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1. Introduction and Preliminaries

The stability problem of functional equations is originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by
Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an
unbounded Cauchy difference.

Theorem 1.1 (Th. M. Rassias). Let f : E → E′ be a mapping from a normed vector space E into a
Banach space E′ subject to the inequality

∥
∥f

(
x + y

) − f(x) − f(y)∥∥ ≤ ε(‖x‖p + ∥
∥y

∥
∥p

)
(1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f(2nx)
2n

(1.2)
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exists for all x ∈ E, and L : E → E′ is the unique additive mapping which satisfies

∥
∥f(x) − L(x)∥∥ ≤ 2ε

2 − 2p
‖x‖p (1.3)

for all x ∈ E. If p < 0, then inequality (1.1) holds for x, y /= 0 and (1.3) for x /= 0. Also, if for each
x ∈ E the mapping f(tx) is continuous in t ∈ R, then L is linear.

It was shown by Gajda [5] as well as by Rassias and Šemrl [6] that one cannot prove
a Rassias’s type theorem when p = 1. The counter examples of Gajda [5] as well as of
Rassias and Šemrl [6] have stimulated several mathematicians to invent new definitions of
approximately additive or approximately linear mappings; compare Găvruţa [7] and Jung [8],
who among others studied the stability of functional equations. Theorem 1.1 provided a lot
of influence in the development of a generalization of the Hyers-Ulam stability concept. This
new concept is known as Hyers-Ulam-Rassias stability of functional equations (cf. the books of
Czerwik [9], Hyers et al. [10]).

Theorem 1.2 (Rassias [11–13]). Let X be a real normed linear space and Y a real Banach space.
Assume that f : X → Y is a mapping for which there exist constants θ ≥ 0 and p, q ∈ R such that
r = p + q /= 1 and f satisfies the functional inequality (Cauchy-Găvruţa-Rassias inequality)

∥
∥f

(
x + y

) − f(x) − f(y)∥∥ ≤ θ‖x‖p∥∥y∥∥q (1.4)

for all x, y ∈ X. Then there exists a unique additive mapping L : X → Y satisfying

∥
∥f(x) − L(x)∥∥ ≤ θ

|2r − 2| ‖x‖
r (1.5)

for all x ∈ X. If, in addition, f : X → Y is a mapping such that the transformation t → f(tx) is
continuous in t ∈ R for each fixed x ∈ X, then L is linear.

For the case r = 1, a counter example has been given by Găvruţa [14]. The stability
in Theorem 1.2 involving a product of different powers of norms is called Ulam-Găvruţa-
Rassias stability (see [15–17]). In 1994, a generalization of Theorems 1.1 and 1.2 was obtained
by Găvruţa [7], who replaced the bounds ε(‖x‖p + ‖y‖p) and θ‖x‖p‖y‖q by a general
control function ϕ(x, y). During past few years several mathematicians have published on
various generalizations and applications of generalized Hyers-Ulam stability to a number of
functional equations and mappings (see [16–44]).

Following the terminology of [45], a nonempty set G with a ternary operation [·, ·, ·] :
G×G×G → G is called a ternary groupoid and is denoted by (G, [·, ·, ·]). The ternary groupoid
(G, [·, ·, ·]) is called commutative if [x1, x2, x3] = [xσ(1), xσ(2), xσ(3)] for all x1, x2, x3 ∈ G and all
permutations σ of {1, 2, 3}.

If a binary operation ◦ is defined on G such that [x, y, z] = (x ◦y) ◦ z for all x, y, z ∈ G,
then we say that [·, ·, ·] is derived from ◦. We say that (G, [·, ·, ·]) is a ternary semigroup if the
operation [·, ·, ·] is associative, that is, if [[x, y, z], u, v] = [x, [y, z, u], v] = [x, y, [z, u, v]] holds
for all x, y, z, u, v ∈ G (see [46]).

A C∗-ternary algebra is a complex Banach space A, equipped with a ternary product
(x, y, z) �→ [x, y, z] of A3 into A, which are C-linear in the outer variables, conjugate C-linear
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in the middle variable, and associative in the sense that [x, y, [z,w, v]] = [x, [w, z, y], v] =
[[x, y, z], w, v], and satisfies ‖[x, y, z]‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖[x, x, x]‖ = ‖x‖3 (see [45, 47]).
Every left Hilbert C∗-module is a C∗-ternary algebra via the ternary product [x, y, z] :=
〈x, y〉z.

