‖ut‖Hq ≤ c‖u‖Hq+1

(
1 +

(
1 + ‖u‖m−1

L∞

)
‖u‖H1 + ‖ux‖N−1

L∞

)
. (4.21)

This completes the proof of Lemma 4.3.
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Defining

φ(x) =

⎧
⎨
⎩
e1/(x

2−1), |x| < 1,

0, |x| ≥ 1,
(4.22)

and setting φε(x) = ε−1/4φ(ε−1/4x) with 0 < ε < 1/4 and uε0 = φε 
 u0, we know that uε0 ∈ C∞

for any u0 ∈ Hs(R) and s > 0.
It follows from Theorem 2.1 that for each ε the Cauchy problem

ut − utxx = ∂x

(
−2ku − a

m + 1
um+1

)
+
1
2
∂3x

(
u2
)
− 1
2
∂x
(
u2
x

)
+ β∂x

[
(ux)N

]
,

u(0, x) = uε0(x), x ∈ R,

(4.23)

has a unique solution uε(t, x) ∈ C∞([0, T);H∞).

Lemma 4.4. Under the assumptions of problem (4.23), the following estimates hold for any ε with
0 < ε < 1/4 and s > 0

‖uε0x‖L∞ ≤ c1‖u0x‖L∞ ,

‖uε0‖Hq ≤ c1, if q ≤ s,

‖uε0‖Hq ≤ c1ε
(s−q)/4, if q > s,

‖uε0 − u0‖Hq ≤ c1ε
(s−q)/4, if q ≤ s,

‖uε0 − u0‖Hs = o(1),

(4.24)

where c1 is a constant independent of ε.

The proof of this Lemma can be found in Lai and Wu [33].

Lemma 4.5. If u0(x) ∈ Hs(R) with s ∈ [1, 3/2] such that ‖u0x‖L∞ < ∞. Let uε0 be defined as in
system (4.23). Then there exist two positive constants T and c, which are independent of ε, such that
the solution uε of problem (4.23) satisfies ‖uεx‖L∞ ≤ c for any t ∈ [0, T).

Proof. Using notation u = uε and differentiating both sides of the first equation of problem
(4.23) or (4.15)with respect to x give rise to

utx +
1
2
∂2xu

2 − 1
2
u2
x = 2ku +

a

m + 1
um+1 − 1

2
u2 − βuN

x

−Λ−2
[
2ku +

a

m + 1
um+1 − 1

2
u2 +

1
2
u2
x − βuN

x

]
.

(4.25)
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Letting p > 0 be an integer and multiplying the above equation by (ux)
2p+1 and then integrat-

ing the resulting equation with respect to x yield the equality

1
2p + 2

d

dt

∫

R

(ux)2p+2dx +
p

2p + 2

∫

R

(ux)2p+3dx

=
∫

R

(ux)2p+1
(
2ku +

a

m + 1
um+1 − 1

2
u2 − βuN

x

)
dx

−
∫

R

(ux)2p+1Λ−2
[
2ku +

a

m + 1
um+1 − u2

2
+
1
2
u2
x − βuN

x

]
dx.

(4.26)

Applying the Hölder’s inequality yields

1
2p + 2

d

dt

∫

R

(ux)2p+2dx ≤
{
|2k|

(∫

R

|u|2p+2dx
)1/(2p+2)

+
a

m + 1

(∫

R

∣∣∣um+1
∣∣∣
2p+2

dx

)1/(2p+2)

+
1
2

(∫

R

∣∣∣u2
∣∣∣
2p+2

dx

)1/(2p+2)

+ β

(∫

R

∣∣∣uN
x

∣∣∣
2p+2

dx

)1/(2p+2)

+
(∫

R

|G|2p+2dx
)1/(2p+2)

}(∫

R

|ux|2p+2dx
)(2p+1)/(2p+2)

+
p

2p + 2
‖ux‖L∞

∫

R

|ux|2p+2dx,

(4.27)

or

d

dt

(∫

R

(ux)2p+2dx
)1/(2p+2)

≤ |2k|
(∫

R

|u|2p+2dx
)1/(2p+2)

+
a

m + 1

(∫

R

∣∣∣um+1
∣∣∣
2p+2

dx

)1/(2p+2)

+
1
2

(∫

R

∣∣∣u2
∣∣∣
2p+2

dx

)1/(2p+2)

+ β

(∫

R

∣∣∣uN
x

∣∣∣
2p+2

dx

)1/(2p+2)

+
(∫

R

|G|2p+2dx
)1/(2p+2)

+
p

2p + 2
‖ux‖L∞

(∫

R

|ux|2p+2dx
)1/(2p+2)

,

(4.28)

where

G = Λ−2
[
2ku +

a

m + 1
um+1 − u2

2
+
1
2
u2
x − βuN

x

]
. (4.29)
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Since ‖f‖Lp → ‖f‖L∞ as p → ∞ for any f ∈ L∞⋂L2, integrating both sides of the inequality
(4.28)with respect to t and taking the limit as p → ∞ result in the estimate

‖ux‖L∞ ≤ ‖u0x‖L∞ +
∫ t

0
c

[(
‖u‖L∞ +

∥∥∥u2
∥∥∥
L∞

+
∥∥∥um+1

∥∥∥
L∞

+ β‖ux‖NL∞ + ‖G‖L∞

)
+
1
2
‖ux‖2L∞

]
dτ.

