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Let 3 ≤ n, and 3 ≤ k ≤ n be positive integers. Let A be an algebra and let X be an A-
bimodule. A C-linear mapping d : A → X is called a generalized (n, k)-derivation if there exists
a (k − 1)-derivation δ : A → X such that d(a1a2 · · ·an) = δ(a1)a2 · · ·an + a1δ(a2)a3 · · ·an +
· · · + a1a2 · · ·ak−2δ(ak−1)ak · · ·an + a1a2 · · ·ak−1d(ak)ak+1 · · ·an + a1a2 · · ·akd(ak+1)ak+2 · · ·an +
a1a2 · · ·ak+1d(ak+2)ak+3 · · ·an + · · · + a1 · · ·an−1d(an) for all a1, a2, . . . , an ∈ A. The main purpose
of this paper is to prove the generalized Hyers-Ulam stability of the generalized (n, k)-derivations.
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1. Introduction

It seems that the stability problem of functional equations introduced by Ulam [1].
Let (G1, ·) be a group and let (G2, ∗) be a metric group with the metric d(·, ·). Given ε > 0, does there
exist a δ > 0, such that if a mapping h : G1 → G2 satisfies the inequality d(h(x ·y), h(x) ∗h(y)) <
δ, for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε, for
all x ∈ G1? In other words, under what condition does there exist a homomorphism near
an approximate homomorphism? The concept of stability for functional equations arises
when one replaces the functional equation by an inequality which acts as a perturbation of
the equation. In 1941, Hyers [2] gave the first affirmative answer to the question of Ulam
for Banach spaces E and E′. Let f : E → E′ be a mapping between Banach spaces such
that

∥
∥f
(

x + y
)

− f(x) − f
(

y
)∥
∥ ≤ δ (1.1)
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for all x, y ∈ E, and for some δ > 0. Then there exists a unique additive mapping T : E → E′

such that

∥
∥f(x) − T(x)

∥
∥ ≤ δ (1.2)

for all x ∈ E. By the seminal paper of Th. M. Rassias [3] and work of Gadja [4], if one assumes
that E and E′ are real normed spaces with E′ complete, f : E → E′ is a mapping such that for
each fixed x ∈ E the mapping t � f(tx) is continuous in real t for each fixed x in E, and that
there exists δ ≥ 0 and p /= 1 such that

∥
∥f
(

x + y
)

− f(x) − f
(

y
)∥
∥ ≤ δ

(

‖x‖p +
∥
∥y
∥
∥
p) (1.3)

for all x, y ∈ E. Then there exists a unique linear map T : E → E′ such that

∥
∥f(x) − T(x)

∥
∥ ≤ 2δ‖x‖p

|2p − 2| (1.4)

for all x ∈ E.
On the other hand J. M. Rassias [5] generalized the Hyers stability result by presenting

a weaker condition controlled by a product of different powers of norms. If it is assumed that
there exist constants Θ ≥ 0 and p1, p2 ∈ R such that p = p1 + p2 /= 1, and f : E → E′ is a map
from a norm space E into a Banach space E′ such that the inequality

∥
∥f
(

x + y
)

− f(x) − f
(

y
)∥
∥ ≤ Θ‖x‖p1

∥
∥y
∥
∥
p2 (1.5)

for all x, y ∈ E, then there exists a unique additive mapping T : E → E′ such that

∥
∥f(x) − T(x)

∥
∥ ≤ Θ

2 − 2p
‖x‖p (1.6)

for all x ∈ E. If in addition for every x ∈ E, f(tx) is continuous in real t for each fixed x, then
T is linear.

Suppose (G,+) is an abelian group, E is a Banach space, and that the so-called
admissible control function ϕ : G ×G → R satisfies

ϕ̃
(

x, y
)

:= 2−1
∞∑

n=0

2−nϕ
(

2nx, 2ny
)

< ∞ (1.7)

for all x, y ∈ G. If f : G → E is a mapping with

∥
∥f
(

x + y
)

− f(x) − f
(

y
)∥
∥ ≤ ϕ

(

x, y
)

(1.8)

for all x, y ∈ G, then there exists a uniquemapping T : G → E such that T(x+y) = T(x)+T(y)
and ‖f(x) − T(x)‖ ≤ ϕ̃(x, x), for all x, y ∈ G (see [6]).
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Generalized derivations first appeared in the context of operator algebras [7]. Later,
these were introduced in the framework of pure algebra [8, 9].