If a C∗-ternary algebra (A, [·, ·, ·]) has an identity, that is, an element e ∈ A such that
x = [x, e, e] = [e, e, x] for all x ∈ A, then it is routine to verify that A, endowed with x ◦ y :=
[x, e, y] and x∗ := [e, x, e], is a unital C∗-algebra. Conversely, if (A, ◦) is a unital C∗-algebra,
then [x, y, z] := x ◦ y∗ ◦ zmakes A into a C∗-ternary algebra.

A C-linear mappingH : A → B is called a C∗-ternary algebra homomorphism if

H
([
x, y, z

])
=
[
H(x),H

(
y
)
,H(z)

]
(1.6)

for all x, y, z ∈ A. If, in addition, the mappingH is bijective, then the mappingH : A → B is
called a C∗-ternary algebra isomorphism. A C-linear mapping δ : A → A is called a C∗-ternary
derivation if

δ
([
x, y, z

])
=
[
δ(x), y, z

]
+
[
x, δ

(
y
)
, z
]
+
[
x, y, δ(z)

]
(1.7)

for all x, y, z ∈ A (see [23, 45, 48]).
Let (A, ◦) be a C∗-algebra and [x, y, z] := x ◦ y∗ ◦ z for all x, y, z ∈ A. The mapping

H : A → A defined by H(x) = −ix is a C∗-ternary algebra isomorphism. Let a ∈ A with
a∗ = a. The mapping δa : A → A defined by δa(x) = i(ax − xa) is a C∗-ternary derivation.
There are some applications, although still hypothetical, in the fractional quantumHall effect,
the nonstandard statistics, supersymmetric theory, and Yang-Baxter equation (cf. [49–51]).

Throughout this paper, assume that p, d are nonnegative integers with p + d ≥ 3, and
that A and B are C∗-ternary algebras.

2. Stability of Homomorphisms in C∗-Ternary Algebras

The stability of homomorphisms in C∗-ternary algebras has been investigated in [31] (see
also [37]). In this note, we improve some results in [31]. For a given mapping f : A → B,we
define

Cμf
(
x1, . . . , xp, y1, . . . , yd

)
:= 2f

⎛

⎝

∑p

j=1 μxj

2
+

d∑

j=1

μyj

⎞

⎠ −
p∑

j=1

μf
(
xj
) − 2

d∑

j=1

μf
(
yj
)

(2.1)

for all μ ∈ T
1 := {λ ∈ C : |λ| = 1} and all x1, . . . , xp, y1, . . . , yd ∈ A.

One can easily show that a mapping f : A → B satisfies

Cμf
(
x1, . . . , xp, y1, . . . , yd

)
= 0 (2.2)
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for all μ ∈ T
1 and all x1, . . . , xp, y1, . . . , yd ∈ A if and only if

f
(
μx + λy

)
= μf(x) + λf

(
y
)

(2.3)

for all μ, λ ∈ T
1 and all x, y ∈ A.

We will use the following lemmas in this paper.

Lemma 2.1 (see [30]). Let f : A → B be an additive mapping such that f(μx) = μf(x) for all
x ∈ A and all μ ∈ T

1. Then the mapping f is C-linear.

Lemma 2.2. Let {xn}n, {yn}n and {zn}n be convergent sequences in A. Then the sequence
{[xn, yn, zn]}n is convergent in A.

Proof. Let x, y, z ∈ A such that

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z. (2.4)

Since

[
xn, yn, zn

] − [
x, y, z

]
=
[
xn − x, yn − y, zn − z

]
+
[
xn − x, yn, z

]

+
[
x, yn − y, zn

]
+
[
xn, y, zn − z

] (2.5)

for all n, we get

∥
∥
[
xn, yn, zn

] − [
x, y, z

]∥
∥ ≤ ‖xn − x‖

∥
∥yn − y

∥
∥‖zn − z‖ + ‖xn − x‖

∥
∥yn

∥
∥‖z‖

+ ‖x‖∥∥yn − y
∥
∥‖zn‖ + ‖xn‖

∥
∥y

∥
∥‖zn − z‖

(2.6)

for all n. So

lim
n→∞

[
xn, yn, zn

]
=
[
x, y, z

]
. (2.7)

This completes the proof.