(4.30)

Using the algebra property of Hs0(R) with s0 > 1/2 yields (‖uε‖H(1/2)+ means that there exists
a sufficiently small δ > 0 such that ‖uε‖(1/2)+ = ‖uε‖H1/2+δ)

‖G‖L∞ ≤ c‖G‖H(1/2)+

≤ c

∥∥∥∥∥Λ
−2
[
2ku +

a

m + 1
um+1 − u2

2
+
1
2
u2
x − βuN

x

]∥∥∥∥∥
H(1/2)+

≤ c
(
‖u‖H1 + ‖u‖2H1 + ‖u‖m+1

H1 +
∥∥∥Λ−2(u2

x)
∥∥∥
H(1/2)+

+
∥∥∥Λ−2(uN

x )
∥∥∥
H(1/2)+

)

≤ c
(
‖u‖H1 + ‖u‖2H1 + ‖u‖m+1

H1 +
∥∥∥u2

x

∥∥∥
H0

+
∥∥∥uN

x

∥∥∥
H0

)

≤ c
(
‖u‖H1 + ‖u‖2H1 + ‖u‖m+1

H1 + ‖ux‖L∞‖u‖H1 + ‖ux‖N−1
L∞ ‖u‖H1

)

≤ cec
∫ t
0 ‖ux‖N−1

L∞ dτ
(
1 + ‖ux‖L∞ + ‖ux‖N−1

L∞

)
,

(4.31)

in which Lemma 4.3 is used. Therefore, we get

∫ t

0
‖G‖L∞dτ ≤ c

∫ t

0
ec
∫τ
0 ‖ux‖N−1

L∞ dξ
(
1 + ‖ux‖L∞ + ‖ux‖N−1

L∞

)
dτ. (4.32)

From (4.30) and (4.32), one has

‖ux‖L∞ ≤ ‖u0x‖L∞ + c

∫ t

0

[
‖ux‖2L∞ + ‖ux‖NL∞ + ec

∫ t
0 ‖ux‖N−1

L∞ dτ

+ec
∫τ
0 ‖ux‖N−1

L∞ dξ
(
1 + ‖ux‖L∞ + ‖ux‖N−1

L∞

)]
dτ.

(4.33)

From Lemma 4.4, it follows from the contraction mapping principle that there is a
T > 0 such that the equation

‖W‖L∞ = ‖u0x‖L∞ + c

∫ t

0

[
‖W‖2L∞ + ‖W‖NL∞ + ec

∫ t
0 ‖W‖N−1

L∞ dτ

+ec
∫τ
0 ‖W‖N−1

L∞ dξ
(
1 + ‖W‖L∞ + ‖W‖N−1

L∞

)]
dτ

(4.34)

has a unique solution W ∈ C[0, T]. Using the Theorem presented at page 51 in [25] or
Theorem 2 in Section 1.1 presented in [37] yields that there are constants T > 0 and c > 0
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independent of ε such that ‖ux‖L∞ ≤ W(t) for arbitrary t ∈ [0, T], which leads to the
conclusion of Lemma 4.5.

Using Lemmas 4.3 and 4.5, notation uε = u and Gronwall’s inequality results in the
inequalities

‖uε‖Hq ≤ CTe
CT ,

‖uεt‖Hr ≤ CTe
CT ,

(4.35)

where q ∈ (0, s], r ∈ (0, s − 1] and CT depends on T . It follows from Aubin’s compactness
theorem that there is a subsequence of {uε}, denoted by {uεn}, such that {uεn} and their
temporal derivatives {uεnt} are weakly convergent to a function u(t, x) and its derivative ut in
L2([0, T],Hs) and L2([0, T],Hs−1), respectively. Moreover, for any real number R1 > 0, {uεn}
is convergent to the function u strongly in the space L2([0, T],Hq(−R1, R1)) for q ∈ [0, s) and
{uεnt} converges to ut strongly in the space L2([0, T], Hr(−R1, R1)) for r ∈ [0, s− 1]. Thus, we
can prove the existence of a weak solution to (2.2).

Proof of Theorem 2.2. From Lemma 4.5, we know that {uεnx} (εn → 0) is bounded in the
space L∞. Thus, the sequences {uεn} and {uεnx} are weakly convergent to u and ux in
L2[0, T],Hr(−R,R) for any r ∈ [0, s − 1), respectively. Therefore, u satisfies the equation

−
∫T

0

∫

R

u
(
gt − gxxt

)
dx dt =

∫T

0

∫

R

[(
2ku +

a

m + 1
um+1 +

1
2

(
u2
x

))
gx

−1
2
u2gxxx − β(ux)Ngx

]
dx dt,

(4.36)

with u(0, x) = u0(x) and g ∈ C∞
0 . Since X = L1([0, T] × R) is a separable Banach space

and {uεnx} is a bounded sequence in the dual space X∗ = L∞([0, T] × R) of X, there exists
a subsequence of {uεnx}, still denoted by {uεnx}, weakly star convergent to a function v in
L∞([0, T]×R). It derives from the {uεnx}weakly convergent to ux in L2([0, T]×R) that ux = v
almost everywhere. Thus, we obtain ux ∈ L∞([0, T] × R).
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