Definition 1.1. LetA be an algebra and let X be anA-bimodule. A linear mapping d : A → X
is called

(i) derivation if d(ab) = d(a)b + ad(b), for all a, b ∈ A;
(ii) generalized derivation if there exists a derivation (in the usual sense) δ : A → X

such that d(ab) = ad(b) + δ(a)b, for all a, b ∈ A.

Every right multiplier (i.e., a linear map h on A satisfying h(ab) = ah(b), for all a, b ∈
A) is a generalized derivation.

Definition 1.2. Let n ≥ 2, k ≥ 3 be positive integers. Let A be an algebra and let X be an
A-bimodule. A C-linear mapping d : A → X is called

(i) n-derivation if

d(a1a2 · · ·an) = d(a1)a2 · · ·an + a1d(a2)a3 · · ·an + · · · + a1 · · ·an−1d(an) (1.9)

for all a1, a2, . . . , an ∈ A;
(ii) generalized (n, k)-derivation if there exists a (k − 1)-derivation δ : A → X such

that

d(a1a2 · · ·an) = δ(a1)a2 · · ·an + a1δ(a2)a3 · · ·an + · · · + a1a2 · · ·ak−2δ(ak−1)ak · · ·an

+ a1a2 · · ·ak−1d(ak)ak+1 · · ·an + a1a2 · · ·akd(ak+1)ak+2 · · ·an

+ a1a2 · · ·ak+1d(ak+2)ak+3 · · ·an + · · · + a1 · · ·an−1d(an)

(1.10)

for all a1, a2, . . . , an ∈ A.

By Definition 1.2, we see that a generalized (2, 3)-derivation is a generalized derivation.
For instance, let A be a Banach algebra. Then we take

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 A A A
0 0 A A
0 0 0 A
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (1.11)

T is an algebra equipped with the usual matrix-like operations. It is easy to check that every
linear map from A into A is a (5, 3)-derivation, but there are linear maps on T which are not
generalized derivations.

The so-called approximate derivations were investigated by Jun and Park [10].
Recently, the stability of derivations have been investigated by some authors; see [10–13]
and references therein. Moslehian [14] investigated the generalized Hyers-Ulam stability of
generalized derivations from a unital normed algebra A to a unit linked Banach A-bimodule
(see also [15]).
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In this paper, we investigate the generalized Hyers-Ulam stability of the generalized
(n, k)-derivations.

2. Main Result

In this section, we investigate the generalized Hyers-Ulam stability of the generalized
(n, k)-derivations from a unital Banach algebra A into a unit linked Banach A-bimodule.
Throughout this section, assume that A is a unital Banach algebra, X is unit linked Banach
A-bimodule, and suppose that 3 ≤ n, and 3 ≤ k ≤ n.

We need the following lemma in the main results of the present paper.

Lemma 2.1 (see [16]). Let U,V be linear spaces and let f : U → V be an additive mapping such
that f(λx) = λf(x), for all x ∈ U and all λ ∈ T

1 := {λ ∈ C; |λ| = 1}. Then the mapping f is C-linear.

Nowwe prove the generalized Hyers-Ulam stability of generalized (n, k)-derivations.

Theorem 2.2. Suppose f : A → X is a mapping with f(0) = 0 for which there exists a map
g : A → X with g(0) = 0 and a function ϕ : An+2 → R

+ such that

max
{∥
∥f(λa + λb + a1a2 · · ·an) − λf(a) − λf(b) − a1 · · ·ak−1f(ak)ak+1 · · ·an

− a1 · · ·akf(ak+1)ak+2 · · ·an − · · · − a1 · · ·an−1f(an)

−g(a1)a2 · · ·an − a1g(a2)a3 · · ·an − · · · − a1a2 · · ·ak−2g(ak−1)ak · · ·an

∥
∥,

∥
∥g(λa + λb + a1a2 · · ·an) − λg(a) − λg(b) − g(a1)a2 · · ·an

−a1g(a2)a3 · · ·an − · · · − a1 · · ·ak−2g(ak−1)ak · · ·an

∥
∥
}

≤ ϕ(a, b, a1, a2, . . . , an),

(2.1)