Theorem 2.3 (see [31]). Let r and θ be nonnegative real numbers such that r /∈ [1, 3], and let f :
A → B be a mapping such that

∥
∥Cμf

(
x1, . . . , xp, y1, . . . , yd

)∥
∥
B
≤ θ

⎛

⎝
p∑

j=1

∥
∥xj

∥
∥r
A
+

d∑

j=1

∥
∥yj

∥
∥r
A

⎞

⎠, (2.8)

∥
∥f

(
[x, y, z]

) − [
f(x), f(y), f(z)

]∥
∥
B ≤ θ(‖x‖rA +

∥
∥y

∥
∥r
A + ‖z‖rA

)
(2.9)
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for all μ ∈ T
1 and all x, y, z, x1, . . . , xp, y1, . . . , yd ∈ A. Then there exists a unique C∗-ternary algebra

homomorphismH : A → B such that

∥
∥f(x) −H(x)

∥
∥
B ≤ 2r

(
p + d

)
θ

∣
∣2(p + 2d)r − (

p + 2d
)
2r
∣
∣
‖x‖rA (2.10)

for all x ∈ A.

In the following theorem we have an alternative result of Theorem 2.3.

Theorem 2.4. Let r, s, and θ be nonnegative real numbers such that 0 < r < 1, 0 < s < 3 (resp.,
r > 1, s > 3), and let d ≥ 2. Suppose that f : A → B is a mapping with f(0) = 0, satisfying (2.8)
and

∥
∥f

(
[x, y, z]

) − [
f(x), f(y), f(z)

]∥
∥
B ≤ θ(‖x‖sA +

∥
∥y

∥
∥s
A + ‖z‖sA

)
(2.11)

for all μ ∈ T
1 and all x, y, z ∈ A. Then there exists a unique C∗-ternary algebra homomorphism

H : A → B such that

∥
∥f(x) −H(x)

∥
∥
B ≤ dθ

2|d − dr | ‖x‖
r
A (2.12)

for all x ∈ A.

Proof. We prove the theorem in two cases.

Case 1. 0 < r < 1 and 0 < s < 3.
Letting μ = 1, x1 = · · · = xp = 0 and y1 = · · · = yd = x in (2.8), we get

∥
∥f(dx) − df(x)∥∥B ≤ dθ

2
‖x‖rA (2.13)

for all x ∈ A. If we replace x by dnx in (2.13) and divide both sides of (2.13) to dn+1, we get

∥
∥
∥
∥

1
dn+1

f
(
dn+1x

)
− 1
dn
f(dnx)

∥
∥
∥
∥
B

≤ θ

2
d(r−1)n‖x‖rA (2.14)

for all x ∈ A and all nonnegative integers n. Therefore,

∥
∥
∥
∥

1
dn+1

f
(
dn+1x

)
− 1
dm

f(dmx)
∥
∥
∥
∥
B

≤ θ

2

n∑

i=m

d(r−1)i‖x‖rA (2.15)
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for all x ∈ A and all nonnegative integers n ≥ m. From this it follows that the sequence
{(1/dn)f(dnx)} is Cauchy for all x ∈ A. Since B is complete, the sequence {(1/dn)f(dnx)}
converges. Thus one can define the mappingH : A → B by

H(x) := lim
n→∞

1
dn
f(dnx) (2.16)

for all x ∈ A.Moreover, lettingm = 0 and passing the limit n → ∞ in (2.15), we get (2.12). It
follows from (2.8) that

∥
∥
∥
∥
∥
∥
2H

⎛

⎝

∑p

j=1 μxj

2
+

d∑

j=1

μyj

⎞

⎠ −
p∑

j=1

μH
(
xj
) − 2

d∑

j=1

μH
(
yj
)
∥
∥
∥
∥
∥
∥
B

= lim
n→∞

1
dn

∥
∥
∥
∥
∥
∥
2f

⎛

⎝dn

∑p

j=1 μxj

2
+ dn

d∑

j=1

μyj

⎞

⎠ −
p∑

j=1

μf
(
dnxj

) − 2
d∑

j=1

μf
(
dnyj

)
∥
∥
∥
∥
∥
∥
B

≤ lim
n→∞

dnr

dn
θ

⎛

⎝
p∑

j=1

∥
∥xj

∥
∥r
A
+

d∑

j=1

∥
∥yj

∥
∥r
A

⎞

⎠ = 0

(2.17)

for all μ ∈ T
1 and all x1, . . . , xp, y1, . . . , yd ∈ A.Hence

2H

⎛

⎝

∑p

j=1 μxj

2
+

d∑

j=1

μyj

⎞

⎠ =
p∑

j=1

μH
(
xj
)
+ 2

d∑

j=1

μH
(
yj
)

(2.18)

for all μ ∈ T
1 and all x1, . . . , xp, y1, . . . yd ∈ A. SoH(λx+μy) = λH(x)+μH(y) for all λ, μ ∈ T

1

and all x, y ∈ A. Therefore by Lemma 2.1 the mappingH : A → B is C-linear.
It follows from Lemma 2.2 and (2.11) that

∥
∥H

([
x, y, z

]) − [
H(x),H

(
y
)
,H(z)

]∥
∥
B

= lim
n→∞

1
d3n

∥
∥f

([
dnx, dny, dnz

]) − [f(dnx), f
(
dny

)
, f(dnz)]

∥
∥
B

= θ lim
n→∞

dns

d3n

(‖x‖sA +
∥
∥y

∥
∥s
A + ‖z‖sA

)
= 0

(2.19)

for all x, y, z ∈ A. Thus

H
([
x, y, z

])
=
[
H(x),H

(
y
)
,H(z)

]
(2.20)

for all x, y, z ∈ A. Therefore the mappingH is a C∗-ternary algebra homomorphism.
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Now let T : A → B be another C∗-ternary algebra homomorphism satisfying (2.12).
Then we have

‖H(x) − T(x)‖B = lim
n→∞

1
dn

∥
∥f(dnx) − T(dnx)∥∥B ≤ dθ

2|d − dr | limn→∞
dnr

dn
‖x‖rA = 0 (2.21)

for all x ∈ A. So we can conclude thatH(x) = T(x) for all x ∈ A. This proves the uniqueness
ofH. Thus themappingH : A → B is a uniqueC∗-ternary algebra homomorphism satisfying
(2.12), as desired.

Case 2. r > 1 and s > 3.
Similar to the proof of Case 1, we conclude that the sequence {dnf(d−nx)} is a Cauchy

sequence in B. So we can define the mappingH : A → B by

H(x) := lim
n→∞

dnf
(
d−nx

)
(2.22)

for all x ∈ A. The rest of the proof is similar to the proof of Case 1.

Theorem 2.5 (see [31]). Let r and θ be nonnegative real numbers such that r /∈ [1/(p + d), 1], and
let f : A → B be a mapping such that

∥
∥Cμf(x1, . . . , xp, y1, . . . , yd)

∥
∥
B
≤ θ

p∏

j=1

∥
∥xj

∥
∥r
A
·

d∏

j=1

∥
∥yj

∥
∥r
A
, (2.23)

∥
∥f([x, y, z]) − [f(x), f(y), f(z)]

∥
∥
B ≤ θ‖x‖rA

∥
∥y

∥
∥r
A‖z‖rA (2.24)

for all μ ∈ T
1 and all x, y, z, x1, . . . , xp, y1, . . . , yd ∈ A. Then there exists a unique C∗-ternary algebra

homomorphismH : A → B such that

∥
∥f(x) −H(x)

∥
∥
B ≤ 2(p+d)rθ

∣
∣
∣2(p + 2d)(p+d)r − 2(p+d)r

(
p + 2d

)∣∣
∣
‖x‖(p+d)rA (2.25)

for all x ∈ A.

The following theorem shows that the mapping f : A → B in Theorem 2.5 is a C∗-
ternary algebra homomorphism when r > 0.



8 Abstract and Applied Analysis

Theorem 2.6. Let r, s, q, r1, . . . , rp, s1, . . . , sd, and θ be nonnegative real numbers such that r + s +
q /= 3 and rk > 0 (sk > 0) for some 1 ≤ k ≤ p, p ≥ 2 (1 ≤ k ≤ d, d ≥ 2).

Let f : A → B be a mapping satisfying

∥
∥Cμf

(
x1, . . . , xp, y1, . . . , yd

)∥
∥
B
≤ θ

p∏

j=1

∥
∥xj

∥
∥rj
A ·

d∏

j=1

∥
∥yj

∥
∥sj
A, (2.26)

∥
∥f([x, y, z]) − [f(x), f(y), f(z)]

∥
∥
B ≤ θ‖x‖rA

∥
∥y

∥
∥s
A‖z‖

q

A (2.27)

for all μ ∈ T
1 and all x, y, z, x1, . . . , xp, y1, . . . , yd ∈ A. Then the mapping f : A → B is aC∗-ternary

algebra homomorphism. (We put ‖ · ‖0A = 1).

Proof. Let rk > 0 for some 1 ≤ k ≤ p (we have similar proof when sk > 0 for some 1 ≤ k ≤ d).
We now assume, without loss of generality, that r1 > 0. Letting x1 = · · · = xp = y1 = · · · = yd =
0 in (2.26), we get that f(0) = 0. Letting x2 = 2x and x1 = x3 = · · · = xp = y1 = · · · = yd = 0 in
(2.26), we get

μf(2x) = 2f
(
μx

)
(2.28)

for all μ ∈ T
1 and all x ∈ A. Setting μ = 1 in (2.28), we get that f(2x) = 2f(x) for all x ∈ A.