ϕ̃(a, b, a1, a2, . . . , an) := 2−1
∞∑

i=0

2−iϕ
(

2ia, 2ib, 2ia1, . . . , 2ian

)

< ∞ (2.2)

for all a, b, a1, a2, . . . , an ∈ A and all λ ∈ T
1. Then there exists a unique generalized (n, k)-derivation

d : A → X such that

∥
∥f(a) − d(a)

∥
∥ ≤ ϕ̃(a, a, 0, 0, 0, . . . , 0) (2.3)

for all a ∈ A.

Proof. By (2.1) we have

∥
∥f(λa + λb + a1a2 · · ·an) − λf(a) − λf(b) − a1 · · ·ak−1f(ak)ak+1 · · ·an

− a1 · · ·akf(ak+1)ak+2 · · ·an − · · · − a1 · · ·an−1f(an)

−g(a1)a2 · · ·an − a1g(a2)a3 · · ·an − · · · − a1a2 · · ·ak−2g(ak−1)ak · · ·an

∥
∥

≤ ϕ(a, b, a1, a2, . . . , an),

(2.4)
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∥
∥g(λa + λb + a1a2 · · ·an) − λg(a) − λg(b) − g(a1)a2 · · ·an

−a1g(a2)a3 · · ·an − · · · − a1 · · ·ak−2g(ak−1)ak · · ·an

∥
∥

≤ ϕ(a, b, a1, a2, . . . , an)

(2.5)

for all a, b, a1, a2, . . . , an ∈ A and all λ ∈ T
1. Setting a1, a2, . . . , an = 0 and λ = 1 in (2.4), we

have

∥
∥f(a + b) − f(a) − f(b)

∥
∥ ≤ ϕ(a, b, 0, 0, . . . , 0) (2.6)

for all a, b ∈ A. One can use induction on n to show that

∥
∥2−mf(2ma) − f(a)

∥
∥ ≤ 2−1

m−1∑

i=0

2−iϕ
(

2ia, 2ia, 0, 0, . . . , 0
)

(2.7)

for all n ∈ N and all a ∈ A, and that

∥
∥
∥2−mf(2ma) − 2−lf

(

2la
)∥
∥
∥ ≤ 2−1

m−1∑

i=l

2−iϕ
(

2ia, 2ia, 0, 0 . . . , 0
)

(2.8)

for allm > l and all a ∈ A. It follows from the convergence (2.2) that the sequence 2−mf(2ma)
is Cauchy. Due to the completeness of X, this sequence is convergent. Set

d(a) := lim
m→∞

2−mf(2ma). (2.9)

Putting a1, a2, . . . , an = 0 and replacing a, b by 2ma, 2mb, respectively, in (2.4), we get

∥
∥2−mf(2m(λa + λb)) − 2−mλf(2ma) − 2−mλf(2mb)

∥
∥ ≤ 2−mϕ(2ma, 2mb, 0, 0, . . . , 0) (2.10)

for all a, b ∈ A and all λ ∈ T
1. Taking the limit as m → ∞ we obtain

d(λa + λb) = λd(a) + λd(b) (2.11)

for all a, b ∈ A and all λ ∈ T
1. So by Lemma 2.1, the mapping d is C-linear.

Using (2.5), (2.2), and the above technique, we get

δ(a) := lim
m→∞

2−mg(2ma),

δ(λa + λb) = λδ(a) + δ(b)
(2.12)
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for all a, b ∈ A and all λ ∈ T
1. Hence by Lemma 2.1, δ is C-linear. Moreover, it follows from

(2.7) and (2.9) that ‖f(a) − d(a)‖ ≤ ϕ̃(a, a, 0, 0, . . . , 0), for all a ∈ A. It is known that the
additive mapping d satisfying (2.3) is unique [17]. Putting λ = 1, a = b = 0, and replacing
a1, a2, . . . , an by 2ma1, 2ma2, . . . , 2man, respectively, in (2.4), we get

∥
∥
∥f(2nma1a2 · · ·an) − 2(n−1)ma1 · · ·ak−1f(2mak)ak+1 · · ·an − 2(n−1)ma1 · · ·akf(2mak+1)ak+2 · · ·an