Therefore,

f
(
μx

)
= μf(x), f

(
2μx

)
= 2μf(x) (2.29)

for all μ ∈ T
1 and all x ∈ A. If we put x2 = 2x and y1 = y and x1 = x3 = · · · = xp = y2 = · · · =

yd = 0 in (2.26), we get

2f
(
μx + μy

)
= μf(2x) + 2μf

(
y
)

(2.30)

for all μ ∈ T
1 and all x ∈ A. It follows from (2.29) and (2.30) that

f
(
μx + λy

)
= μf(x) + λf

(
y
)

(2.31)

for all λ, μ ∈ T
1 and all x, y ∈ A. Therefore, by Lemma 2.1 the mapping f : A → B is C-linear.

Let r + s + q > 3. Then it follows from (2.27) that

∥
∥f([x, y, z]) − [f(x), f(y), f(z)]

∥
∥
B

= lim
n→∞

8n
∥
∥
∥f

([ x

2n
,
y

2n
,
z

2n
])

−
[
f
( x

2n
)
, f

( y

2n
)
, f

( z

2n
)]∥

∥
∥
B

≤ θ‖x‖rA
∥
∥y

∥
∥s
A‖z‖

q

A lim
n→∞

(
8

2r+s+q

)n

= 0

(2.32)
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for all x, y, z ∈ A. Therefore,

f
([
x, y, z

])
=
[
f(x), f

(
y
)
, f(z)

]
(2.33)

for all x, y, z ∈ A. Similarly, for r + s + q < 3, we get (2.33).

In the rest of this section, assume thatA is a unital C∗-ternary algebra with norm ‖ · ‖A
and unit e, and that B is a unital C∗-ternary algebra with norm ‖ · ‖B and unit e′.

We investigate homomorphisms in C∗-ternary algebras associated with the functional
equation Cμf(x1, . . . , xp, y1, . . . , yd) = 0.

Theorem 2.7 (see [31]). Let r > 1 (r < 1) and θ be nonnegative real numbers, and let f : A → B
be a bijective mapping satisfying (2.8) such that

f
([
x, y, z

])
=
[
f(x), f

(
y
)
, f(z)

]
(2.34)

for all x, y, z ∈ A. If limn→∞((p + 2d)n/2n)f(2ne/(p + 2d)n) = e′(limn→∞(2n/(p + 2d)n)f((p +
2d)n/2n)e = e′), then the mapping f : A → B is a C∗-ternary algebra isomorphism.

In the following theorems we have alternative results of Theorem 2.7.

Theorem 2.8. Let r < 1, s < 2 and θ be nonnegative real numbers, and let f : A → B be a mapping
satisfying (2.8) and (2.11). If there exist a real number λ > 1 (0 < λ < 1) and an element x0 ∈ A
such that limn→∞(1/λn)f(λnx0) = e′(limn→∞λnf(x0/λn) = e′), then the mapping f : A → B is
a C∗-ternary algebra homomorphism.

Proof. By using the proof of Theorem 2.4, there exists a unique C∗-ternary algebra
homomorphismH : A → B satisfying (2.12). It follows from (2.12) that

H(x) = lim
n→∞

1
λn
f(λnx),

(

H(x) = lim
n→∞

λnf
( x

λn

))

(2.35)

for all x ∈ A and all real numbers λ > 1 (0 < λ < 1). Therefore, by the assumption we get that
H(x0) = e′. Let λ > 1 and limn→∞(1/λn)f(λnx0) = e′. It follows from (2.11) that

∥
∥[H(x),H(y),H(z)] − [H(x),H(y), f(z)]

∥
∥
B

=
∥
∥H[x, y, z] − [H(x),H(y), f(z)]

∥
∥
B

= lim
n→∞

1
λ2n

∥
∥f([λnx, λny, z]) − [f(λnx), f(λny), f(z)]

∥
∥
B

≤ θ lim
n→∞

1
λ2n

(
λns‖x‖sA + λns

∥
∥y

∥
∥s
A + ‖z‖sA

)
= 0

(2.36)

for all x ∈ A. So [H(x),H(y),H(z)] = [H(x),H(y), f(z)] for all x, y, z ∈ A. Letting x =
y = x0 in the last equality, we get f(z) = H(z) for all z ∈ A. Similarly, one can shows that
H(x) = f(x) for all x ∈ A when 0 < λ < 1 and limn→∞λnf(x0/λn) = e′. Therefore, the
mapping f : A → B is a C∗-ternary algebra homomorphism.
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3. Derivations on C∗-Ternary Algebras

Throughout this section, assume that A is a C∗-ternary algebra with norm ‖ · ‖A.
Park [31] proved theHyers-Ulam-Rassias stability andUlam-Găvruţa-Rassias stability

of derivations on C∗-ternary algebras for the following functional equation:

Cμf
(
x1, . . . , xp, y1, . . . , yd

)
= 0. (3.1)

For a given mapping f : A → A, let

Df
(
x, y, z

)
= f

([
x, y, z

]) − [
f(x), y, z

] − [
x, f

(
y
)
, z
] − [

x, y, f(z)
]

(3.2)

for all x, y, z ∈ A.

Theorem 3.1 (see [31]). Let r and θ be nonnegative real numbers such that r /∈ [1, 3], and let f :
A → A a mapping satisfying (2.8) and

∥
∥Df(x, y, z)

∥
∥
A ≤ θ(‖x‖rA +

∥
∥y

∥
∥r
A + ‖z‖rA

)
(3.3)

for all x, y, z ∈ A. Then there exists a unique C∗-ternary derivation δ : A → A such that

∥
∥f(x) − δ(x)∥∥A ≤ 2r

(
p + d

)

∣
∣2(p + 2d)r − (

p + 2d
)
2r
∣
∣
θ‖x‖rA (3.4)

for all x ∈ A.

Theorem 3.2 (see [31]). Let r and θ be nonnegative real numbers such that r /∈ [1/(p + d), 1], and
let f : A → A be a mapping satisfying (2.23) and

∥
∥Df(x, y, z)

∥
∥
A ≤ θ‖x‖rA

∥
∥y

∥
∥r
A‖z‖rA (3.5)

for all x, y, z ∈ A. Then there exists a unique C∗-ternary derivation δ : A → A such that

∥
∥f(x) − δ(x)∥∥A ≤ 2(p+d)r

∣
∣
∣2(p + 2d)(p+d)r − (

p + 2d
)
2(p+d)r

∣
∣
∣
θ‖x‖(p+d)rA (3.6)

for all x ∈ A.

In the following theorems we generalize and improve the results in Theorems 3.1 and
3.2.
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Theorem 3.3. Let ϕ : Ap+d → [0,∞) and ψ : A3 → [0,∞) be functions such that

ϕ̃(x) :=
∞∑

n=0

γ−nϕ
(
γnx, . . . , γnx

)
<∞, (3.7)

lim
n→∞

γ−nϕ
(
γnx1, . . . , γ

nxp, γ
ny1, . . . , γ

nyd
)
= 0, (3.8)

lim
n→∞

γ−3nψ
(
γnx, γny, γnz

)
= 0, lim

n→∞
γ−2nψ

(
γnx, γny, z

)
= 0 (3.9)

for all x, y, z, x1, . . . , xp, y1, . . . , yd ∈ A where γ = (p + 2d)/2. Suppose that f : A → A is a
mapping satisfying

∥
∥Cμf

(
x1, . . . , xp, y1, . . . , yd

)∥
∥
A
≤ ϕ(x1, . . . , xp, y1, . . . , yd

)
, (3.10)

∥
∥Df(x, y, z)

∥
∥
A ≤ ψ(x, y, z) (3.11)

for all μ ∈ T
1 and all x, y, z, x1, . . . , xp, y1, . . . , yd ∈ A. Then the mapping f : A → A is a C∗-

ternary derivation.

Proof. Let us assume μ = 1 and x1 = · · · = xp = y1 = · · · = yd = x in (3.10). Then we get

∥
∥
∥
∥2f

(
p + 2d

2
x

)

− (p + 2d)f(x)
∥
∥
∥
∥
A

≤ ϕ(x, . . . , x) (3.12)

for all x ∈ A. If we replace x in (3.12) by γnx and divide both sides of (3.12) to γn+1, then we
get

∥
∥
∥
∥

1
γn+1

f(γn+1x) − 1
γn
f(γnx)