− · · · − 2(n−1)ma1 · · ·an−1f(2man) − 2(n−1)mg(2ma1)a2 · · ·an

−2(n−1)ma1g(2ma2)a3 · · ·an − · · · − 2(n−1)ma1a2 · · ·ak−2g(2mak−1)ak · · ·an

∥
∥
∥

≤ ϕ(0, 0, 2ma1, 2ma2, . . . , 2man),
(2.13)

whence
∥
∥2−nmf(2nma1a2 · · ·an) − 2−ma1 · · ·ak−1f(2mak)ak+1 · · ·an

− 2−ma1 · · ·akf(2mak+1)ak+2 · · ·an − · · · − 2−ma1 · · ·an−1f(2man) − 2−mg(2ma1)a2 · · ·an

−2−ma1g(2ma2)a3 · · ·an − · · · − 2−ma1a2 · · ·ak−2g(2mak−1)ak · · ·an

∥
∥

≤ 2−nmϕ(0, 0, 2ma1, 2ma2, . . . , 2man)
(2.14)

for all a1, a2, . . . , an ∈ A. By (2.9), limm→∞ 2−nmf(2nma) = d(a) and by the convergence of
series (2.2), limm→∞ 2−nmϕ(0, 0, 2ma1, 2ma2, . . . , 2man) = 0. Let m tend to ∞ in (2.14). Then

d(a1a2 · · ·an) = a1 · · ·ak−1d(ak)ak+1 · · ·an + a1 · · ·akd(ak+1)ak+2 · · ·an

+ · · · + a1 · · ·an−1d(an) + δ(a1)a2 · · ·an + a1δ(a2)a3 · · ·an

+ · · · + a1a2 · · ·ak−2δ(ak−1)ak · · ·an

(2.15)

for all a1, a2, . . . , an ∈ A.
Next we claim that δ is a (k − 1)-derivation. Putting λ = 1, a = b = 0, and replacing

a1, a2, . . . , an by 2ma1, 2ma2, . . . , 2man, respectively, in (2.5), we get

∥
∥
∥g(2nma1a2 · · ·an) − 2(n−1)mg(2ma1)a2 · · ·an − 2(n−1)ma1g(2ma2)a3 · · ·an

−2(n−1)ma1a2g(2ma3)a4 · · ·an − · · · − 2(n−1)ma1 · · ·ak−2g(2mak−1)ak · · ·an

∥
∥
∥

≤ ϕ(0, 0, 2ma1, 2ma2, . . . , 2man),

(2.16)

whence
∥
∥2−nmg(2nma1a2 · · ·an) − 2−mg(2ma1)a2 · · ·an − 2−ma1g(2ma2)a3 · · ·an

−2−ma1a2g(2ma3)a4 · · ·an − · · · − 2−ma1 · · ·ak−2g(2mak−1)ak · · ·an

∥
∥

≤ 2−nmϕ(0, 0, 2ma1, 2ma2, . . . , 2man)

(2.17)



Abstract and Applied Analysis 7

for all a1, a2, . . . , an ∈ A. Let m tends to ∞ in (2.17). Then

δ(a1a2 · · ·ak−1akak+1 · · ·an) = δ(a1)a2 · · ·an + a1δ(a2)a3 · · ·an + a1a2δ(a3)a4 · · ·an

+ · · · + a1a2 · · ·ak−2δ(ak−1)ak · · ·an

(2.18)

for all a1, a2, . . . , an ∈ A.
Setting ak = ak+1 = · · · = an = 1 in (2.18). Hence the mapping δ is (k−1)-derivation.