∥
∥
∥
∥
A

≤ 1
2γn+1

ϕ
(
γnx, . . . , γnx

)
(3.13)

for all x ∈ A and all integers n ≥ 0. Hence

∥
∥
∥
∥

1
γn+1

f(γn+1x) − 1
γm

f(γmx)
∥
∥
∥
∥
A

≤ 1
2γ

n∑

i=m

1
γi
ϕ
(
γix, . . . , γ ix

)
(3.14)

for all x ∈ A and all integers n ≥ m ≥ 0. From this it follows that the sequence {(1/γn)f(γnx)}
is Cauchy for all x ∈ A. Since A is complete, the sequence {(1/γn)f(γnx)} converges. Thus
we can define the mapping δ : A → A by

δ(x) := lim
n→∞

1
γn
f
(
γnx

)
(3.15)

for all x ∈ A.Moreover, lettingm = 0 and passing the limit n → ∞ in (3.14), we get

∥
∥δ(x) − f(x)∥∥A ≤ 1

2γ
ϕ̃(x) (3.16)
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for all x ∈ A. It follows from (3.8) and (3.10) that

∥
∥Cμδ

(
x1, . . . , xp, y1, . . . , yd

)∥
∥
A

= lim
n→∞

1
γn

∥
∥Cμf(γnx1, . . . , γnxp, γny1, . . . , γnyd

)∥
∥
A

≤ lim
n→∞

1
γn
ϕ
(
γnx1, . . . , γ

nxp, γ
ny1, . . . , γ

nyd
)
= 0

(3.17)

for all μ ∈ T
1 and all x, y, z, x1, . . . , xp, y1, . . . , yd ∈ A. Hence

2δ

⎛

⎝

∑p

j=1 μxj

2
+

d∑

j=1

μyj

⎞

⎠ =
p∑

j=1

μδ
(
xj
)
+ 2

d∑

j=1

μδ
(
yj
)

(3.18)

for all μ ∈ T
1 and all x1, . . . , xp, y1, . . . , yd ∈ A. So δ(λx + μy) = λδ(x) + μδ(y) for all λ, μ ∈ T

1

and all x, y ∈ A. Therefore, by Lemma 2.1 the mapping δ : A → A is C-linear.
It follows from (3.9) and (3.11) that

∥
∥Dδ(x, y, z)

∥
∥
A = lim

n→∞
1
γ3n

∥
∥Df(γnx, γny, γnz)

∥
∥
A ≤ lim

n→∞
1
γ3n

ψ
(
γnx, γny, γnz

)
= 0 (3.19)

for all x, y, z ∈ A. Hence

δ
([
x, y, z

])
=
[
δ(x), y, z

]
+
[
x, δ

(
y
)
, z
]
+
[
x, y, δ(z)

]
(3.20)

for all x, y, z ∈ A. So the mapping δ : A → A is a C∗-ternary derivation.
It follows from (3.9) and (3.11)

∥
∥δ[x, y, z] − [δ(x), y, z] − [x, δ(y), z] − [x, y, f(z)]

∥
∥
A

= lim
n→∞

1
γ2n

∥
∥f

[
γnx, γny, z

] − [
f
(
γnx

)
, γny, z

]

−[γnx, f(γny), z] − [γnx, γny, f(z)]
∥
∥
A

≤ lim
n→∞

1
γ2n

ψ
(
γnx, γny, z

)
= 0

(3.21)

for all x, y, z ∈ A. Thus

δ
[
x, y, z

]
=
[
δ(x), y, z

]
+
[
x, δ

(
y
)
, z
]
+
[
x, y, f(z)

]
(3.22)

for all x, y, z ∈ A. Hence we get from (3.20) and (3.22) that

[
x, y, δ(z)

]
=
[
x, y, f(z)

]
(3.23)
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for all x, y, z ∈ A. Letting x = y = f(z) − δ(z) in (3.23), we get

∥
∥f(z) − δ(z)∥∥3

A =
∥
∥[f(z) − δ(z), f(z) − δ(z), f(z) − δ(z)]∥∥A = 0 (3.24)

for all z ∈ A. Hence f(z) = δ(z) for all z ∈ A. So the mapping f : A → A is a C∗-ternary
derivation, as desired.

Corollary 3.4. Let r < 1, s < 2, and θ be nonnegative real numbers, and let f : A → A be a
mapping satisfying (2.8) and

∥
∥Df(x, y, z)

∥
∥
A ≤ θ(‖x‖sA +

∥
∥y

∥
∥s
A + ‖z‖sA

)
(3.25)

for all x, y, z ∈ A. Then the mapping f : A → A is a C∗-ternary derivation.