Corollary 2.3. Suppose f : A → X is a mapping with f(0) = 0 for which there exists constant
θ ≥ 0, p < 1 and a map g : A → X with g(0) = 0 such that

max
{∥
∥f(λa + λb + a1a2 · · ·an) − λf(a) − λf(b) − a1 · · ·ak−1f(ak)ak+1 · · ·an

− a1 · · ·akf(ak+1)ak+2 · · ·an − · · · − a1 · · ·an−1f(an)

−g(a1)a2 · · ·an − a1g(a2)a3 · · ·an − · · · − a1a2 · · ·ak−2g(ak − 1)ak · · ·an

∥
∥,

∥
∥g(λa + λb + a1a2 · · ·an) − λg(a) − λg(b) − g(a1)a2 · · ·an

−a1g(a2)a3 · · ·an − · · · − a1 · · ·ak−2g(ak−1)ak · · ·an

∥
∥
}

≤ θ

(

‖a‖p + ‖b‖p +
n∑

i=1

‖ai‖p
)

(2.19)

for all a1, a2, . . . , an ∈ A and all λ ∈ T. Then there exists a unique generalized (n, k)-derivation
d : A → X such that

∥
∥f(a) − d(a)

∥
∥ ≤ θ‖a‖p

1 − 2p−1
(2.20)

for all a ∈ A.

Proof. Put ϕ(a, b, a1, a2, . . . , an) = θ(‖a‖p + ‖b‖p +
∑n

i=1‖ai‖p) in Theorem 2.2.

Corollary 2.4. Suppose f : A → X is a mapping with f(0) = 0 for which there exists constant
θ ≥ 0 and a map g : A → X with g(0) = 0 such that

max
{∥
∥f(λa + λb + a1a2 · · ·an) − λf(a) − λf(b) − a1 · · ·ak−1f(ak)ak+1 · · ·an

− a1 · · ·akf(ak+1)ak+2 · · ·an − · · · − a1 · · ·an−1f(an)

−g(a1)a2 · · ·an − a1g(a2)a3 · · ·an − · · · − a1a2 · · ·ak−2g(ak−1)ak · · ·an

∥
∥,

∥
∥g(λa + λb + a1a2 · · ·an) − λg(a) − λg(b) − g(a1)a2 · · ·an

−a1g(a2)a3 · · ·an − · · · − a1 · · ·ak−2g(ak−1)ak · · ·an

∥
∥
}

≤ θ

(2.21)
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for all a1, a2, . . . , an ∈ A. Then there exists a unique generalized (n, k)-derivation d : A → X such
that

∥
∥f(a) − d(a)

∥
∥ ≤ θ (2.22)

for all a ∈ A.

Proof. Letting p = 0 in Corollary 2.3, we obtain the above result of Corollary 2.4.
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[6] P. Găvruţa, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive
mappings,” Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431–436, 1994.

[7] M. Mathieu, Ed., Elementary Operators & Applications, World Scientific, River Edge, NJ, USA, 1992,
Proceedings of the International Workshop.

[8] F. Wei and Z. Xiao, “Generalized Jordan derivations on semiprime rings,” Demonstratio Mathematica,
vol. 40, no. 4, pp. 789–798, 2007.

[9] B. Hvala, “Generalized derivations in rings,” Communications in Algebra, vol. 26, no. 4, pp. 1147–1166,
1998.

[10] K.-W. Jun and D.-W. Park, “Almost derivations on the Banach algebra Cn[0, 1],” Bulletin of the Korean
Mathematical Society, vol. 33, no. 3, pp. 359–366, 1996.

[11] M. Amyari, C. Baak, and M. S. Moslehian, “Nearly ternary derivations,” Taiwanese Journal of
Mathematics, vol. 11, no. 5, pp. 1417–1424, 2007.

[12] R. Badora, “On approximate derivations,” Mathematical Inequalities & Applications, vol. 9, no. 1, pp.
167–173, 2006.

[13] C.-G. Park, “Linear derivations on Banach algebras,” Nonlinear Functional Analysis and Applications,
vol. 9, no. 3, pp. 359–368, 2004.

[14] M. S. Moslehian, “Hyers-Ulam-Rassias stability of generalized derivations,” International Journal of
Mathematics and Mathematical Sciences, vol. 2006, Article ID 93942, 8 pages, 2006.

[15] M. E. Gordji and N. Ghobadipour, “Nearly generalized Jordan derivations,” to appear inMathematica
Slovaca.

[16] C.-G. Park, “Homomorphisms between Poisson JC∗-algebras,” Bulletin of the Brazilian Mathematical
Society, vol. 36, no. 1, pp. 79–97, 2005.

[17] C. Baak and M. S. Moslehian, “On the stability of J∗-homomorphisms,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 63, no. 1, pp. 42–48, 2005.