Proof. Define

ϕ
(
x1, . . . , xp, y1, . . . , yd

)
= θ

⎛

⎝
p∑

j=1

∥
∥xj

∥
∥r
A
+

d∑

j=1

∥
∥yj

∥
∥r
A

⎞

⎠,

ψ
(
x, y, z

)
= θ

(‖x‖sA +
∥
∥y

∥
∥s
A + ‖z‖sA

)

(3.26)

for all x, y, z, x1, . . . , xp, y1, . . . , yd ∈ A, and apply Theorem 3.3.

Corollary 3.5. Let r, s, and θ be nonnegative real numbers such that s, r(p + d) < 1, and let f :
A → A be a mapping satisfying (2.23) and

∥
∥Df(x, y, z)

∥
∥
A ≤ θ‖x‖sA

∥
∥y

∥
∥s
A‖z‖sA (3.27)

for all x, y, z ∈ A. Then the mapping f : A → A is a C∗-ternary derivation.

Proof. Define

ϕ
(
x1, . . . , xp, y1, . . . , yd

)
= θ

p∏

j=1

∥
∥xj

∥
∥r
A

d∏

j=1

∥
∥yj

∥
∥r
A
,

ψ
(
x, y, z

)
= θ‖x‖sA

∥
∥y

∥
∥s
A‖z‖sA

(3.28)

for all x, y, z, x1, . . . , xp, y1, . . . , yd ∈ A, and apply Theorem 3.3.
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Theorem 3.6. Let ϕ : Ap+d → [0,∞) and ψ : A3 → [0,∞) be functions such that

ϕ̃(x) :=
∞∑

n=1

γnϕ

(
x

γn
, . . . ,

x

γn

)

<∞,

lim
n→∞

γnϕ

(
x1
γn
, . . . ,

xp

γn
,
y1
γn
, . . . ,

yd
γn

)

= 0,

lim
n→∞

γ3nψ

(
x

γn
,
y

γn
,
z

γn

)

= 0, lim
n→∞

γ2nψ

(
x

γn
,
y

γn
, z

)

= 0

(3.29)

for all x, y, z, x1, . . . , xp, y1, . . . , yd ∈ A where γ = (p + 2d)/2. Suppose that f : A → A is a
mapping satisfying (3.10) and (3.11). Then the mapping f : A → A is a C∗-ternary derivation.

Proof. If we replace x in (3.12) by x/γn+1 and multiply both sides of (3.12) by γn, then we get

∥
∥
∥
∥γ

n+1f

(
x

γn+1

)

− γnf
(
x

γn

)∥
∥
∥
∥
A

≤ γn

2
ϕ

(
x

γn+1
, . . . ,

x

γn+1

)

(3.30)

for all x ∈ A and all integers n ≥ 0. Hence

∥
∥
∥
∥γ

n+1f

(
x

γn+1

)

− γmf
(
x

γm

)∥
∥
∥
∥
A

≤ 1
2γ

n+1∑

i=m+1

γiϕ

(
x

γi
, . . . ,

x

γ i

)

(3.31)

for all x ∈ A and all integers n ≥ m ≥ 0. From this it follows that the sequence {γnf(x/γn)} is
Cauchy for all x ∈ A. SinceA is complete, the sequence {γnf(x/γn)} converges. Thus we can
define the mapping δ : A → A by

δ(x) := lim
n→∞

γnf

(
x

γn

)

(3.32)

for all x ∈ A. The rest of the proof is similar to the proof of Theorem 3.3, and we omit it.

Corollary 3.7. Let r, s, and θ be nonnegative real numbers such that s, r(p + d) > 1, and let f :
A → A be a mapping satisfying (2.23) and (3.27). Then the mapping f : A → A is a C∗-ternary
derivation.
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des Sciences Mathématiques, vol. 131, no. 1, pp. 89–98, 2007.

[39] H.-M. Kim and J. M. Rassias, “Generalization of Ulam stability problem for Euler-Lagrange quadratic
mappings,” Journal of Mathematical Analysis and Applications, vol. 336, no. 1, pp. 277–296, 2007.

[40] Th. M. Rassias, “The problem of S. M. Ulam for approximately multiplicative mappings,” Journal of
Mathematical Analysis and Applications, vol. 246, no. 2, pp. 352–378, 2000.

[41] Th. M. Rassias, “On the stability of functional equations in Banach spaces,” Journal of Mathematical
Analysis and Applications, vol. 251, no. 1, pp. 264–284, 2000.

[42] Th. M. Rassias, “On the stability of functional equations and a problem of Ulam,” Acta Applicandae
Mathematicae, vol. 62, no. 1, pp. 23–130, 2000.

[43] Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2003.
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